首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The artificial electron-donor system, phenazine methosulfate (PMS) ascorbate, inhibited active transport of glucose by Pseudomonas aeruginosa irrespective of whether the incubation systems were in air, flushed with oxygen, or gassed with nitrogen under anaerobic denitrifying conditions. Active transport of glucose by P. aeruginosa was also inhibited by reduced 5-N-methyl-phenazonium-3-sulfonate, a membrane-impermeable electron donor. PMS-ascorbate caused rapid depletion of intracellular adenosine triphosphate (ATP) when added to respiring cell suspensions of P. aeruginosa either in the presence or absence of glucose or succinate as oxidizable energy sources. In contrast, under identical conditions, Escherichia coli formed ATP with PMS-ascorbate as the sole oxidizable energy source and ATP formation continued when glucose or succinate was present in addition to PMS-ascorbate in the incubation system.  相似文献   

2.
Plasma membrane vesicles were isolated from homogenised yeast cells by filtration, differential centrifugation and aggregation of the mitochondrial vesicles at pH 4. As judged by biochemical, cell electrophoretic and electron microscopic criteria a pure plasma membrane vesicle preparation was obtained.The surface charge density of the plasma membrane vesicles is similar to that of intact yeast cells with an isoelectric point below pH 3. The mitochondrial vesicles have a higher negative surface charge density in the alkaline pH range. Their isoelectric point is near pH 4.5, where aggregation is maximal.The yield of vesicles sealed to K+ was maximal at pH 4 and accounted for about one third of the total vesicle volume.The plasma membrane vesicles demonstrate osmotic behaviour, they shrink in NaCl solutions when loosing K+.As in intact yeast cells the entry and exit of sugars like glucose or galactose in plasma membrane vesicles is inhibited by UO22+.Counter transport in plasma membrane vesicles with glucose and mannose and iso-counter transport with glucose suggests that a mobile carrier for sugar transport exists in the plasma membrane.After galactose pathway induction in the yeast cells and subsequent preparation of plasma membrane vesicles the uptake of galactose into the vesicles increased by almost 100% over the control value without galactose induction. This increase is explained by the formation of a specific galactose carrier in the plasma membrane.  相似文献   

3.
《BBA》1985,807(1):81-95
(1) The apparent Km for nitrate of the electron-transport system in intact cells of Paracoccus denitrificans was less than 5 μM. In contrast the apparent Km for nitrate of inverted membrane vesicles oxidising NADH was greater than 50 μM. When azide, a competitive inhibitor, was present, the apparent Km observed with the vesicles was raised to 0.64 mM, consistent with values previously reported for purified preparations of the reductase. In membrane vesicles the nitrate reductase is probably not rate-limiting for NADH-nitrate oxido-reductase activity, and thus a lower limit for Km (NO3) is obtained. It is suggested that the very low Km (NO3) in intact cells must arise from either a transport process or a nitrate-specific pore that allows access of nitrate directly to the active site of its reductase from the periplasm. (2) The swelling of spheroplasts has been studied under both aerobic and anaerobic conditions to probe possible mechanisms of nitrate and nitrite transport across the plasma membrane of P. denitrificans. Nitrate reductase was inhibited by azide to prevent reduction of internal nitrate. No evidence for operation of either nitrate-nitrite antiport or proton-nitrate symport was obtained. (3) Measurements from the fluorescence intensity of 8-anilino-naphthalene-1-sulphonate of the rates of decay of diffusion potentials generated by addition of potassium salts to valinomycin-treated plasma membrane vesicles from P. denitrificans showed that the permeability of the membrane to anions is SCN > NO3, NO2, pyruvate, acetate > CI > SO42−. In the presence of a protonophore the rate of decay of the diffusion potential was considerably enhanced with potassium acetate or potassium nitrite, but not with potassium salts of nitrate, chloride or pyruvate. This result indicates that HNO2 and CH3COOH can rapidly and passively diffuse across the cell membrane. This finding suggests that transport systems for nitrite are in general probably not required in bacteria. The failure of a protonophore to enhance the dissipation of the diffusion potential generated by potassium nitrate is evidence against the operation of a proton-nitrate symporter. (4) Low concentrations of added nitrite very strongly inhibit electron flow to oxygen in anaerobically grown cells, provided that they have been treated with Triton X-100 or an uncoupler. This inhibition is not observed with aerobically grown cells. It is concluded that the inhibitory species is a reaction product or an intermediate of the nitrite reductase reaction. The requirement for collapse of protonomotive force by uncoupler or permeabilising the plasma membrane suggests that any such species could be negatively charged. Nitroxyl anion (NO) can be considered, as its conjugate acid is a postulated intermediate between nitrite and nitrous oxide; nitroxyl anion can bind to heme centres to give nitrosyl derivatives. (5) The basis for the ability of permeabilised, but not intact, cells of P. denitrificans to reduce oxygen and nitrate simultaneously is discussed.  相似文献   

4.
In this work, high ΔμH+-dependent succinate oxidase activity has been demonstrated for the first time with membrane vesicles isolated from Bacillus subtilis. The maximal specific rate of succinate oxidation by coupled inside-out membrane vesicles isolated from a B. subtilis strain overproducing succinate:menaquinone oxidoreductase approaches the specific rate observed with the intact cells. Deenergization of the membrane vesicles with ionophores or alamethicin brings about an almost complete inhibition of succinate oxidation. An apparent K m for succinate during the energy-dependent succinate oxidase activity of the vesicles (2.2 mM) is higher by an order of magnitude than the K m value measured for the energy-independent reduction of 2,6-dichlorophenol indophenol. The data reveal critical importance of ΔμH+ for maintaining active electron transfer by succinate:menaquinone oxidoreductase. The role of ΔμH+ might consist in providing energy for thermodynamically unfavorable menaquinone reduction by succinate by virtue of transmembrane electron transport within the enzyme down the electric field; alternatively, ΔμH+ could play a regulatory role by maintaining the electroneutrally operating enzyme in a catalytically active conformation.  相似文献   

5.
Evidence is presented for the proton-coupled transport of sucrose and glutamine in purified plasma membrane vesicles isolated from cotyledons ofRicinus communis. Imposition of a pH gradient (internal alkaline) across the plasma membrane resulted in a rapid uptake of sucrose and glutamine which was inhibited in the presence of carbonyl cyanide-m-chlorophenyl hydrazone. Imposition of a pH gradient plus an internal negative membrane potential stimulated uptake further. Glucose and fructose uptakes were negligible under these conditions. Sucrose uptake into the vesicles demonstrated saturation kinetics with a Km of 0.87 mol·m-3, indicating carrier-mediated transport. In support of this, uptake was very sensitive to the protein-modifying reagentp-chloromercuribenzenesulphonic acid. N-Ethylmaleimide, another sulphydryl reagent, was only slightly inhibitory. However, both reagents strongly inhibited sucrose uptake into intact cotyledons; the possible reasons for the difference between the intact and isolated systems are assessed. The value of this system for the study of sucrose and amino acid carriers is discussed.  相似文献   

6.
Glucose transport by Pseudomonas aeruginosa was studied. These studies were enhanced by the use of a mutant, strain PAO 57, which was unable to grow on glucose but which formed the inducible glucose transport system when grown in media containing glucose or other inducers such as 2-deoxy-d-glucose. Both PAO 57 and parental strain PAO transported glucose with an apparent K(m) of 7 muM. Free glucose was concentrated intracellularly by P. aeruginosa PAO 57 over 200-fold above the external level. These data constitute direct evidence that glucose is transported via active transport by P. aeruginosa. Various experimental data clearly indicated that P. aeruginosa PAO transported methyl alpha-d-glucose (alpha-MeGlc) via the glucose transport system. The apparent K(m) of alpha-MeGlc transport was 7 mM which indicated a 1,000-fold lower affinity of the glucose transport system for alpha-MeGlc than for glucose. While only unchanged alpha-MeGlc was detected intracellularly in P. aeruginosa, alpha-MeGlc was actually concentrated intracellularly less than 2-fold over the external level. Membrane vesicles of P. aeruginosa PAO retained transport activity for gluconate. This solute was concentrated intravesicularly several-fold over the external level. A component of the glucose transport system is believed to have been lost during vesicle preparation since glucose per se was not transported. Instead; glucose was converted to gluconate by membrane-associated glucose dehydrogenase and gluconate was then transported into the vesicles. Although this may constitute an alternate system for glucose transport, it is not a necessary prerequisite for glucose transport by intact cells since P. aeruginosa PAO 57, which lacks glucose dehydrogenase, was able to transport glucose at a rate equal to the parental strain.  相似文献   

7.
Summary Phloridzin-insensitive, Na+-independentd-glucose uptake into isolated small intestinal epithelial cells was shown to be only partially inhibited by trypsin treatment (maximum 20%). In contrast, chymotrypsin almost completely abolished hexose transport. Basolateral membrane vesicles prepared from rat small intestine by a Percoll® gradient procedure showed almost identical susceptibility to treatment by these proteolytic enzymes, indicating that the vesicles are predominantly oriented outside-out. These vesicles with a known orientation were employed to investigate the kinetics of transport in both directions across the membrane. Uptake data (i.e. movement into the cell) showed aK t of 48mm and aV max of 1.14 nmol glucose/mg membrane protein/sec. Efflux data (exit from the cell) showed a lowerK t of 23mm and aV max of 0.20 nmol glucose/mg protein/sec.d-glucose uptake into these vesicles was found to be sodium independent and could be inhibited by cytochalasin B. TheK t for cytochalasin B as an inhibitor of glucose transport was 0.11 m and theK D for binding to the carrier was 0.08 m.d-glucose-sensitive binding of cytochalasin B to the membrane preparation was maximized withl- andd-glucose concentrations of 1.25m. Scatchard plots of the binding data indicated that these membranes have a binding site density of 8.3 pmol/mg membrane protein. These results indicate that the Na+-independent glucose transporter in the intestinal basolateral membrane is functionally and chemically asymmetric. There is an outward-facing chymotrypsin-sensitive site, and theK t for efflux from the cell is smaller than that for entry. These characteristics would tend to favor movement of glucose from the cell towards the bloodstream.  相似文献   

8.
Since redox active metals are often transported across membranes into cells in the reduced state, we have investigated whether exogenous ferri-heme or heme bound to hemopexin (HPX), which delivers heme to cells via receptor-mediated endocytosis, interact with a cell growth-associated plasma membrane electron transport (PMET) pathway. PMET reduces the cell-impermeable tetrazolium salt, WST-1, in the presence of the mandatory low potential intermediate electron acceptor, mPMS. In human promyelocytic (HL60) cells, protoheme (iron protoporphyrin IX; 2,4-vinyl), mesoheme (2,4-ethyl) and deuteroheme (2,4-H) inhibited reduction of WST-1/mPMS in a saturable manner supporting interaction with a finite number of high affinity acceptor sites (Kd 221 nM for naturally occurring protoheme). A requirement for the redox-active iron was shown using gallium-protoporphyrin IX (PPIX) and tin-PPIX. Heme-hemopexin, but not apo-hemopexin, also inhibited WST-1 reduction, and copper was required. Importantly, since neither heme nor heme-hemopexin replace mPMS as an intermediate electron acceptor and since inhibition of WST-1/mPMS reduction requires living cells, the experimental evidence supports the view that heme and heme-hemopexin interact with electrons from PMET. We therefore propose that heme and heme-hemopexin are natural substrates for this growth-associated electron transfer across the plasma membrane.  相似文献   

9.
The effects of ethanol and acetaldehyde on rat intestinal microvillus membrane integrity and glucose transport function were examined in vitro with purified membrane vesicles. Ethanol could influence glucose transport function by alterations in the conformation of the carrier, the lipid environment surrounding the carrier, or in the transport driving force (Na+ electrochemical gradient). Due to the rapid nature of glucose uptake, transport was assayed with the use of an apparatus that permitted uptake measurements as early as 1 s. Ethanol (340 mm) partially and acetaldehyde (44 mm) completely inhibited concentrative glucose uptake throughout the 1-min time course. Their inhibitory effects were reversible and irreversible, respectively. Kinetic measurements made during the initial rate of uptake (at 2 s) with various concentrations of glucose (0.05–8 mm) showed that ethanol and acetaldehyde both caused a decrease in V. Although ethanol did not substantially alter the transport Km, acetaldehyde increased the Km almost 50%. To determine whether ethanol or acetaldehyde directly interfered with glucose carrier function, uptake was measured in the presence of equilibrated Na+. Only acetaldehyde had a significant inhibitory effect under these conditions. Membrane permeability, as determined by efflux of preloaded 6-carboxyfluorescein dye, increased upon exposure of the vesicles to ethanol or acetaldehyde. Membrane fluidity measurements by fluorescence polarization showed that only acetaldehyde had a significant fluidizing effect. These results indicate that ethanol and acetaldehyde acted to perturb membrane integrity and inhibited glucose uptake indirectly by allowing the Na+ gradient to dissipate. Acetaldehyde, which had a stronger inhibitory effect than ethanol, appeared also to directly inhibit carrier function.  相似文献   

10.
Summary Glucose transport was studied in marine mussels of the genusMytilus. Initial observations, with intact animals and isolated gills, indicated that net uptake of glucose occurred in mussels by a carrier-mediated, Na+-sensitive process. Subsequent studies included use of brush-border membrane vesicles (BBMV) in order to characterize this transport in greater detail. The highest activity of Na+-dependent glucose transport was found in the brush-border membrane fractions used in this study, while basal-lateral membrane fractions contained the highest specific binding of ouabain. Glucose uptake into BBMV showed specificity for Na+, and concentrative glucose transport was observed in the presence of an inwardly directed Na+ gradient. There was a single saturable pathway for glucose uptake, with an apparentK t of 3 m in BBMV and 9 m in intact gills. The kinetics of Na+ activation of glucose uptake were sigmoidal, with apparent Hill coefficients of 1.5 in BBMV and 1.2 in isolated gills, indicating that more than one Na+ may be involved in the transport of each glucose. Harmaline inhibited glucose transport in mussel BBMV with aK i of 44 m. The uptake of glucose was electrogenic and stimulated by an inside-negative membrane potential. The substrate specificity in intact gills and BBMV resembled that of Na+-glucose cotransporters in other systems;d-glucose and -methyl glucopyranoside were the most effective inhibitors of Na+-glucose transport,d-galactose was intermediate in its inhibition, and there was little or no effect ofl-glucose,d-fructose, 2-deoxy-glucose, or 3-O-methyl glucose. Phlorizin was an effective inhibitor of Na+-glucose uptake, with an apparentK i of 154nm in BBMV and 21nm in intact gills. While the qualitative characteristics of glucose transport in the mussel gill were similar to those in other epithelia, the quantitative characteristics of this process reflect adaptation to the seawater environment of this animal.  相似文献   

11.
Membrane vesicles isolated from oxalategrown cells of Pseudomonas oxalaticus accumulated oxalate by an inducible transport system in unmodified form against a concentration gradient. This accumulation was dependent on the presence of a suitable electron donor system such as ascorbate-phenazinemethosulphate. In the presence of this energy source, steady state levels of accumulation of oxalate were 10–20-fold higher than in its absence. The oxalate transport system involved showed a high affinity for oxalate (K m =11 M) and was highly specific. Oxalate transport was not affected by the presence of other dicarboxylic acids, such as malate, succinate and fumarate and only partly inhibited by acetate. The energy requirement for oxalate transport is discussed and it is concluded that this requirement is most likely equivalent to 1 mole of ATP per mole of oxalate.Abbreviation PMS phenazinemethosulphate  相似文献   

12.
Plasma membrane vesicles isolated from nontransformed and Simian virus 40-transformed mouse fibroblast cultures catalyzed carrier-mediated D-glucose transport without detectable metabolic conversion to glucose 6-phosphate. Glucose transport activity was stereospecific, temperature-dependent, sensitive to inactivation by p-chloromercuriphenylsulfonate, and accompanied plasma membrane material during subcellular fractionation. D-Glucose efflux from vesicles was inhibited by phloretin, an inhibitor of glucose uptake in intact cells. Cytochalasin B, a potent inhibitor of glucose uptake when tested with the intact cells used for vesicle isolation did not inhibit glucose transport in vesicles despite the presence of high affinity cytochalasin binding sites in isolated membranes. The enhanced glucose uptake observed in intact cells after viral transformation was not expressed in vesicles: no significant differences in glucose transport specific activity could be detected in vesicle preparations from nontransformed and transformed mouse fibroblast cultures. These findings indicate that cellular components distinct from glucose carriers can mediate changes in glucose uptake in mouse fibroblast cultures in at least two cases: sensitivity to inhibition by cytochalasin B and the enhanced cellular sugar uptake observed after viral transformation.  相似文献   

13.
14.
Bush DR  Sze H 《Plant physiology》1986,80(2):549-555
Two active calcium (Ca2+) transport systems have been identified and partially characterized in membrane vesicles isolated from cultured carrot cells (Daucus carota Danvers). Both transport systems required MgATP for activity and were enhanced by 10 millimolar oxalate. Ca2+ transport in membrane vesicles derived from isolated vacuoles equilibrated at 1.10 grams per cubic centimeter and comigrated with Cl-stimulated, NO3-inhibited ATPase activity on sucrose density gradients. Ca2+ transport in this system was insensitive to vanadate, but was inhibited by nitrate, carbonyl cyanide-m-chlorophenylhydrazone (CCCP), N,N′-dicyclohexylcarbodiimide (DCCD), and 4,4-diisothiocyano-2,2′-stilbene disulfonic acid (DIDS). The Km for MgATP and Ca2+ were 0.1 mm and 21 micromolar, respectively. The predominant Ca2+ transport system detectable in microsomal membrane preparations equilibrated at a density of 1.13 grams per cubic centimeter and comigrated with the endoplasmic reticulum (ER) marker, antimycin A-insensitive NADH-dependent cytochrome c reductase. Ca2+ transport activity and the ER marker also shifted in parallel in ER shifting experiments. This transport system was inhibited by vanadate (I50 = 12 micromolar) and was insensitive to nitrate, CCCP, DCCD, and DIDS. Transport exhibited cooperative MgATP dependent kinetics. Ca2+ dependent kinetics were complex with an apparent Km ranging from 0.7 to 2 micromolar. We conclude that the vacuolar-derived system is a Ca2+/H+ antiport located on the tonoplast and that the microsomal transport system is a Ca,Mg-ATPase enriched on the ER. These two Ca2+ transport systems are proposed to restore and maintain cytoplasmic Ca2+ homeostasis under changing cellular and environmental conditions.  相似文献   

15.
Recently we demonstrated that ethidium bromide altered the plasma and subcellular membrane glycoproteins in control and virus transformed cells. It is reported here that ethidium bromide also stimulated the membrane associated process of sugar transport. The Km of the virus transformed cells and the ethidium bromide treated cells is the same as that of the control cells while the maximum velocity as compared to the control cells is significantly increased. The transport of 2-deoxy-D-glucose was inhibited by glucose, cytochalasin B and neuraminidase but was unaffected by variations in cell density or pH of the incubation medium.  相似文献   

16.
Summary Intact plants can reduce external oxidants by an appearingly trans-membrane electron transport. In vivo an increase in net medium acidification accompanies the reduction of the apoplastic substrate. Up to now, several NAD(P)H dehydrogenases,b-type cytochromes, and a phylloquinone have been identified and partially purified from plant plasma membranes. The occurrence of a quinone in the plasma membrane of maize roots supports the hypothetical model of a proton-transferring redox system, i.e., an electron transport chain with a quinone as mobile electron and proton carrier. In the present study the trans-membrane electron transport system of intact maize (Zea mays L.) roots was investigated. Flow-through and ionostat systems have been used to estimate the electron and proton transport activity of this material. Application of 4,4,4-trifluoro-1-(2-thienyl)-butane-1,3-dione (thenoyltrifluoroacetone) inhibited the reduction of ferricyanide in the incubation solution of intact maize roots up to 70%. This inhibition could not be washed off by rinsing the roots with fresh incubation medium. The acidification of the medium induced after ferricyanide application was inhibited to about 62%. The effects of thenoyltrifluoroacetone on proton fluxes in the absence of ferricyanide have been characterized in a pH-stat system. The net medium acidification by maize roots was inhibited up to 75% by thenoyltrifluoroacetone in the absence of ferricyanide, while dicumarol inhibited net acidification completely. The inhibition of H+-ATPase activity was estimated with plasma membrane vesicles isolated by phase partitioning and treated with 0.05% (w/v) Brij 58. ATP-dependent proton gradients and Pi release were measured after preincubation with the effectors. The proton pumping activity by those plasma membrane vesicles was inhibited by dicumarol (53.6%) and thenoyltrifluoroacetone (77.8%), while the release of Pi was unaffected by both inhibitors.Abbreviations Brij 58 polyoxyethylene 20-cetyl ether - duroquinone tetramethyl-p-benzoquinone - HCF III hexacyanoferrate III - TTFA thenoyltrifluoroacetone - vitamin K1 2-methyl-3-phytyl-1,4-naphthoquinone - vitamin K3 2-methyl-1,4-naphthoquinone  相似文献   

17.
The active transport of d-glucose by membrane vesicles prepared from Azotobactervinelandii strain O is coupled to the oxidation of l-malate. The glucose carrier, but not the energy coupling system of the vesicles, is induced by growth of the cells on d-glucose medium. Vesicles isolated from A. vinelandii grown in the presence of sucrose or acetate accumulate glucose at less than 7% of the rate observed for vesicles from glucose-grown cells. Nevertheless, vesicles from sucrose- or acetate-grown cells transport sucrose or calcium, respectively, in the presence of malate.The transport system expressed in vesicles from glucose-cultured cells is highly specific for d-glucose. Studies of glucose analog uptake and of the competitive effect of analogs reveal that: (i) The glucose carrier is stereospecific. (ii) The affinity of hexoses for the transport system is inversely related to the bulk of substituents on the pyranose ring, especially at the C-1 and C-2 positions, (iii) The most effective competitors, 6-deoxyglucose and 2-deoxyglucose, exhibit affinities only 10–20% that of d-glucose for the transport system, (iv) Phloretin, but not phlorizin, is a competitive inhibitor of glucose transport, having an apparent Ki of 9 μm at pH 7.0. These latter findings suggest a similarity of the glucose transport system of fxA. vinelandii and those of eukaryotes with regard to the glucose carrier.  相似文献   

18.
Bush DR 《Plant physiology》1989,89(4):1318-1323
Sucrose is the predominant form of photosynthetically reduced carbon transported in most plant species. In the experiments reported here, an active, proton-coupled sucrose transport system has been identified and partially characterized in plasmalemma vesicles isolated from mature sugar beet (Beta vulgaris L. cv Great Western) leaves. The isolated vesicles concentrated sucrose fivefold in the presence of an imposed pH gradient (basic interior). The presence of carbonyl cyanide m-chlorophenylhydrazone, a protonophore, prevented sucrose accumulation within the vesicles. ΔpH-dependent sucrose transport exhibited saturation kinetics with an apparent Km of 1.20 ± 0.40 millimolar, suggesting translocation was carrier-mediated. In support of that conclusion, two protein modifiers, diethyl pyrocarbonate and p-chloromercuribenzenesulfonic acid, were found to be potent inhibitors with 50% inactivation achieved at 750 and 30 micromolar, respectively. ΔpH-Dependent sucrose transport was not inhibited by glucose, fructose, raffinose, or maltose suggesting the transport system was specific for sucrose. Transport activity was associated with the plasmalemma because ΔpH-dependent sucrose transport equilibrated on a linear sucrose gradient at 1.17 grams per cubic centimeter and comigrated with a plasmalemma enzyme marker, vanadate-sensitive K+, Mg2+-ATPase. Taken together, these results provide the first In vitro evidence in support of a sucrose-proton symport in the plasmalemma of mature leaf tissue.  相似文献   

19.
Rabbit kidney brush-border membrane vesicles were exposed to bacterial protease which cleaves off a large number of externally oriented proteins. Na+-dependent d-glucose transport is left intact in the protease-treated vesicles. The protease-treated membrane was solubilized with deoxycholate and the deoxycholate-extracted proteins were further resolved by passage through Con A-Sepharose columns. Sodium-dependent d-glucose activity was found to reside in a fraction containing a single protein band of Mr ? 165000 which is apparently a dimer of Mr ? 85 000. When reconstituted and tested for transport, this protein showed Na+-dependent, stereo-specific and phlorizin-inhibitable glucose transport. Transport activity is completely recovered and is 20-fold increased in specific activity. A similar isolate was obtained from rabbit small intestinal brush-border membranes and kidneys from several other species of animals.  相似文献   

20.
The kinetics of NADH oxidation by the outer membrane electron transport system of intact beetroot (Beta vulgaris L.) mitochondria were investigated. Very different values for Vmax and the Km for NADH were obtained when either antimycin A-insensitive NADH-cytochrome c activity (Vmax= 31 ± 2.5 nmol cytochrome c (mg protein)?1 min?1; Km= 3.1 ± 0.8 μM) or antimycin A-insensitive NADH-ferricyanide activity (Vmax= 1.7 ± 0.7 μmol ferricyanide (mg protein)?1 min?1; Km= 83 ± 20 μM) were measured. As ferricyanide is believed to accept electrons closer to the NADH binding site than cytochrome c, it was concluded that 83 ± 20 μM NADH represented a more accurate estimate of the binding affinity of the outer membrane dehydrogenase for NADH. The low Km determined with NADH-cytochrome c activity may be due to a limitation in electron flow through the components of the outer membrane electron transport chain. The Km for NADH of the externally-facing inner membrane NADH dehydrogenase of pea leaf (Pisum sativum L. cv. Massey Gem) mitochondria was 26.7 ± 4.3 μM when oxygen was the electron acceptor. At an NADH concentration at which the inner membrane dehydrogenase should predominate, the Ca2+ chelator, ethyleneglycol-(β-aminoethylether)-N,N,-tetraacetic acid (EGTA), inhibited the oxidation of NADH through to oxygen and to the ubiquinone-10 analogues, duroquinone and ubiquinone-1, but had no effect on the antimycin A-insensitive ferricyanide reduction. It is concluded that the site of action of Ca2+ involves the interaction of the enzyme with ubiquinone and not with NADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号