首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Past research has examined hurricane impacts on marine communities such as seagrass beds, coral reefs, and mangroves, but studies on how hurricanes affect marsh tidal creeks are lacking despite the important ecological roles that marsh tidal creeks have in coastal ecosystems. Here we report on the impact of Hurricane Ivan, which made landfall on September 16, 2004, on the primary productivity and metabolism of six marsh tidal creeks in the NorthCentral Gulf of Mexico. The hurricane did not seem to have any large, lasting impact on nutrient concentrations, primary productivity, metabolism, and chlorophyll a concentration in the water-column of the marsh tidal creeks. In contrast, the hurricane seemed to largely decrease gross primary productivity, net productivity, and chlorophyll a concentration in the sediment of the marsh tidal creeks. The results observed for Hurricane Ivan were coincident with those observed for four other major storms that made landfall close to the study area during 2005, Tropical Storm Arlene and Hurricanes Cindy, Dennis, and Katrina. However, the apparent negative impact of major storms on the sediment of the marsh tidal creeks did not seem to be long-lived and appeared to be dissipated within a few weeks or months after landfall. This suggests that marsh tidal creeks mostly covered with bare sediment are less disturbed by hurricanes than other types of marine communities populated with bottom-attached and/or more rigid organisms, such as seagrass meadows, coral reefs, and mangroves, where hurricane impacts can be larger and last longer.  相似文献   

2.
Translocations or other movements of wildlife sometimes accomplish their intended objectives, but unforeseen consequences may arise and disrupt locally adapted ecological communities, restructure or dilute genetic integrity of populations or subspecies of the moved organism, and otherwise negatively influences a species’ long‐term fitness. Two historical populations of Mottled Ducks (Anas fulvigula) exist and are endemic to (1) Mexico and the West‐Gulf Coast (A. f. maculosa) regions of the United States and (2) Florida (A. f. fulvigula). From 1975 to 1983, 1285 Mottled Ducks from Florida, Louisiana, and Texas were released to coastal South Carolina, primarily to ultimately establish a legally harvestable population. This movement stirred mixed reactions amid the conservation community. Contemporary information suggests an increasing Mottled Duck population in South Carolina and possibly dispersing into Georgia. Herein, I objectively discuss the potential consequences of this new population per the birds’ evolution, ecology, and management. Ultimately, I suggest that this translocation is a long‐term benefit to the species.  相似文献   

3.
As habitat loss and fragmentation, urbanization, and global climate change accelerate, conservation of rare ecosystems increasingly relies on human intervention. However, any conservation strategy is vulnerable to unpredictable, catastrophic events. Whether active management increases or decreases a system's resilience to these events remains unknown. Following Hurricane Irma's landfall in our habitat restoration study sites, we found that rare ecosystems with active, human‐imposed management suffered less damage in a hurricane's path than unmanaged systems. At the center of Irma's landfall, we found Croton linearis' (a locally rare plant that is the sole host for two endangered butterfly species) survival and population growth rates in the year of the hurricane were higher in previously managed plots than in un‐managed controls. In the periphery of Irma's circulation, the effect of prior management was stronger than that of the hurricane. Maintaining the historical disturbance regime thus increased the resilience of the population to major hurricane disturbance. As climate change increases the probability and intensity of severe hurricanes, human management of disturbance‐adapted landscapes will become increasingly important for maintaining populations of threatened species in a storm's path. Doing nothing will accelerate extinction.  相似文献   

4.
The continued increase in the number of tourists visiting the Northern Gulf Coast (NGC), USA, in the last century, and the resulting sprawl of large cities along the coast, has degraded and fragmented the available habitat of Arctosa sanctaerosae, a wolf spider endemic to the secondary dunes of the white sandy beaches of the NGC. In addition to anthropogenic disturbance to this coastal region, hurricanes are an additional and natural perturbation to the ecosystem. The data presented here explore the status of populations of this species spanning the entire known range and the factors influencing population demography including anthropogenic disturbance and severe tropical storms. Using microsatellite markers, we were able to document the genetic structure of A. sanctaerosae, including current and historic patterns of migration. These results combined with ecological and census data reveal the characteristics that have influenced population persistence: ecological variables affecting the recovery of the population clusters after severe tropical storms, genetic fragmentation due to anthropogenic disturbance, and their interaction. These findings demonstrate the significance that the high traffic beach communities of the NGC and their impact on the once intact contiguous dune ecosystem have on recovery after severe tropical storms. Contemporary modeling methods that compare current and historic levels of gene flow suggest A. sanctaerosae has experienced a single, contiguous population subdivision, and the isolates reduced in size since the onset of commercial development of the NGC. These results point to the need for monitoring of the species and increased protection for this endangered habitat.  相似文献   

5.
The impacts of Hurricanes Gilbert (1988) and Hugo (1989) on echinoderm assemblages were assessed in backreef habitats in Jamaica and St. Croix, respectively. One site on each island was censused before the hurricanes. Ophiuroids were monitored at the Jamaican site for three years following Hurricane Gilbert, and ophiuroids and echinoids were monitored at the site on St. Croix for two years following Hurricane Hugo. No hurricane-related changes in ophiuroid abundance were observed at either site. Likewise, there was no evidence that Hurricane Hugo altered echinoid abundance at St. Croix. These negative results correlated with an observed lack of hurricane-generated physical disturbance in the backreef areas, despite 6-m waves that broke on the reef crests at the two sites during the storms. Hurricane impacts on mobile faunas appear to depend directly on physical habitat alterations.  相似文献   

6.
Wetland environment and habitat loss increase the rate of biodiversity decline and affect our ecosystems. Yancheng National Nature Reserve (YNNR) is a protected area dedicated to endangered migratory bird species to overwinter. However, it currently has a record low influx of migrating birds and might therefore be losing its founding purpose. We used remote sensing technology to assess and quantify the impacts and effects of invasive halophytes Spartina alterniflora in the habitat loss and shrinkage of endangered bird wintering habitat from 2003 to 2018. We also attempted to ascertain the causes and triggers of avian population decline and its relationship with habitat loss, as these phenomena threaten and endanger species both locally and globally. Our study shows how YNNR has lost about 80% of migratory bird habitat to invasive S. alterniflora and Phragmites australis, a native halophyte plant in the reserve. Furthermore, shoreline erosion triggered the retraction of S. alterniflora and its backward growth toward Suaeda Salsa, the preferred foraging habitat for migratory birds in the zone, which is a possible cause of their decline.  相似文献   

7.
Although hurricanes have been implicated in causing shifts in waterbird use of individual colonies, little is known about whether or not these effects are consistent across broader areas affected by a storm. We examined the effects of Hurricane Rita, and to a lesser extent Katrina, and a subsequent drought, on the nesting activity of waterbirds across colonies located in southern Louisiana. Using ground counts, we compared changes in numbers of nesting pairs between 2005 and 2006, the years encompassing the hurricanes and drought, with changes between 2004 and 2005. Following the hurricanes, colonies were more likely to become inactive or experience large shifts in numbers of nesting pairs, compared with the period before the hurricanes. Although one third of the surveyed colonies became inactive following the hurricanes, total numbers of nesting birds of most species increased. We hypothesize that these increases were the result of birds shifting from damaged to active colonies. Colony use was negatively associated with the maximum wind speeds experienced at each site, apparently as a result of damage to nesting habitat. There were no associations of colony use with either storm-related flooding or localized rainfall during the drought; however, this may be due to manipulation of water levels by management agencies. Our results suggest that monitoring colonies over a broad area is necessary to understand the influence of hurricanes on the nesting activity of waterbirds.  相似文献   

8.
The Gulf of Mexico is a conspicuous feature of the Neotropical–Nearctic bird migration system. Traveling long distances across ecological barriers comes with considerable risks, and mortality associated with intercontinental migration may be substantial, including that caused by storms or other adverse weather events. However, little, if anything, is known about how migratory birds respond to disturbance‐induced changes in stopover habitat. Isolated, forested cheniere habitat along the northern coast of the Gulf of Mexico often concentrate migrants, during weather conditions unfavorable for northward movement or when birds are energetically stressed. We expected hurricane induced degradation of this habitat to negatively affect the abundance, propensity to stopover, and fueling trends of songbirds that stopover in coastal habitat. We used spring banding data collected in coastal Louisiana to compare migrant abundance and fueling trends before (1993–1996 and 1998–2005) and after hurricanes Rita (2006) and Ike (2009). We also characterized changes in vegetative structure before (1995) and after (2010) the hurricanes. The hurricanes caused dramatic changes to the vegetative structure, which likely decreased resources. Surprisingly, abundance, propensity to stopover, and fueling trends of most migrant species were not influenced by hurricane disturbance. Our results suggest that: 1) the function of chenieres as a refuge for migrants after completing a trans‐Gulf flight may not have changed despite significant changes to habitat and decreases in resource availability, and 2) that most migrants may be able to cope with habitat disturbance during stopover. The fact that migrants use disturbed habitat points to their conservation value along the northern coast of the Gulf of Mexico.  相似文献   

9.
Climate change is anticipated to exacerbate the extinction risk of species whose persistence is already compromised by habitat loss, invasive species, disease, or other stressors. In coastal areas of the southeastern United States (USA), many imperiled vertebrates are vulnerable to hurricanes, which climate models predict to become more severe in the 21st century. Despite this escalating threat, explicit adaptation strategies that address hurricane threats, in particular, and climate change more generally, are largely underrepresented in recovery planning and implementation. We provide a basis for stronger emphasis on strategic planning for imperiled species facing the increasing threat of catastrophic hurricanes. Our reasoning comes from observations of short‐term environmental and biological impacts of Hurricane Michael, which impacted the Gulf Coast of the southeastern USA in October 2018. During this storm, St. Marks National Wildlife Refuge, located along the northern Gulf of Mexico's coast in the panhandle region of Florida, received storm surge that was 3.0–3.6 m (NAVD88) above sea level. Storm surge pushed sea water into some ephemeral freshwater ponds used for breeding by the federally threatened frosted flatwoods salamander (Ambystoma cingulatum). After the storm, specific conductance across all ponds measured varied from 80 to 23,100 µS/cm, compared to 75 to 445 µS/cm in spring 2018. For 17 overwashed wetlands that were measured in both spring and fall 2018, posthurricane conductance observations were, on average, more than 90 times higher than in the previous spring, setting the stage for varying population responses across this coastal landscape. Importantly, we found live individual flatwoods salamanders at both overwashed and non‐overwashed sites, although we cannot yet assess the demographic consequences of this storm. We outline actions that could be incorporated into climate adaptation strategies and recovery planning for imperiled species, like A. cingulatum, that are associated with freshwater coastal wetlands in hurricane‐prone regions.  相似文献   

10.
Praomys delectorum occurs abundantly in both disturbed and intact forests in the Ukaguru Mountains within the Eastern Arc Mountains (EAM), Morogoro, Tanzania. While previous studies have reported that anthropogenic disturbances such as grazing, wood cutting, and harvesting have a positive effect on the population density of P. delectorum, the impact of habitat disturbance on its demographic traits is still unknown. We performed a capture–mark–recapture study in both disturbed and intact forests from June 2018 to February 2020 in order to investigate the effects of habitat disturbance on abundance and two demographic traits: survival and maturation of P. delectorum in the Ukaguru Mountains. We found no variation in abundance or maturation between intact and disturbed forests, but habitat type did affect survival. However, this effect was sex‐dependent since female survival was higher in disturbed forests, while male survival remained similar across the two forest types potentially due to differences in predation pressure or food availability between the two habitats. Continuous demographic monitoring of P. delectorum in EAM is necessary given that the increasing human population surrounding the landscape is leading to higher deforestation rates and expansion of the pine plantation in the forest reserve.  相似文献   

11.
Among birds, breeding numbers are mainly limited by two resources of major importance: food supply and nest-site availability. Here, we investigated how differences in land-use and nest-site availability affected the foraging behaviour, breeding success and population trends of the colonial cavity-dependent lesser kestrel Falco naumanni inhabiting two protected areas. Both areas were provided with artificial nests to increase nest-site availability. The first area is a pseudo-steppe characterized by traditional extensive cereal cultivation, whereas the second area is a previous agricultural zone now abandoned or replaced by forested areas. In both areas, lesser kestrels selected extensive agricultural habitats, such as fallows and cereal fields, and avoided scrubland and forests. In the second area, tracked birds from one colony travelled significantly farther distances (6.2 km ±1.7 vs. 1.8 km ±0.4 and 1.9 km ±0.6) and had significant larger foraging-ranges (144 km2 vs. 18.8 and 14.8 km2) when compared to the birds of two colonies in the extensive agricultural area. Longer foraging trips were reflected in lower chick feeding rates, lower fledging success and reduced chick fitness. Availability and occupation of artificial nests was high in both areas but population followed opposite trends, with a positive increment recorded exclusively in the first area with a large proportion of agricultural areas. Progressive habitat loss around the studied colony in the second area (suitable habitat decreased from 32% in 1990 to only 7% in 2002) is likely the main driver of the recorded population decline and suggests that the effectiveness of bird species conservation based on nest-site provisioning is highly constrained by habitat quality in the surrounding areas. Therefore, the conservation of cavity-dependent species may be enhanced firstly by finding the best areas of remaining habitat and secondly by increasing the carrying capacity of high-quality habitat areas through safe nest-site provisioning.  相似文献   

12.
Hurricanes have been assumed to reduce the reproduction of plants, either directly by leaf stripping and stress or indirectly by reducing pollinators. I examined the pollination and fruit set of a common shrub, Bourreria succulenta, after hurricanes on San Salvador island, Bahamas. Contrary to the assumption of resource limitation, B. succulenta showed unusually prolific flowering after Hurricane Lili stripped leaves from most of the plants in October 1996. I predicted that the abundant flowering would saturate pollinators and that fruit set would be pollination‐limited. Fruit set was strongly pollination‐limited by 71 percent. Butterflies are probably the major pollinators and were present at the site, but they rarely visited B. succulenta flowers even though flowers were brimming with nectar. Nectarivorous birds (Bananaquits and Bahama Wbodstars) visit B. succulenta flowers, but their populations were decimated by Hurricane Lili and they rarely visited flowers during this time. Fruit set was also severely predation‐limited; a moth caterpillar (Gelechiidae) was extremely abundant and ate buds, flowers, and fruits, causing a further 68 percent reduction in fruit set. Together, pollination limitation and predation limitation reduced fruit set to only 7 percent or less. Predation was also intense in 1999 after Hurricane Floyd and resulted in 11 percent fruit set or less. Whether or not hurricanes were the cause of limited pollinators or abundant predators, the resulting low fruit set could have population effects because hurricanes can provide opportunities for the recruitment of new plants. These results emphasize that understanding plant–animal interactions may be necessary for predicting the effects of hurricanes on plant reproductive success, which may affect subsequent recruitment. Species on small islands like San Salvador (150 km2) with relatively few species may be especially vulnerable to environmental disturbances such as hurricanes.  相似文献   

13.
Strong hurricanes can cause population reductions in West Indian birds and bats, but the genetic consequences of such reductions have not been documented. For three species of phyllostomid bats, we report on the genetic effects of three strong hurricanes that struck the northern West Indies in 2004. Hurricane Ivan devastated Grand Cayman and severely depressed populations of several bat species. Despite being smaller than pre-hurricane levels, the population of Artibeus jamaicensis (the only species we could resample) on Grand Cayman contained greater mitochondrial haplotype diversity but similar microsatellite allelic diversity compared to pre-Ivan levels. We suggest that hurricane-aided dispersal from Cayman Brac introduced two new haplotypes into the Grand Cayman population. In the Bahamas, two other phyllostomids ( Erophylla sezekorni and Macrotus waterhousii ) did not suffer population losses or changes in genetic diversity as a result of Hurricanes Frances and Jeanne. Our results suggest that strong hurricanes usually have greater demographic than genetic effects but that hurricane-aided dispersal can occasionally introduce new genotypes or haplotypes into island bat populations.  相似文献   

14.
More intense and frequent hurricanes may lead to long‐lasting effects to tropical ecosystems. Here, we describe the immediate impact on the butterfly community of a lowland forest in Belize, following Hurricane Earl. Species richness and abundance increased posthurricane, likely driven by convergence of the organization between the canopy and understory communities.  相似文献   

15.
Predation of nests and young is one of the limiting factors in the conservation of birds; understanding environmental covariates of predator distribution can assist with decisions regarding the best management strategies to reduce predation risk. The habitat of beach-nesting birds is often reshaped by storms in ways that may affect nest predation, such as by flattening vegetated dunes where mammals hunt, but human management of beaches tries to prevent the effects of storms on the landscape with unknown implications for predator distributions. Moreover, human development may affect predator distributions by subsidizing food and shelter. To determine the relationship between predator occupancy and landscape features in beach-nesting bird habitat, we repeated mammalian predator track surveys 8 times/year at 90 plots in southern New Jersey, USA, from 2015–2017. We used dynamic occupancy models to estimate the probability of use by red foxes (Vulpes vulpes) and to document changes in habitat use as related to landcover types over the avian breeding season within years. We had 373 red fox detections with years pooled. Detection probability for red foxes varied by year, and probability of use decreased as the distance to the nearest primary dune increased. We found no evidence that red fox habitat use depended on distance to human development. Our results suggest that conserving nesting habitat that includes open areas (i.e., storm overwash [whereby vegetation is scoured by tidal flooding]) may reduce predation risk because beach-nesting birds would not be forced into nesting close to dunes, which are typically used for hunting by red foxes. © 2020 The Wildlife Society.  相似文献   

16.
Habitat alterations resulting from land‐use change are major drivers of global biodiversity losses. In Africa, these threats are especially severe. For instance, demand to convert land into agricultural uses is leading to increasing areas of drylands in southern and central Africa being transformed for agriculture. In Zimbabwe, a land reform programme provided an opportunity to study the biodiversity response to abrupt habitat modification in part of a 91,000 ha dryland area of semi‐natural savannah used since 1930 for low‐level cattle ranching. Small‐scale subsistence farms were created during 2001–2002 in 65,000 ha of this area, with ranching continuing in the remaining unchanged area. We measured the compositions of bird communities in farmed and ranched land over 8 years, commencing one decade after subsistence farms were established. Over the study period, repeated counts were made along the same 45 transects to assess species'' population changes that may have resulted from trait‐filtering responses to habitat disturbance. In 2012, avian species'' richness was substantially higher (+8.8%) in the farmland bird community than in the unmodified ranched area. Temporal trends over the study period showed increased species'' richness in the ranched area (+12.3%) and farmland (+6.8%). There were increased abundances in birds of most sizes, and in all feeding guilds. New species did not add new functional traits, and no species with distinctive traits were lost in either area. As a result, species'' diversity reduced, and functional redundancy increased by 6.8% in ranched land. By 2020, two decades after part of the ranched savannah was converted into farmland, the compositions of the two bird communities had both changed and became more similar. The broadly benign impact on birds of land conversion into subsistence farms is attributed to the relatively low level of agricultural activity in the farmland and the large regional pool of nonspecialist bird species.  相似文献   

17.
The fishing cat Prionailurus viverrinus is a wetland specialist species endemic to South and Southeast Asia. Nepal represents the northern limit of its biogeographic range, but comprehensive information on fishing cat distribution in Nepal is lacking. To assess their distribution, we compiled fishing cat occurrence records (n = 154) from Nepal, available in published literature and unpublished data (2009–2020). Bioclimatic and environmental variables associated with their occurrence were used to predict the fishing cat habitat suitability using MaxEnt modeling. Fishing cat habitat suitability was associated with elevation (152–302 m), precipitation of the warmest quarter, i.e., April–June (668–1014 mm), precipitation of the driest month (4–7 mm), and land cover (forest/grassland and wetland). The model predicted an area of 4.4% (6679 km2) of Nepal as potential habitat for the fishing cat. About two‐thirds of the predicted potentially suitable habitat lies outside protected areas; however, a large part of the highly suitable habitat (67%) falls within protected areas. The predicted habitat suitability map serves as a reference for future investigation into fishing cat distribution as well as formulating and implementing effective conservation programs in Nepal. Fishing cat conservation initiatives should include habitats inside and outside the protected areas to ensure long‐term survival. We recommend conservation of wetland sites, surveys of fishing cats in the identified potential habitats, and studying their genetic connectivity and population status.  相似文献   

18.
Endemic island species face unprecedented threats, with many populations in decline or at risk of extinction. One important threat is the introduction of novel and potentially devastating diseases, made more pressing due to accelerating global connectivity, urban development, and climatic changes. In the Galápagos archipelago two important wildlife diseases: avian pox (Avipoxvirus spp.) and avian malaria (Plasmodium spp. and related Haemosporidia) challenge endemic species. San Cristóbal island has seen a paucity of disease surveillance in avian populations, despite the island''s connectedness to the continent and the wider archipelago. To survey prevalence and better understand the dynamics of these two diseases on San Cristóbal, we captured 1205 birds of 11 species on the island between 2016 and 2020. Study sites included urban and rural lowland localities as well as rural highland sites in 2019. Of 995 blood samples screened for avian haemosporidia, none tested positive for infection. In contrast, evidence of past and active pox infection was observed in 97 birds and identified as strains Gal1 and Gal2. Active pox prevalence differed significantly with contemporary climatic conditions, being highest during El Niño events (~11% in 2016 and in 2019 versus <1% in the La Niña year of 2018). Pox prevalence was also higher at urban sites than rural (11% to 4%, in 2019) and prevalence varied between host species, ranging from 12% in medium ground finches (Geospiza fortis) to 4% in Yellow Warblers (Setophaga petechial aureola). In the most common infected species (Small Ground Finch: Geospiza fuliginosa), birds recovered from pox had significantly longer wings, which may suggest a selective cost to infection. These results illustrate the threat future climate changes and urbanization may present in influencing disease dynamics in the Galápagos, while also highlighting unknowns regarding species‐specific susceptibilities to avian pox and the transmission dynamics facilitating outbreaks within these iconic species.  相似文献   

19.
Over the last 20 years, ecological restoration of degraded habitats has become common in conservation practice. Mountain hares (Lepus timidus scoticus) were surveyed during 2017–2021 using 830 km of line transects in the Peak District National Park, England. Historically degraded bog areas were previously reported having low hare numbers. Following bog restoration, we found hare densities of 32.6 individuals km−2, notably higher than neighboring degraded (unrestored) bog with 24.4 hares km−2. Hare density on restored peatland was 2.7 times higher than on bogs managed for grouse shooting at 12.2 hares km−2 and 3.3 times higher than on heather moorland managed for grouse shooting at 10.0 hares km−2. Yearly estimates varied most on habitats managed for grouse, perhaps indicative of the impact of habitat management, for example, heather burning and/or possible hare culling to control potential tick‐borne louping ill virus in gamebirds. Acid grassland used for sheep farming had a similar density to grouse moorland at 11.8 hares km−2. Unmanaged dwarf shrub heath had the lowest density at 4.8 hares km−2. Hare populations are characterized by significant yearly fluctuations, those in the study area increasing by 60% between 2017 and 2018 before declining by ca. 15% by 2020 and remaining stable to 2021. During an earlier survey in 2002, total abundance throughout the Peak District National Park was estimated at 3361 (95% CI: 2431–4612) hares. The present study estimated 3562 (2291–5624) hares suggesting a stable population over the last two decades despite fluctuations likely influenced by weather and anthropogenic factors. Mountain hares in the Peak District favored bog habitats and were associated with restored peatland habitat. Wildlife management should be cognizant of hare density variation between habitats, which may have implications for local extinction risk.  相似文献   

20.
Few hurricanes affect intact stands of subtropical pines. We examined effects of winds in the eyewalls of Hurricane Andrew, where wind speeds were >200 km h–1, on all remaining large mainland stands of Pinus elliottii var. densa (south Florida slash pine) on limestone outcroppings (rocklands) in the everglades region of southern Florida. We measured densities and sizes of trees and assessed damage and mortality in plots in old-growth stands in the Lostman's Pines (LOP) region of Big Cypress National Preserve and in second-growth stands in the Pines West (PIW) and Long Pine Key (LPK) regions of Everglades National Park. We also examined age-size relationships using sections from trees killed by the hurricane in LOP and LPK. We used the data to predict effects of recurrent hurricanes on the structure and dynamics of the old-growth stand and to compare effects of hurricanes on old- and second-growth stands.Slash pine was resistant to hurricane winds. Most trees in stands (68–76%) were not severely damaged; mortality in the three regions averaged 17–25% shortly after the hurricane and 3–7% during the following year. Mortality was positively associated with tree size; mean tree sizes decreased and size-selective thinning occurred in all stands. Nonetheless, local mortality ranged from 3–4% to 50–60% among plots in all stands. Such local variation in mortality resulted from clustering of large trees, especially in old-growth stands, and from microbursts during the hurricane, which affected all stands. Recurrent, intense hurricanes are predicted to kill larger trees, slowly opening new patches and increasing sizes of extant patches, thus resulting in almost continual presence of openings suitable for recruitment in old-growth stands. Age-size relationships also indicated that large trees in old-growth stands may survive 2–3 centuries. The combination of frequent openings and wind resistance of large trees is predicted to result in old-growth stands that are highly uneven aged, with trees locally distributed in similar-aged patches. The extent to which such stands deviate from demographic equilibrium, as well as turnover rates within stands, are likely to increase as the frequency of recurrent, intense hurricanes increases.Damage and mortality differed in old- and second-growth stands. Large trees were more, but small trees less likely to be damaged in old- than second-growth stands. In contrast, mortality was significantly lower in old- (LOP: 16.9% ± 3.1 [mean ± s.e.]) than second-growth stands (PIW: 22.5% ± 2.0; LPK: 25.2% ± 2.7). Total hurricane-related mortality was 30–60% higher in second- than old-growth stands. Size class structure, more uneven in old- than second growth stands prior to the hurricane, diverged even more afterwards. Hurricane Andrew removed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号