首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
Ranaviruses have been associated with die-offs in cultured amphibians in China, but their presence in wild amphibians has not yet been assessed. We sampled free-ranging Rana dybowskii at seven sites throughout Heilongjiang Province to determine the presence and prevalence of ranaviruses in this region. Our results revealed an overall infection prevalence of 5.7% (18/315) for adults and 42.5% (51/120) for tadpoles by PCR. PCR-amplified product showed a high degree of homology with several members of the Iridoviridae, mostly with those belonging to the genus Ranavirus. The results indicate that ranaviruses are broadly distributed throughout Heilongjiang Province and could have important implications for the health of native wildlife. Additional sampling and management strategies should be urgently adopted to address the prevalence and health consequences of ranaviruses throughout China.  相似文献   

2.
Studies on the role of natural predatory instincts in captive‐born mammalian myrmecophagy are rare. Consequently, researchers rely extensively on case reports to learn more about the contexts in which predatory behavior occurs among such animals. In this study, we recorded an uncommon case of a captive‐born southern tamandua (Tamandua tetradactyla) that accidentally escaped from a zoo into a nonnative habitat in Asia. The southern tamandua was found alive 3 months later. Two fresh fecal samples were obtained, and the diet composition was examined. Three termite species (one family, three genera), and 14 ant species (four subfamilies, nine genera) were identified in the fecal samples. The studied southern tamandua preyed on terrestrial and arboreal ants and termites, as the wild populations of its species do. Ants of the subfamily Myrmicinae and termites of the subfamily Nasutitermitinae were the most abundant prey items in the samples, which is consistent with related reports on the wild populations. Soldier ants constituted <1% of the prey items in the fecal samples, suggesting that the southern tamandua likely avoided preying on ants of the soldier caste. Fungus‐growing termites Odontotermes (Isoptera: Macrotermitinae), which are not native to neotropical regions, were also ingested by the southern tamandua. This study provides information on how a captive‐born mammalian myrmecophagy applies its natural feeding instincts in nonnative natural settings.  相似文献   

3.
Habitat loss and degradation threaten forest specialist wildlife species, but some generalist mesopredators exploit disturbed areas and human‐derived food, which brings them into closer contact with humans. Mesopredator release is also important for human health for known zoonotic disease reservoirs, such as Asian civets (Viverridae family), since this group includes the intermediator species for the SARS‐CoV‐1 outbreak. Here we use camera trapping to evaluate the habitat associations of the widespread banded civet (Hemigalus derbyanus) across its range in Southeast Asia. At the regional scale, banded civet detections among published studies were positively associated with forest cover and negatively associated with human population. At the local scale (within a landscape), hierarchical modeling of new camera trapping showed that abundance was negatively associated with forest loss and positively associated with distance to rivers. These results do not support mesopredator release and suggest a low likelihood overlap with humans in degraded habitats and, therefore, a low risk of zoonotic disease transmission from this species in the wild. We also estimate that banded civet distribution has contracted to under 21% of its currently recognized IUCN Red List range, only 12% of which falls within protected areas, and a precipitous recent decline in population size. Accordingly, we suggest the banded civet''s Red List status should be re‐evaluated in light of our findings.  相似文献   

4.
Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP), DNA polymerase (DNApol), ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β), viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α) genes and microsatellite region). A total of ten different isolates from reptiles (tortoises, lizards, and a snake) and four ranaviruses from amphibians (anurans, urodeles) were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6–100%). Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa), the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs) described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host range of ranaviruses and the emergence of pathogen pollution via animal trade of ectothermic vertebrates.  相似文献   

5.
Ranavirus: past, present and future   总被引:1,自引:0,他引:1  
Emerging infectious diseases are a significant threat to global biodiversity. While historically overlooked, a group of iridoviruses in the genus Ranavirus has been responsible for die-offs in captive and wild amphibian, reptile and fish populations around the globe over the past two decades. In order to share contemporary information on ranaviruses and identify critical research directions, the First International Symposium on Ranaviruses was held in July 2011 in Minneapolis, MN, USA. Twenty-three scientists and veterinarians from nine countries examined the ecology and evolution of ranavirus-host interactions, potential reservoirs, transmission dynamics, as well as immunological and histopathological responses to infection. In addition, speakers discussed possible mechanisms for die-offs, and conservation strategies to control outbreaks.  相似文献   

6.
Widespread occurrence of ranavirus in pond-breeding amphibian populations   总被引:1,自引:0,他引:1  
Ranaviruses are an emerging threat for many amphibian populations, yet their distribution in amphibian communities and the association of infection with possible stressors and species is not fully understood due to historically sparse surveillance. Agricultural practices that reduce the water quality of amphibian breeding habitats (e.g., cattle access to wetlands) and environmental stressors (e.g., lower temperatures) may contribute to ranavirus emergence. We tested larval amphibians for ranavirus infection across four seasons in farm ponds (n?=?40) located in Tennessee, USA. Cattle at various densities were allowed access to half of the sampled ponds. Ranavirus infections were detected in nine species and in 33 of the sampled ponds (83%), illustrating widespread occurrence of the pathogen. Species within the family Ranidae were the most frequently infected. In 13 of the ponds containing infected individuals, prevalence exceeded 40% during at least one season. Infections were detected in multiple seasons in 20 of the sampled ponds containing infections, suggesting that ranaviruses are relatively persistent in these systems. Cattle had negative effects on water quality (turbidity and ammonia) and there was a positive association between cattle abundance and ranavirus prevalence in the summer. Counter to previous field studies in North America, we found a significant positive association between water temperature and ranavirus prevalence in the fall sampling events. Despite these findings, the influences of cattle and temperature on ranavirus prevalence were not consistent across seasons. As such, the mechanisms driving high ranavirus prevalence across the landscape and over time remain unclear. Given the widespread occurrence of ranaviruses in wild amphibians, we encourage the implementation of surveillance programs to help identify potential drivers of emergence. Sites with high ranavirus prevalence should be monitored annually for outbreaks, and the long-term effects on population size determined.  相似文献   

7.
  1. Large carnivores play critical roles in terrestrial ecosystems but have suffered dramatic range contractions over the past two centuries. Developing an accurate understanding of large carnivore diets is an important first step towards an improved understanding of their ecological roles and addressing the conservation challenges faced by these species.
  2. The puma is one of seven large felid species in the world and the only one native to the non‐tropical regions of the New World. We conducted a meta‐analysis of puma diets across the species’ range in the Americas and assessed the impact of varying environmental conditions, niche roles, and human activity on puma diets. Pumas displayed remarkable dietary flexibility, consuming at least 232 different prey species, including one Critically Endangered and five Endangered species.
  3. Our meta‐analysis found clear patterns in puma diets with changing habitat and environmental conditions. Pumas consumed more larger‐bodied prey species with increasing distance from the equator, but consumption of medium‐sized species showed the opposite trend.
  4. Puma diets varied with their realized niche; however, contrary to our expectations, puma consumption of large species did not change with their trophic position, and pumas consumed more small prey and birds as apex predators. Consumption of domestic species was negatively correlated with consumption of medium‐sized wild species, a finding which underscores the importance of maintaining intact native prey assemblages.
  5. The tremendous dietary flexibility displayed by pumas represents both an opportunity and a challenge for understanding the puma’s role in ecosystems and for the species’ management and conservation. Future studies should explore the linkages between availability and selection of primary and other wild prey, and consequent impacts on predation of domestic species, in order to guide conservation actions and reduce conflict between pumas and people.
  相似文献   

8.
Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non‐native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non‐native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region‐specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non‐native species richness. Non‐native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series, even more exciting results can be expected, especially about range shifts. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented.  相似文献   

9.
Bees rely on floral pollen and nectar for food. Therefore, pollinator friendly plantings are often used to enrich habitats in bee conservation efforts. As part of these plantings, non‐native plants may provide valuable floral resources, but their effects on native bee communities have not been assessed in direct comparison with native pollinator friendly plantings. In this study, we performed a common garden experiment by seeding mixes of 20 native and 20 non‐native pollinator friendly plant species at separate neighboring plots at three sites in Maryland, USA, and recorded flower visitors for 2 years. A total of 3,744 bees (120 species) were collected. Bee abundance and species richness were either similar across plant types (midseason and for abundance also late season) or lower at native than at non‐native plots (early season and for richness also late season). The overall bee community composition differed significantly between native and non‐native plots, with 11 and 23 bee species being found exclusively at one plot type or the other, respectively. Additionally, some species were more abundant at native plant plots, while others were more abundant at non‐natives. Native plants hosted more specialized plant–bee visitation networks than non‐native plants. Three species out of the five most abundant bee species were more specialized when foraging on native plants than on non‐native plants. Overall, visitation networks were more specialized in the early season than in late seasons. Our findings suggest that non‐native plants can benefit native pollinators, but may alter foraging patterns, bee community assemblage, and bee–plant network structures.  相似文献   

10.
Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003–2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.  相似文献   

11.
Recent outbreaks of highly pathogenic avian influenza virus (AIV) in birds, humans and other mammalian species calls for a better understanding of virus dynamics in wild bird species and populations that act as maintenance hosts. Host ecology influences the transmission of pathogens and can be used to explore and infer pathogen dynamics. Most of the ecological processes proposed to explain AIV transmission in wild birds have been derived from studies conducted in the temperate and boreal regions of the northern hemisphere. We evaluate the role of two key drivers of AIV dynamics in a waterfowl community in Zimbabwe (southern Africa): (1) the recruitment of young birds and (2) the seasonal aggregation of birds. We analyse the seasonal variation of AIV prevalence in waterfowl and overlay these data with the phenology of reproduction and the seasonal variation in the local abundance of these species. We find that the breeding period of southern Afrotropical waterfowl species is more extended and somewhat less synchronized among species in the community than is the case in temperate and boreal waterfowl communities. Young birds are recorded at most times of the year, and these immunologically naïve individuals can therefore act as new hosts for AIV throughout the year within the wild bird population. Although host aggregation peaks in the cold‐dry to hot‐dry season, birds still aggregate throughout the year and this potentially spreads the opportunities for first infection of juveniles and other naïve birds temporally. We did not find a relationship between season, AIV prevalence in waterfowl, the influx of juveniles or the gradual aggregation of birds during the dry season. Therefore, the main drivers of AIV dynamics (juvenile influx and host abundance/aggregation), although present in Afrotropical regions, could not explain the AIV seasonal patterns in our study in contrast to results reported from temperate and boreal regions. These differences imply variation in the risk of AIV circulation in waterfowl and in the risk of spread to poultry, other animals or humans.  相似文献   

12.
The trade‐off between within‐host infection rate and transmission to new hosts is predicted to constrain pathogen evolution, and to maintain polymorphism in pathogen populations. Pathogen life‐history stages and their correlations that underpin infection development may change under coinfection with other parasites as they compete for the same limited host resources. Cross‐kingdom interactions are common among pathogens in both natural and cultivated systems, yet their impacts on disease ecology and evolution are rarely studied. The host plant Plantago lanceolata is naturally infected by both Phomopsis subordinaria, a seed killing fungus, as well as Plantago lanceolata latent virus (PlLV) in the Åland Islands, SW Finland. We performed an inoculation assay to test whether coinfection with PlLV affects performance of two P. subordinaria strains, and the correlation between within‐host infection rate and transmission potential. The strains differed in the measured life‐history traits and their correlations. Moreover, we found that under virus coinfection, within‐host infection rate of P. subordinaria was smaller but transmission potential was higher compared to strains under single infection. The negative correlation between within‐host infection rate and transmission potential detected under single infection became positive under coinfection with PlLV. To understand whether within‐host and between‐host dynamics are correlated in wild populations, we surveyed 260 natural populations of P. lanceolata for P. subordinaria infection occurrence. When infections were found, we estimated between‐hosts dynamics by determining pathogen population size as the proportion of infected individuals, and within‐host dynamics by counting the proportion of infected flower stalks in 10 infected plants. In wild populations, the proportion of infected flower stalks was positively associated with pathogen population size. Jointly, our results suggest that the trade‐off between within‐host infection load and transmission may be strain specific, and that the pathogen life‐history that underpin epidemics may change depending on the diversity of infection, generating variation in disease dynamics.  相似文献   

13.
Artiodactyl prey species of Chile, especially guanacos (Lama guanicoe), are reported to be very susceptible to predation by pack‐hunting feral dogs. It has been previously suggested that guanacos and endemic South American deer may have evolved in the absence of pack‐hunting cursorial predators. However, the paleoecology of canid presence in southern South America and Chile is unclear. Here, we review the literature on South American and Chilean canids, their distributions, ecologies, and hunting behavior. We consider both wild and domestic canids, including Canis familiaris breeds. We establish two known antipredator defense behaviors of guanacos: predator inspection of ambush predators, for example, Puma concolor, and rushing at and kicking smaller cursorial predators, for example, Lycalopex culpaeus. We propose that since the late Pleistocene extinction of hypercarnivorous group‐hunting canids east of the Andes, there were no native species creating group‐hunting predation pressures on guanacos. Endemic deer of Chile may have never experienced group‐hunting selection pressure from native predators. Even hunting dogs (or other canids) used by indigenous groups in the far north and extreme south of Chile (and presumably the center as well) appear to have been used primarily within ambush hunting strategies. This may account for the susceptibility of guanacos and other prey species to feral dog attacks. We detail seven separate hypotheses that require further investigation in order to assess how best to respond to the threat posed by feral dogs to the conservation of native deer and camelids in Chile and other parts of South America.  相似文献   

14.
Patterns of genetic differentiation within and among animal populations might vary due to the simple effect of distance or landscape features hindering gene flow. An assessment of how landscape connectivity affects gene flow can help guide management, especially in fragmented landscapes. Our objective was to analyze population genetic structure and landscape genetics of the native wild boar (Sus scrofa meridionalis) population inhabiting the island of Sardinia (Italy), and test for the existence of Isolation‐by‐Distance (IBD), Isolation‐by‐Barrier (IBB), and Isolation‐by‐Resistance (IBR). A total of 393 Sardinian wild boar samples were analyzed using a set of 16 microsatellite loci. Signals of genetic introgression from introduced non‐native wild boars or from domestic pigs were revealed by a Bayesian cluster analysis including 250 reference individuals belonging to European wild populations and domestic breeds. After removal of introgressed individuals, genetic structure in the population was investigated by different statistical approaches, supporting a partition into five discrete subpopulations, corresponding to five geographic areas on the island: north‐west (NW), central west (CW), south‐west (SW), north‐central east (NCE), and south‐east (SE). To test the IBD, IBB, and IBR hypotheses, we optimized resistance surfaces using genetic algorithms and linear mixed‐effects models with a maximum likelihood population effects parameterization. Landscape genetics analyses revealed that genetic discontinuities between subpopulations can be explained by landscape elements, suggesting that main roads, urban settings, and intensively cultivated areas are hampering gene flow (and thus individual movements) within the Sardinian wild boar population. Our results reveal how human‐transformed landscapes can affect genetic connectivity even in a large‐sized and highly mobile mammal such as the wild boar, and provide crucial information to manage the spread of pathogens, including the African Swine Fever virus, endemic in Sardinia.  相似文献   

15.
In Australia, many species have been introduced that have since undergone drastic declines in their native range. One species of note is the hog deer (Axis porcinus) which was introduced in the 1860s to Victoria, Australia, and has since become endangered in its native range throughout South‐East Asia. There is increased interest in using non‐native populations as a source for genetic rescue; however, considerations need to be made of the genetic suitability of the non‐native population. Three mitochondrial markers and two nuclear markers were sequenced to assess the genetic variation of the Victorian population of hog deer, which identified that the Victorian population has hybrid origins with the closely related chital (Axis axis), a species that is no longer present in the wild in Victoria. In addition, the mitochondrial D‐loop region within the Victorian hog deer is monomorphic, demonstrating that mitochondrial genetic diversity is very low within this population. This study is the first to report of long‐term persistence of hog deer and chital hybrids in a wild setting, and the continual survival of this population suggests that hybrids of these two species are fertile. Despite the newly discovered hybrid status in Victorian hog deer, this population may still be beneficial for future translocations within the native range. However, more in‐depth analysis of genetic diversity within the Victorian hog deer population and investigation of hybridization rates within the native range are necessary before translocations are attempted.  相似文献   

16.
The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and outbreaks of new variants highlight the need for preventive treatments. Here, we identified heparan sulfate proteoglycans as attachment receptors for SARS‐CoV‐2. Notably, neutralizing antibodies against SARS‐CoV‐2 isolated from COVID‐19 patients interfered with SARS‐CoV‐2 binding to heparan sulfate proteoglycans, which might be an additional mechanism of antibodies to neutralize infection. SARS‐CoV‐2 binding to and infection of epithelial cells was blocked by low molecular weight heparins (LMWH). Although dendritic cells (DCs) and mucosal Langerhans cells (LCs) were not infected by SARS‐CoV‐2, both DC subsets efficiently captured SARS‐CoV‐2 via heparan sulfate proteoglycans and transmitted the virus to ACE2‐positive cells. Notably, human primary nasal cells were infected by SARS‐CoV‐2, and infection was blocked by pre‐treatment with LMWH. These data strongly suggest that heparan sulfate proteoglycans are important attachment receptors facilitating infection and transmission, and support the use of LMWH as prophylaxis against SARS‐CoV‐2 infection.  相似文献   

17.
We explore the effect of land‐use change from extensively used grasslands to intensified silvi‐ and agricultural monocultures on metacommunity structure of native forests in Uruguay. We integrated methods from metacommunity studies, remote sensing, and landscape ecology to explore how woody species distribution was influenced by land‐use change from local to regional scale. We recorded richness and composition of adult and juvenile woody species from 32 native forests, created land‐use maps from satellite image to calculate spatial metrics at landscape, class, and patch levels. We also analyzed the influence of land use pattern, climate, topography, and geographic distance between sites (d) on metacommunity, and created maps to visualize species richness and (dis)similarity between communities across the country. Woody species communities were distributed in a discrete pattern across Uruguay. Precipitation and temperature seasonality shaped species distribution pattern. Species richness and community dissimilarity increased from West to East. Latitude did not influence these patterns. Number of patches, landscape complexity, and interspersion and juxtaposition indexes determine woody species distribution at landscape level. Increasing areas covered by crops and timber plantation reduced species richness and increased community dissimilarity. The spatial metrics of native forest fragments at patch level did not influence metacommunity structure, species richness, and community dissimilarity. In conclusion, Uruguayan native forests display a high range of dissimilarity. Pressure of neighborhood land uses was the predominant factor for species assemblages. Conserving landscape structures that assure connectivity within and among native forest patches is crucial. On sites with rare target species, the creation of alliances between governmental institution and landowner complemented by incentives for biodiversity conservation provides opportunities to advance in species protection focused on those less tolerant to land‐use change.  相似文献   

18.
The invasion of freshwater ecosystems by non‐native species can constitute a significant threat to native species and ecosystem health. Non‐native trouts have long been stocked in areas where native trouts occur and have negatively impacted native trouts through predation, competition, and hybridization. This study encompassed two seasons of sampling efforts across two ecoregions of the western United States: The Great Basin in summer 2016 and the Yellowstone River Basin in summer 2017. We found significant dietary overlaps among native and non‐native trouts within the Great Basin and Yellowstone River Basin ecoregions. Three orders of invertebrates (Ephemeroptera, Trichoptera, and Diptera) composed the majority of stomach contents and were responsible for driving the observed patterns. Great Basin trout had higher body conditions (k), and non‐native Great Basin trout had higher gut fullness values than Yellowstone River Basin trout, indicating a possible limitation of food in the Yellowstone River Basin. Native fishes were the least abundant and had the lowest body condition in each ecoregion. These findings may indicate a negative impact on native trouts by non‐native trouts. We recommend additional monitoring of native and non‐native trout diets, regular invertebrate surveys to identify the availability of diet items, and reconsidering stocking efforts that can result in overlap of non‐native fishes with native cutthroat trout.  相似文献   

19.
In tropical Australia, conditioned taste aversion (CTA) can buffer vulnerable native predators from the invasion of a toxic prey species (cane toads, Rhinella marina). Thus, we need to develop methods to deploy aversion‐inducing baits in the field, in ways that maximize uptake by vulnerable species (but not other taxa). We constructed and field‐tested baiting devices, in situ with wild animals. Apparatus were set next to waterbodies and baited concurrently at multiple locations (over water, water''s edge, and on the bank). Baits were checked and replaced twice daily during the trial; remote cameras recorded visitation by native predators. Bait longevity was compared at sun‐exposed and shaded locations over 12 h. The strength required to remove baits from apparatus was measured in varanids and crocodiles. The device promoted high rates of bait uptake by freshwater crocodiles (47% baits consumed), varanid lizards (19% baits consumed), and non‐target taxa (34% baits consumed). Targeting specific predators can be achieved by manipulating bait location and time of deployment, as well as the force required to dislodge the bait. Crocodiles were best targeted with over‐water baits, whereas varanid lizards preferred baits located at the edges of waterbodies. When testing bait longevity in ambient conditions, during the daytime baits desiccated fully within 12 h, and faster in the sun than in the shade. Based on studies using captive animals, the “pulling force” strength of reptilian predators scaled with body size and was greater in crocodiles than in varanid lizards. We present the first conservation baiting protocol designed specifically for reptiles. Our results demonstrate the feasibility of widespread and taxon‐specific deployment of aversion‐inducing baits to buffer the impacts of invasive cane toads, and our methods are applicable (with modification) to other research and management programs globally.  相似文献   

20.
Defense against natural enemies constitutes an important driver of herbivore host range evolution in the wild. Populations of the Baltimore checkerspot butterfly, Euphydryas phaeton (Nymphalidae), have recently incorporated an exotic plant, Plantago lanceolata (Plantaginaceae), into their dietary range. To understand the tritrophic consequences of utilizing this exotic host plant, we examined immune performance, chemical defense, and interactions with a natural entomopathogen (Junonia coenia densovirus, Parvoviridae) across wild populations of this specialist herbivore. We measured three immune parameters, sequestration of defensive iridoid glycosides (IGs), and viral infection load in field‐collected caterpillars using either P. lanceolata or a native plant, Chelone glabra (Plantaginaceae). We found that larvae using the exotic plant exhibited reduced immunocompetence, compositional differences in IG sequestration, and higher in situ viral burdens compared to those using the native plant. On both host plants, high IG sequestration was associated with reduced hemocyte concentration in the larval hemolymph, providing the first evidence of incompatibility between sequestered chemical defenses and the immune response (i.e., the “vulnerable host” hypothesis) from a field‐based study. However, despite this negative relationship between IG sequestration and cellular immunity, caterpillars with greater sequestration harbored lower viral loads. While survival of virus‐infected individuals decreased with increasing viral burden, it ultimately did not differ between the exotic and native plants. These results provide evidence that: (1) phytochemical sequestration may contribute to defense against pathogens even when immunity is compromised and (2) herbivore persistence on exotic plant species may be facilitated by sequestration and its role in defense against natural enemies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号