首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Asparaginyl endopeptidase is a cysteine endopeptidase that has strict substrate specificity toward the carboxy side of asparagine residues. Vigna mungo processing enzyme 1, termed VmPE-1, occurs in the cotyledons of germinated seeds of V. mungo, and is possibly involved in the post-translational processing of a vacuolar cysteine endopeptidase, designated SH-EP, which degrades seed storage protein. VmPE-1 also showed a substrate specificity to asparagine residues, and its enzymatic activity was inhibited by NEM but not E-64. In addition, purified VmPE-1 had a potential to process the recombinant SH-EP precursor to its intermediate in vitro. cDNA clones for VmPE-1 and its homologue, named VmPE-1A, were identified and sequenced, and their expressions in the cotyledons of V. mungo seedlings and other organs were investigated. VmPE-1 mRNA and SH-EP mRNA were expressed in germinated seeds at the same stage of germination although the enzymatic activity of VmPE-1 rose prior to that of SH-EP. The level of VmPE-1A mRNA continued increasing as germination proceeded. In roots, stems and leaves of fully grown plants, and in hypocotyls, VmPE-1 and VmPE-1A were little expressed. We discuss possible functions of VmPE-1 and VmPE-1A in the cotyledons of germinated seeds.  相似文献   

2.
Serine protease inhibitors are widely distributed in the plant kingdom. Many of them have been purified and characterized from different species. While the physicochemical properties of these protease inhibitors have been extensively investigated, their biological effects, e.g. immunomodulatory effect, remain relatively unexplored. Recently, we isolated a chymotrypsin-specific inhibitor (MCoCI) from the seeds of Momordica cochinchinensis (Lour) Spreng (Family Cucurbitaceae), the traditional Chinese medicine known as Mubiezhi, which has been used as an antiinflammatory agent. In the present study, the effects of MCoCI on different types of cells of the immune system, including splenocytes, splenic lymphocytes, neutrophils, bone marrow cells and macrophages, were investigated. MCoCI was shown to possess immuno-enhancing and antiinflammatory effects. MCoCI could stimulate the proliferation of different cells of the immune system, e.g. splenocytes, splenic lymphocytes and bone marrow cells, in a manner comparable to that of Concanavalin A. Moreover, MCoCI could also suppress the formation of hydrogen peroxide in neutrophils and macrophages. These immunomodulatory effects may explain some of the therapeutic actions of Mubiezhi.  相似文献   

3.

Introduction

We examined the acute effects of neutral endopeptidase inhibitor on the hemodynamics and electrical properties of dogs subjected to rapid atrial pacing.

Methods

Ten beagle dogs were used and divided into two groups with and without candoxatril, a neutral endopeptidase inhibitor preadministration. Before and after the 6 hours rapid atrial pacing from the right atrial appendage, the hemodynamics, atrial effective refractory period, and monophasic action potential duration of the right atrial appendage were measured and blood samples were collected. Atrial tissue was also excised after the experiment.

Results

Candoxatril significantly increased plasma ANP levels (Control: 88.4 ± 50.25 vs. Candoxatril: 197.1 ± 32.09 pg/ml, p = 0.004) and prevented reductions in atrial effective refractory period and monophasic action potential duration. We further demonstrated that the treated animals exhibited significantly higher levels of atrial tissue cyclic GMP (Control: 28.1 ± 1.60 fmol/mg vs. Candoxatril: 44.5 ± 12.28 fmol/mg, p = 0.034) as well as that of plasma cyclic GMP (Control: 32 ± 5.5 vs. Candoxatril: 42 ± 7.1 pg/ml, p = 0.028).

Conclusion

Candoxatril suppressed the shortening of atrial effective refractory period and monophasic action potential duration in the rapid atrial pacing model. As plasma ANP and the atrial tissue levels of cyclic GMP were higher in the Candoxatril group than the control, this effect was considered to appear through the reduction of calcium overload caused by ANP and cyclic GMP.  相似文献   

4.
5.
ZNF313 encoding a zinc-binding protein is located at chromosome 20q13.13, which exhibits a frequent genomic amplification in multiple human cancers. However, the biological function of ZNF313 remains largely undefined. Here we report that ZNF313 is an ubiquitin E3 ligase that has a critical role in the regulation of cell cycle progression, differentiation and senescence. In this study, ZNF313 is initially identified as a XIAP-associated factor 1 (XAF1)-interacting protein, which upregulates the stability and proapoptotic effect of XAF1. Intriguingly, we found that ZNF313 activates cell cycle progression and suppresses cellular senescence through the RING domain-mediated degradation of p21WAF1. ZNF313 ubiquitinates p21WAF1 and also destabilizes p27KIP1 and p57KIP2, three members of the CDK-interacting protein (CIP)/kinase inhibitor protein (KIP) family of cyclin-dependent kinase inhibitors, whereas it does not affect the stability of the inhibitor of CDK (INK4) family members, such as p16INK4A and p15INK4B. ZNF313 expression is tightly controlled during the cell cycle and its elevation at the late G1 phase is crucial for the G1-to-S phase transition. ZNF313 is induced by mitogenic growth factors and its blockade profoundly delays cell cycle progression and accelerates p21WAF1-mediated senescence. Both replicative and stress-induced senescence are accompanied with ZNF313 reduction. ZNF313 is downregulated during cellular differentiation process in vitro and in vivo, while it is commonly upregulated in many types of cancer cells. ZNF313 shows both the nuclear and cytoplasmic localization in epithelial cells of normal tissues, but exhibits an intense cytoplasmic distribution in carcinoma cells of tumor tissues. Collectively, ZNF313 is a novel E3 ligase for p21WAF1, whose alteration might be implicated in the pathogenesis of several human diseases, including cancers.  相似文献   

6.
Kunze B  Sasse F  Wieczorek H  Huss M 《FEBS letters》2007,581(18):3523-3527
Cruentaren A, a new antifungal benzolactone produced by the myxobacterium Byssovorax cruenta, proved to be highly cytotoxic against various human cell lines. It inhibited the proliferation of different cancer cell lines including a multidrug-resistant KB line at low nanomolar levels. It arrested human histocytic lymphoma cells (U-937) in G(0/1) phase, but did not trigger an apoptotic process. Studies to uncover the molecular target of cruentaren A showed that the novel compound, despite its structural similarity to the benzolactone enamides apicularen and salicylihalamide, was no V-ATPase inhibitor. In contrast, cruentaren specifically inhibited mitochondrial F(O)F(1)-ATPases with IC50 values of 15-30 nM. Although the exact binding site of cruentaren remains undefined, inhibition was shown to occur by interaction with the catalytic F(1) domain. Since mitochondrial ATPases play a crucial role in the pathophysiology of several human disorders including cancer, cruentaren or synthetic derivatives thereof could form the basis of future therapeutic strategies.  相似文献   

7.
Yeast and plant tRNA splicing entails discrete healing and sealing steps catalyzed by a tRNA ligase that converts the 2',3' cyclic phosphate and 5'-OH termini of the broken tRNA exons to 3'-OH/2'-PO4 and 5'-PO4 ends, respectively, then joins the ends to yield a 2'-PO4, 3'-5' phosphodiester splice junction. The junction 2'-PO4 is removed by a tRNA phosphotransferase, Tpt1. Animal cells have two potential tRNA repair pathways: a yeast-like system plus a distinctive mechanism, also present in archaea, in which the 2',3' cyclic phosphate and 5'-OH termini are ligated directly. Here we report that a mammalian 2',3' cyclic nucleotide phosphodiesterase (CNP) can perform the essential 3' end-healing steps of tRNA splicing in yeast and thereby complement growth of strains bearing lethal or temperature-sensitive mutations in the tRNA ligase 3' end-healing domain. Although this is the first evidence of an RNA processing function in vivo for the mammalian CNP protein, it seems unlikely that the yeast-like pathway is responsible for animal tRNA splicing, insofar as neither CNP nor Tpt1 is essential in mice.  相似文献   

8.
Among the different mechanisms underlying the etiopathogenesis of myotonic dystrophy type 1 (DM1), a backward reprogramming to a foetal splicing machinery is an interesting hypothesis. To address this possibility, Tau splicing, which is regulated during development and modified in DM1, was analyzed. Indeed, a preferential expression of the foetal Tau isoform, instead of the six normally found, is observed in adult DM1 brains. By using two cell lines, we show here that the cis-regulating elements necessary to generate the unique foetal Tau isoform are dispensable to reproduce the trans-dominant effect induced by DM1 mutation on Tau exon 2 inclusion. Our results suggest that the mis-splicing of Tau in DM1 is resulting from a disease-associated mechanism.  相似文献   

9.
A peptide (F 4) that inhibits angiotensin I converting enzyme (ACE) was isolated from corn gluten hydrolysate prepared with Pescalase, a serine protease from Bacillus licheniformis. The N-terminal amino acid sequence of F 4 was Pro-Ser-Gly-Gln-Tyr-Tyr, having the IC50 value of 0.1 mM. The peptide (F 4), at 30 mg kg–1 body weight of rat, antagonized the rat's pressor response to angiotensin I.  相似文献   

10.
Tissue-specific expression of the gene coding for trypsin inhibitor BTI-CMe in barley (Itr1) occurs during the first half of endosperm development. In transgenic tobacco, theItr1 promoter drives expression of the β-glucuronidase reporter gene not only in developing endosperm but also in embryo, cotyledons and the meristematic intercotyledonary zone of germinating seedlings. A promoter fragment extending 343 bp upstream of the translation initiation ATG codon was sufficient for full transgene expression, whereas, the proximal 83 bp segment of the promoter was inactive. Possible reasons for the differences in expression patterns are discussed. These authors have contributed equally to this work  相似文献   

11.
12.
13.
14.
P-element transposition in Drosophila is regulated by tissue-specific alternative splicing of the P-element transposase pre-mRNA. In somatic cells, the P-element somatic inhibitor (PSI) protein binds to exon 3 of the pre-mRNA and recruits U1 small nuclear ribonucleoprotein (snRNP) to the F1 pseudo-splice site. This abrogates binding of U1 snRNP to the genuine 5' splice site, thereby preventing excision of the third intron. Two homologous short sequences, referred to as the A and B boxes, near the C terminus of PSI bind to U1-70k protein within U1 snRNP. We have now mapped the AB box-binding site of U1-70k to a short proline-rich sequence at the C terminus. Our NMR study shows that the B box forms an anti-parallel helical hairpin in which four highly conserved aromatic residues form a cluster on one face of the first helix. This hydrophobic cluster interacts extensively with the proline-rich region of the U1-70k protein.  相似文献   

15.
During the past several years, numerous laboratories have reported isolation and purification of proteinase inhibitors from human urine. Many of these molecules were incompletely characterized and some of them may have been artifacts in part because of harsh procedures used for their isolation. Consequently, there is disagreement and confusion regarding the biochemical characteristics of these inhibitors. We previously reported the isolation of a proteinase inhibitor, EDC1, from the urine of a leukemic patient. This molecule, M(r) 30 kDa, was antigenically related to plasma inter-alpha-trypsin inhibitor (IATI) and inhibited the growth of a virally transformed B cell line. Immunoreactive EDC1 was also the major component of low molecular weight proteinuria observed in cancer patients. We now report a new method for the isolation of EDC1 from urine of patients with adenocarcinomas of colon and lung and melanoma and compare its partial amino acid sequence with that of HI 30, a proteinase inhibitor previously isolated from pooled normal urine by Hochstrasser et al. [Hoppe-Seyler's Z Physiol Chem 357:153-162, 1976]. Our method involves i) a batchwise cation exchange, ii) gel filtration chromatography, iii) anion exchange chromatography on FPLC, and iv) reverse phase C18 chromatography on HPLC. This method is mild and results in an overall yield of 0.4 to 1.2 mg of EDC1/liter urine. On the basis of the partial N-terminal amino acid sequence of its N terminal (38 residues) and middle regions (29 residues), EDC1 appears to be identical with HI30. Surprisingly, during this isolation procedure, another proteinase inhibitor, M(r) 22 kDa, which cross-reacted with antisera to EDC1 and IATI, was also isolated. The 22 kDa molecule was a major component of the IATI related urinary molecules and was identical with the 30 kDa EDC1 in which first the 15 N terminal residues were clipped. The lower M(r) inhibitor was not an artifact formed during storage or isolation procedure because the Western blot analysis of fresh cancer and normal urine revealed the 30 and 22 kDa molecules. Thus, both the 30 kDa EDC1 (or HI30) and its clipped variant, the 22 kDa molecule, are physiologic components of IATI related urinary proteinase inhibitors and excretion of both forms may be increased in patients with advanced cancer.  相似文献   

16.
17.
C-type natriuretic peptide (CNP) stimulates the differentiation and inhibits the proliferation of osteoblastic lineage cells. In this study, we examined whether the effects of CNP on osteoblastic functions change with aging using calvarial osteoblast-like cells from 25-week-old (young) and 120-week-old (aged) rats. CNP inhibited DNA synthesis and stimulated collagen synthesis and mineralized bone nodule formation. These effects were less pronounced in aged rat cells, suggesting the age-related attenuation of CNP-induced signaling. They were also blocked by the treatment of young rat cells with KT5823, a protein kinase G (PKG) inhibitor, but not by the treatment of aged rat cells with KT5823. CNP stimulated cGMP production in young rat cells, but not in aged rat cells. Natriuretic peptide receptor (NPR)-B, which has a guanylyl cyclase activity domain, and NPR-C, which has no enzyme activity domain, were predominantly expressed in young and aged rat cells, respectively. C-ANF, an NPR-C agonist, mimicked the effects of CNP on the proliferation and differentiation of aged rat cells; these effects were inhibited by the treatment with pertussis toxin (PTX), a Gi protein inhibitor. CNP and C-ANF evoked intracellular levels of inositol-1,4,5-triphosphate and Ca(2+), which are markers for phospholiase C (PLC) activation, in aged rat cells, and the effects of these two peptides were also blocked by the treatment with PTX. From these results, we concluded that CNP acts as a positive regulator of bone formation by osteoblasts and that the signaling pathway for CNP is switched from NPR-B/cGMP/PKG to NPR-C/G(i) protein/PLC with aging.  相似文献   

18.
Abstract

The ATP Binding Cassette transporter ABCB1 can export the neurotoxic peptide β-amyloid from endothelial cells that line the blood-brain barrier (BBB). This has the potential to lower cerebral levels of β-amyloid, but ABCB1 expression in the BBB appears to be progressively reduced in patients with Alzheimer’s disease. The surface density of many membrane proteins is regulated by ubiquitination catalyzed by ubiquitin E3 ligases. In brain capillaries of mice challenged with β-amyloid ex vivo, we show that the level of the ubiquitin ligase Nedd4 increases concomitant with reduction in Abcb1. In vitro we show that human ABCB1 is a substrate for human NEDD4-1 ligase. Recombinant ABCB1 was purified from Sf21 insect cells and incubated with recombinant NEDD4-1 purified from Escherichia coli. The treated ABCB1 had reduced mobility on SDS-PAGE, and mass spectrometry identified eight lysine residues, K271, K272, K575, K685, K877, K885, K887 and K1062 that were ubiquitinated by NEDD4-1. Molecular modelling showed that all of the residues are exposed on the surface of the intracellular domains of ABCB1. K877, K885 and K887 in particular, are located in the intracellular loop of transmembrane helix 10 (TMH10) in close proximity, in the tertiary fold, to a putative NEDD4-1 binding site in the intracellular helix extending from TMH12 (PxY motif, residues 996–998). Transient expression of NEDD4-1 in HEK293 Flp-In cells stably expressing ABCB1 was shown to reduce the surface density of the transporter. Together, the data identify this ubiquitin ligase as a potential target for intervention in the pathophysiology of Alzheimer’s disease.  相似文献   

19.
The 3-dimensional structures of mirror-image forms of a Leu-5 variant of the trypsin inhibitor Ecballium elaterium (EETI-II) have been determined by 1H NMR spectroscopy and simulated annealing calculations incorporating NOE-derived distance constraints. Spectra were assigned using 2-dimensional NMR methods at 400 MHz, and internuclear distances were determined from NOESY experiments. Three-bond spin-spin couplings between C alpha H and amide protons, amide exchange rates, and the temperature dependence of amide chemical shifts were also measured. The structure consists largely of loops and turns, with a short region of beta-sheet. The Leu-5 substitution produces a substantial reduction in affinity for trypsin relative to native EETI-II, which contains an Ile at this position. The global structure of the Leu-5 analogue studied here is similar to that reported for native EETI-II (Heitz A, Chiche L, Le-Nguyen D, Castro B, 1989, Biochemistry 28:2392-2398) and to X-ray and NMR structures of the related proteinase inhibitor CMTI-I (Bode W et al., 1989, FEBS Lett 242:285-292; Holak TA et al., 1989a, J Mol Biol 210:649-654; Holak TA, Gondol D, Otlewski J, Wilusz T, 1989b, J Mol Biol 210:635-648; Holak TA, Habazettl J, Oschkinat H, Otlewski J, 1991, J Am Chem Soc 113:3196-3198). The region near the scissile bond is the most disordered part of the structure, based on geometric superimposition of 40 calculated structures. This disorder most likely reflects additional motion being present in this region relative to the rest of the protein. This motional disorder is increased in the Leu-5 analogue relative to the native form and may be responsible for its reduced trypsin binding. A second form of the protein synthesized with all (D) amino acids was also studied by NMR and found to have a spectrum identical with that of the (L) form. This is consistent with the (D) form being a mirror image of the (L) form and not distinguishable by NMR in an achiral solvent (i.e., H2O). The (D) form has no activity against trypsin, as would be expected for a mirror-image form.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号