首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipase D (PLD) has been implicated in the signal transduction pathways initiated by several mitogenic protein tyrosine kinases. We demonstrate for the first time that most notably PLD2 and to a lesser extent the PLD1 isoform are tyrosine phosphorylated by c-Src tyrosine kinase via direct association. Moreover, epidermal growth factor induced tyrosine phosphorylation of PLD2 and its interaction with c-Src in A431 cells. Interaction between these proteins is via the pleckstrin homology domain of PLD2 and the catalytic domain of c-Src. Coexpression of PLD1 or PLD2 with c-Src synergistically enhances cellular proliferation compared with expression of either molecule. While PLD activity as a lipid-hydrolyzing enzyme is not affected by c-Src, wild-type PLDs but not catalytically inactive PLD mutants significantly increase c-Src kinase activity, up-regulating c-Src-mediated paxillin phosphorylation and extracellular signal-regulated kinase activity. These results demonstrate the critical role of PLD catalytic activity in the stimulation of Src signaling. In conclusion, we provide the first evidence that c-Src acts as a kinase of PLD and PLD acts as an activator of c-Src. This transmodulation between c-Src and PLD may contribute to the promotion of cellular proliferation via amplification of mitogenic signaling pathways.  相似文献   

2.
Phospholipase D (PLD) activity is elevated in response to most mitogenic signals. Two mammalian PLD genes (PLD1 and PLD2) have been cloned and their gene products have been characterized. PLD1 is a downstream target of the Ras/RalA GTPase cascade implicated in mitogenic and oncogenic signaling. Consistent with a role in mitogenic signaling, elevated expression of PLD1 transforms cells overexpressing the epidermal growth factor (EGF) receptor (EGFR). However, PLD2 colocalizes with the EGFR in caveolin-enriched light membrane microdomains. We therefore investigated whether PLD2 could also contribute to the transformation of cells overexpressing a tyrosine kinase. We report here that elevated expression of PLD2 transforms rat fibroblasts overexpressing either the EGFR or c-Src. Since overexpression of a tyrosine kinase is a common genetic alteration in several human cancers, these data suggest that elevation of either PLD1 or PLD2 may contribute to the progression to a malignant phenotype in cells with elevated tyrosine kinase activity.  相似文献   

3.
Abstract: The mechanism for hydrogen peroxide (H2O2)-induced phospholipase D (PLD) activation was investigated in [3H]palmitic acid-labeled PC12 cells. In the presence of butanol, H2O2 caused a great accumulation of [3H]phosphatidylbutanol in a concentration- or time-dependent manner. However, treatment with H2O2 of cell lysates exerted no effect on PLD activity. Treatment with H2O2 had only a marginal effect on phospholipase C (PLC) activation. A protein kinase C (PKC) inhibitor, Ro 31-8220, did not inhibit but rather slightly enhanced H2O2-induced PLD activity. Thus, H2O2-induced PLD activation is considered to be independent of the PLC-PKC pathway in PC12 cells. In contrast, pretreatment with tyrosine kinase inhibitor herbimycin A, genistein, or ST638 resulted in a concentration-dependent inhibition of H2O2-induced PLD activation. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands after the H2O2 treatment and tyrosine phosphorylation of these proteins was inhibited by these tyrosine kinase inhibitors. Moreover, depletion of extracellular Ca2+ abolished H2O2-induced PLD activation and protein tyrosine phosphorylation. Extracellular Ca2+ potentiated H2O2-induced PLD activation in a concentration-dependent manner. Taken together, these results suggest that a certain Ca2+-dependent protein tyrosine kinase(s) somehow participates in H2O2-induced PLD activation in PC12 cells.  相似文献   

4.
c-Src is a non-receptor tyrosine kinase that associates with both the plasma membrane and endosomal compartments. In many human cancers, especially breast cancer, c-Src and the EGF receptor (EGFR) are overexpressed. Dual overexpression of c-Src and EGFR correlates with a Src-dependent increase in activation of EGFR, and synergism between these two tyrosine kinases increases the mitogenic activity of EGFR. Despite extensive studies of the functional interaction between c-Src and EGFR, little is known about the interactions in the trafficking pathways for the two proteins and how that influences signaling. Given the synergism between c-Src and EGFR, and the finding that EGFR is internalized and can signal from endosomes, we hypothesized that c-Src and EGFR traffic together through the endocytic pathway. Here we use a regulatable c-SrcGFP fusion protein that is a bona fide marker for c-Src to show that c-Src undergoes constitutive macropinocytosis from the plasma membrane into endocytic compartments. The movement of c-Src was dependent on its tyrosine kinase activity. Stimulation of cells with EGF revealed that c-Src traffics into the cell with activated EGFR and that c-Src expression and kinase activity prolongs EGFR activation. Surprisingly, even in the absence of EGF addition, c-Src expression induced activation of EGFR and of EGFR-mediated downstream signaling targets ERK and Shc. These data suggest that the synergy between c-Src and EGFR also occurs as these two kinases traffic together, and that their co-localization promotes EGFR-mediated signaling.  相似文献   

5.
Abstract: The mechanism for carbachol (CCh)-induced phospholipase D (PLD) activation was investigated in [3H]palmitic acid-labeled pheochromocytoma PC12 cells with respect to the involvement of protein tyrosine phosphorylation and Ca2+. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol in the presence of 0.3% butanol. Pretreatment of cells with the tyrosine kinase inhibitors herbimycin A, genistein, and tyrphostin inhibited PLD activation by CCh. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands (111, 91, 84, 74, 65–70, 44, and 42 kDa) in PC12 cells treated with CCh. Phosphorylation of the 111-, 91-, 84-, and 65–70-kDa proteins peaked within 1 min, and their time-dependent changes seemingly correlated with that of PLD activation. Others (74, 44MAPK, and 42MAPK kDa) were phosphorylated rather slowly, and maximal tyrosine phosphorylation was observed at 2 min. Herbimycin A inhibited PLD activity and tyrosine phosphorylation of four proteins (111, 91, 84, and 65–70 kDa) in a preincubation time- and concentration-dependent fashion. In Ca2+-free buffer, CCh-induced [3H]phosphatidylbutanol formation and protein tyrosine phosphorylation were abolished. A Ca2+ ionophore, A23187, caused PLD activation and tyrosine phosphorylation of four proteins of 111, 91, 84, and 65–70 kDa only in the presence of extracellular Ca2+. Extracellular Ca2+ dependency for CCh-induced PLD activation was well correlated with that for tyrosine phosphorylation of the four proteins listed above, especially the 111-kDa protein. These results suggest that Ca2+-dependent protein tyrosine phosphorylation is closely implicated in CCh-induced PLD activation in PC12 cells.  相似文献   

6.
Src family non-receptor tyrosine kinases play a prominent role in multiple cellular processes, including: cell proliferation, differentiation, cell survival, stress response, and cell adhesion and migration, among others. And when deregulated by mutations, overexpression, and/or the arrival of faulty incoming signals, its hyperactivity contributes to the development of hematological and solid tumors. c-Src is a prototypical member of this family of kinases, which is highly regulated by a set of phosphorylation events. Other factor contributing to the regulation of Src activity appears to be mediated by the Ca2+ signal generated in cells by different effectors, where the Ca2+-receptor protein calmodulin (CaM) plays a key role. In this report we demonstrate that CaM directly interacts with Src in both Ca2+-dependent and Ca2+-independent manners in vitro and in living cells, and that the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) inhibits the activation of this kinase induced by the upstream activation of the epidermal growth factor receptor (EGFR), in human carcinoma epidermoide A431 cells, and by hydrogen peroxide-induced oxidative stress, in both A431 cells and human breast adenocarcinoma SK-BR-3 cells. Furthermore, we show that the Ca2+/CaM complex strongly activates the auto-phosphorylation and tyrosine kinase activity of c-Src toward exogenous substrates, but most relevantly and for the first time, we demonstrate that Ca2+-free CaM (apo-CaM) exerts a far higher activatory action on Src auto-phosphorylation and kinase activity toward exogenous substrates than the one exerted by the Ca2+/CaM complex. This suggests that a transient increase in the cytosolic concentration of free Ca2+ is not an absolute requirement for CaM-mediated activation of Src in living cells, and that a direct regulation of Src by apo-CaM could be inferred.  相似文献   

7.
Receptor tyrosine kinase regulation of phospholipase C-epsilon (PLC-epsilon), which is under the control of Ras-like and Rho GTPases, was studied with HEK-293 cells endogenously expressing PLC-coupled epidermal growth factor (EGF) receptors. PLC and Ca(2+) signaling by the EGF receptor, which activated both PLC-gamma1 and PLC-epsilon, was specifically suppressed by inactivation of Ras-related GTPases with clostridial toxins and expression of dominant-negative Rap2B. EGF induced rapid and sustained GTP loading of Rap2B, binding of Rap2B to PLC-epsilon, and Rap2B-dependent translocation of PLC-epsilon to the plasma membrane. GTP loading of Rap2B by EGF was inhibited by chelation of intracellular Ca(2+) and expression of lipase-inactive PLC-gamma1 but not of PLC-epsilon. Expression of RasGRP3, a Ca(2+)/diacylglycerol-regulated guanine nucleotide exchange factor for Ras-like GTPases, but not expression of various other exchange factors enhanced GTP loading of Rap2B and PLC/Ca(2+) signaling by the EGF receptor. EGF induced tyrosine phosphorylation of RasGRP3, but not RasGRP1, apparently caused by c-Src; inhibition of c-Src interfered with EGF-induced Rap2B activation and PLC stimulation. Collectively, these data suggest that the EGF receptor triggers activation of Rap2B via PLC-gamma1 activation and tyrosine phosphorylation of RasGRP3 by c-Src, finally resulting in stimulation of PLC-epsilon.  相似文献   

8.
Downregulation of protein kinase C delta (PKC delta) by treatment with the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) transforms cells that overexpress the non-receptor class tyrosine kinase c-Src (Z. Lu et al., Mol. Cell. Biol. 17:3418-3428, 1997). We extended these studies to cells overexpressing a receptor class tyrosine kinase, the epidermal growth factor (EGF) receptor (EGFR cells); like c-Src, the EGF receptor is overexpressed in several human tumors. In contrast with expectations, downregulation of PKC isoforms with TPA did not transform the EGFR cells; however, treatment with EGF did transform these cells. Since TPA downregulates all phorbol ester-responsive PKC isoforms, we examined the effects of PKC delta- and PKC alpha-specific inhibitors and the expression of dominant negative mutants for both PKC delta and alpha. Consistent with a tumor-suppressing function for PKC delta, the PKC delta-specific inhibitor rottlerin and a dominant negative PKC delta mutant transformed the EGFR cells in the absence of EGF. In contrast, the PKC alpha-specific inhibitor Go6976 and expression of a dominant negative PKC alpha mutant blocked the transformed phenotype induced by both EGF and PKC delta inhibition. Interestingly, both rottlerin and EGF induced substantial increases in phospholipase D (PLD) activity, which is commonly elevated in response to mitogenic stimuli. The elevation of PLD activity in response to inhibiting PKC delta, like transformation, was dependent upon PKC alpha and restricted to the EGFR cells. These data demonstrate that PKC isoforms alpha and delta have antagonistic effects on both transformation and PLD activity and further support a tumor suppressor role for PKC delta that may be mediated by suppression of tyrosine kinase-dependent increases in PLD activity.  相似文献   

9.
The overexpression of the pro-apoptotic protein Prostate Apoptosis Response Protein-4 in colon cancer has been shown to increase response to the chemotherapeutic agent 5-fluorouracil (5-FU). Although colon cancer cells endogenously express Par-4, the presence or overexpression of Par-4 alone does not cause apoptosis. We hypothesize that Par-4 is inactivated in colon cancer. In colon cancer, the levels and the kinase activity of the nonreceptor tyrosine kinase c-Src increase with tumor progression. One of the downstream effectors of c-Src is Akt1. Akt1 has been shown to inhibit the pro-apoptotic activity of Par-4 in prostate cancer cells. We therefore investigated the potential of activating Par-4 by inhibiting c-Src. Colon carcinoma cell lines were treated with the Src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-d]pyrimidine (PP2) in combination with the chemotherapeutic agent 5-FU. Treating cells with PP2 and 5-FU resulted in reduced interaction of Par-4 with Akt1 and with the scaffolding protein 14-3-3σ, and mobilization of Par-4 to the nucleus. Par-4 was shown to interact not only with Akt1 and 14-3-3σ, but also with c-Src. Overexpression of c-Src induced the phosphorylation of Par-4 at tyrosine site/s. Thus, in this study, we have shown that Par-4 can be activated by inhibiting Src with a pharmacological inhibitor and adding a chemotherapeutic agent. The activation of the pro-apoptotic protein Par-4 as reported in this study is a novel mechanism by which apoptosis occurs with a Src kinase inhibitor and 5-FU. In addition, we have demonstrated that the pro-apoptotic activity of endogenously expressed Par-4 can be increased in colon cancer cells.  相似文献   

10.
Platelet-derived growth factor (PDGF) stimulates the hydrolysis of phosphatidylinositol 4,5-bisphosphate (Ptd InsP2) via phospholipase C-γ1 (PLC-γ1) in Swiss 3T3 cells. Treatment of cells with the protein kinase C (PKC) inhibitor Ro-31-8220 greatly decreased PDGF-induced tyrosine phosphorylation of PLC-γ1, but paradoxically enhanced the production of inositol phosphates (InsPs). The inhibitor also caused an increase of PDGF receptor tyrosine phosphorylation at later times. The changes in phosphorylation of the receptor were correlated with alterations in PLC-γ1 translocation to the particulate fraction. Thus, although activation of PLC-γ1 was associated with phosphorylation of the receptor and translocation of the enzyme to the particulate fraction, it was dissociated from its tyrosine phosphorylation. A non-receptor-associated, cytosolic tyrosine kinase also was found to phosphorylate PLC-γ1 in a PDGF-dependent manner, but was not inhibited by Ro-31-8220 in vitro. PKC depletion by phorbol ester treatment decreased the tyrosine phosphorylation of PLC-γ1 induced by PDGF and slowed the translocation of PLC-γ1, but Ro-31-8220 produced further effects. The effect of Ro-31-8220 to enhance the production of InsPs could not be attributed to inhibition of PKC since InsPs production with PDGF was decreased in PKC-depleted cells and a stimulatory effect of the inhibitor was still evident. Interestingly, Ro-31-8220 decreased the radioactivity in phosphatidylinositol and increased that in phosphatidylinositol 4-phosphate and PtdInsP2 in cells labeled with myo[3H]inositol. The increased synthesis of PtdInsP2 could contribute to the increased production of InsPs induced by Ro-31-8220. In summary, these results support the conclusion that the activation of PLC-γ1 in response to PDGF requires autophosphorylation of the receptor and membrane association of PLC-γ1, but not phosphorylation of the enzyme. Furthermore, the effects of Ro-31-8220 on the tyrosine phosphorylation and activity of PLC-γ1, and on PtdInsP2 synthesis cannot be attributed to inhibition of PKC. © 1997 Elsevier Science B.V. All rights reserved.  相似文献   

11.
Phospholipase D (PLD) activity is elevated in response to mitogenic and oncogenic signals. PLD also cooperates with overexpressed tyrosine kinases to transform rat fibroblasts. 3Y1 rat fibroblasts overexpressing the tyrosine kinase c-Src undergo apoptosis in response to serum withdrawal. We report here that elevated expression of either PLD1 or PLD2 in these cells prevents apoptosis induced by serum withdrawal. 3Y1 cells transformed by the activated tyrosine kinase v-Src have elevated PLD activity and are resistant to apoptosis induced by serum withdrawal. However, if PLD activity is blocked, the v-Src-transformed cells underwent apoptosis. MDA-MB-231 cells are a human breast cancer cell line with substantially elevated levels of PLD activity. Inhibiting PLD activity in these cells similarly rendered them sensitive to the apoptotic insult of serum withdrawal. These data indicate that elevated PLD activity generates a survival signal(s) allowing cells to overcome default apoptosis programs.  相似文献   

12.
The signaling pathway involved in tumor necrosis factor-alpha (TNF-alpha)-induced intercellular adhesion molecule-1 (ICAM-1) expression was further studied in human A549 epithelial cells. TNF-alpha- or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ICAM-1 promoter activity was inhibited by a protein kinase C (PKC) inhibitor (staurosporine), tyrosine kinase inhibitors (genistein and herbimycin A), or an Src-specific tyrosine kinase inhibitor (PP2). TNF-alpha- or TPA-induced IkappaBalpha kinase (IKK) activation was also blocked by these inhibitors, which slightly reversed TNF-alpha-induced but completely reversed TPA-induced IkappaBalpha degradation. c-Src and Lyn, two members of the Src kinase family, were abundantly expressed in A549 cells, and their activation by TNF-alpha or TPA was inhibited by the same inhibitors. Furthermore, the dominant-negative c-Src (KM) mutant inhibited induction of ICAM-1 promoter activity by TNF-alpha or TPA. Overexpression of the constitutively active PKC or wild-type c-Src plasmids induced ICAM-1 promoter activity, this effect being inhibited by the dominant-negative c-Src (KM) or IKKbeta (KM) mutant but not by the nuclear factor-kappaB-inducing kinase (NIK) (KA) mutant. The c-Src (KM) mutant failed to block induction of ICAM-1 promoter activity caused by overexpression of wild-type NIK. In co-immunoprecipitation and immunoblot experiments, IKK was found to be associated with c-Src and to be phosphorylated on tyrosine residues after TNF-alpha or TPA treatment. Two tyrosine residues, Tyr188 and Tyr199, near the activation loop of IKKbeta, were identified as being important for NF-kappaB activation. Substitution of these residues with phenylalanines abolished ICAM-1 promoter activity and c-Src-dependent phosphorylation of IKKbeta induced by TNF-alpha or TPA. These data suggest that, in addition to activating NIK, TNF-alpha also activates PKC-dependent c-Src. These two pathways converge at IKKbeta and go on to activate NF-kappaB, via serine phosphorylation and degradation of IkappaB-alpha, and, finally, to initiate ICAM-1 expression.  相似文献   

13.
Amplification and overexpression of the neu (c-erbB2) proto-oncogene has been implicated in the pathogenesis of 20 to 30% of human breast cancers. Although the activation of Neu receptor tyrosine kinase appears to be a pivotal step during mammary tumorigenesis, the mechanism by which Neu signals cell proliferation is unclear. Molecules bearing a domain shared by the c-Src proto-oncogene (Src homology 2) are thought to be involved in signal transduction from activated receptor tyrosine kinases such as Neu. To test whether c-Src was implicated in Neu-mediated signal transduction, we measured the activity of the c-Src tyrosine kinase in tissue extracts from either mammary tumors or adjacent mammary epithelium derived from transgenic mice expressing a mouse mammary tumor virus promoter/enhancer/unactivated neu fusion gene. The Neu-induced mammary tumors possessed six- to eightfold-higher c-Src kinase activity than the adjacent epithelium. The increase in c-Src tyrosine kinase activity was not due to an increase in the levels of c-Src but rather was a result of the elevation of its specific activity. Moreover, activation of c-Src was correlated with its ability to complex tyrosine-phosphorylated Neu both in vitro and in vivo. Together, these observations suggest that activation of the c-Src tyrosine kinase during mammary tumorigenesis may occur through a direct interaction with activated Neu.  相似文献   

14.
v-Src-induced increases in diglyceride are derived from phosphatidylcholine via a type D phospholipase (PLD) and a phosphatidic acid phosphatase. v-Src-induced PLD activity, as measured by PLD-catalyzed transphosphatidylation of phosphatidylcholine to phosphatidylethanol, is inhibited by GDP beta S, which inhibits G-protein-mediated intracellular signals. Similarly, v-Src-induced increases in diglyceride are also blocked by GDP beta S. In contrast to the PLD activity induced by v-Src, PLD activity induced by the protein kinase C agonist, 12-O-tetradecanoylphorbol-13-acetate (TPA), was insensitive to GDP beta S. Consistent with the involvement of a G protein in the activation of PLD activity by v-Src, GTP gamma S, a nonhydrolyzable analog of GTP that potentiates G-protein-mediated signals, strongly enhanced PLD activity in v-Src-transformed cells relative to that in parental BALB/c 3T3 cells. The effect of GTP gamma S on PLD activity in v-Src-transformed cells was observed only when cells were prelabeled with [3H]myristate, which is incorporated exclusively into phosphatidylcholine, the substrate for the v-Src-induced PLD. There was no difference in the effect of GTP gamma S-induced PLD activity on v-Src-transformed and BALB/c 3T3 cells when the cells were prelabeled with [3H]arachidonate, which is not incorporated into phospholipids that are substrates for the v-Src-induced PLD. Similarly, GDP beta S inhibited PLD activity in v-Src-transformed cells much more strongly than in BALB/c 3T3 cells when [3H]myristate was used to prelabel the cells. The GTP-dependent activation of PLD by v-Src was dependent upon the presence of ATP but was unaffected by either cholera or pertussis toxin. These data suggest that v-Src induces PLD activity through a phosphorylation event and is mediated by a cholera and pertussis toxin-insensitive G protein.  相似文献   

15.
Rabbit platelets were labelled with [3H]glycerol and incubated with or without phorbol 12-myristate 13-acetate (PMA). Membranes were then isolated and assayed for phospholipase D (PLD) activity by monitoring [3H]phosphatidylethanol formation in the presence of 300 mM-ethanol. At a [Ca2+free] of 1 microM, PLD activity was detected in control membranes, but was 5.4 +/- 0.8-fold (mean +/- S.E.M.) greater in membranes from PMA-treated platelets. Under the same conditions, 10 microM-guanosine 5'-[gamma-thio]triphosphate (GTP[S]) stimulated PLD by 18 +/- 3-fold in control membranes, whereas PMA treatment and GTP[S] interacted synergistically to increase PLD activity by 62 +/- 12-fold. GTP[S]-stimulated PLD activity was observed in the absence of Ca2+, but was increased by 1 microM-Ca2+ (3.5 +/- 0.2-fold and 1.8 +/- 0.1-fold in membranes from control and PMA-treated platelets respectively). GTP exerted effects almost as great as those of GTP[S], but 20-30-fold higher concentrations were required. Guanosine 5'-[beta-thio]diphosphate inhibited the effects of GTP[S] or GTP, suggesting a role for a GTP-binding protein in activation of PLD. Thrombin (2 units/ml) stimulated the PLD activity of platelet membranes only very weakly and in a GTP-independent manner. The actions of PMA and analogues on PLD activity correlated with their ability to stimulate protein kinase C in intact platelets. Staurosporine, a potent protein kinase inhibitor, had both inhibitory and, at higher concentrations, stimulatory effects on the activation of PLD by PMA. The results suggest that PMA not only stimulates PLD via activation of protein kinase C but can also activate the enzyme by a phosphorylation-independent mechanism in the presence of staurosporine. However, under physiological conditions, full activation of platelet PLD may require the interplay of protein kinase C, increased Ca2+ and a GTP-binding protein, and may occur as a secondary effect of the activation of phospholipase C.  相似文献   

16.
An elevated content of membrane glycoprotein PC-1 has been observed in cells and tissues of insulin resistant patients. In addition, in vitro overexpression of PC-1 in cultured cells induces insulin resistance associated with diminished insulin receptor tyrosine kinase activity. We now find that PC-1 overexpression also influences insulin receptor signaling at a step downstream of insulin receptor tyrosine kinase, independent of insulin receptor tyrosine kinase. In the present studies, we employed Chinese hamster ovary cells that overexpress the human insulin receptor (CHO IR cells; ∼106 receptors per cell), and transfected them with human PC-1 c-DNA (CHO IR PC-1). In CHO IR PC-1 cells, insulin receptor tyrosine kinase activity was unchanged, following insulin treatment of cells. However, several biological effects of insulin, including glucose and amino acid uptake, were decreased. In CHO IR PC-1 cells, insulin stimulation of mitogen-activated protein (MAP) kinase activity was normal, suggesting that PC-1 overexpression did not affect insulin receptor activation of Ras, which is upstream of MAP kinase. Also, insulin-stimulated phosphatidylinositol (PI)-3-kinase activity was normal, suggesting that PC-1 overexpression did not interfere with the activation of this enzyme by insulin receptor substrate-1. In these cells, however, insulin stimulation of p70 ribosomal S6 kinase activity was diminished. These studies suggest, therefore, that, in addition to blocking insulin receptor tyrosine kinase activation, PC-1 can also block insulin receptor signaling at a post-receptor site. J. Cell. Biochem. 68:366–377, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The relationship between tyrosine phosphorylation and activation of phospholipase D1 (PLD1) by v-Src was examined. Co-expression of v-Src and PLD1 in COS-7 cells resulted in increased activity and marked tyrosine phosphorylation of PLD1. PLD activity was increased in membranes or immunoprecipitates prepared from these cells. Dephosphorylation of the immunoprecipitated enzyme by tyrosine phosphatase or phosphorylation by c-Src produced no changes in its activity. Tyrosine phosphorylation induced by v-Src caused a shift of the enzyme from the Triton-soluble to the Triton-insoluble fraction. v-Src and PLD1 could be co-immunoprecipitated from cells co-expressing these and were co-localized in the perinuclear region as assessed by immunofluorescence. Mutation of the palmitoylation sites of PLD1 significantly reduced tyrosine phosphorylation by v-Src. It is concluded that tyrosine phosphorylation of PLD1 by v-Src does not per se alter its activity. It is proposed that activation of PLD1 by v-Src in vivo may involve association/colocalization of the two proteins.  相似文献   

18.
The signaling pathway involved in TNF-alpha-induced cyclooxygenase-2 (COX-2) expression was further studied in human NCI-H292 epithelial cells. A protein kinase C (PKC) inhibitor (staurosporine), tyrosine kinase inhibitors (genistein and herbimycin A), or a Src kinase inhibitor (PP2) attenuated TNF-alpha- or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced COX-2 promoter activity. TNF-alpha- or TPA-induced I-kappaB kinase (IKK) activation was also blocked by these inhibitors, which reversed I-kappaBalpha degradation. Activation of c-Src and Lyn kinases, two Src family members, was inhibited by the PKC, tyrosine kinase, or Src kinase inhibitors. The dominant-negative c-Src (KM) mutant inhibited induction of COX-2 promoter activity by TNF-alpha or TPA. Overexpression of the constitutively active PKCalpha (PKCalpha A/E) or wild-type c-Src plasmids induced COX-2 promoter activity, and these effects were inhibited by the dominant-negative c-Src (KM), NF-kappaB-inducing kinase (NIK) (KA), or IKKbeta (KM) mutant. The dominant-negative PKCalpha (K/R) or c-Src (KM) mutant failed to block induction of COX-2 promoter activity caused by wild-type NIK overexpression. In coimmunoprecipitation experiments, IKKalpha/beta was found to be associated with c-Src and to be phosphorylated on its tyrosine residues after TNF-alpha or TPA treatment. Two tyrosine residues, Tyr(188) and Tyr(199), near the activation loop of IKKbeta, were identified to be crucial for NF-kappaB activation. Substitution of these residues with phenylalanines attenuated COX-2 promoter activity and c-Src-dependent phosphorylation of IKKbeta induced by TNF-alpha or TPA. These data suggest that, in addition to activating NIK, TNF-alpha also activates PKC-dependent c-Src. These two pathways cross-link between c-Src and NIK and converge at IKKalpha/beta, and go on to activate NF-kappaB, via serine phosphorylation and degradation of IkappaB-alpha, and, finally, to initiate COX-2 expression.  相似文献   

19.
Phospholipase D2 (PLD2) overexpression in mammalian cells results in cell transformation. We have hypothesized that this is due to an increase of de novo DNA synthesis. We show here that overexpression of PLD2-WT leads to an increased DNA synthesis, as measured by the expression levels of the proliferation markers PCNA, p27KIP1 and phospho-histone-3. The enhancing effect was even higher with phosphorylation-deficient PLD2-Y179F and PLD2-Y511F mutants. The mechanism for this did not involve the enzymatic activity of the lipase, but, rather, the presence of the protein tyrosine phosphatase CD45, as silencing with siRNA for CD45 abrogated the effect. The two Y→F mutants had in common a YxN consensus site that, in the phosphorylated counterparts, could be recognized by SH2-bearing proteins, such as Grb2. Even though Y179F and Y511F cannot bind Grb2, they could still find other protein partners, one of which, we have reasoned, could be CD45 itself. Affinity purified PLD2 is indeed activated by Grb2 and deactivated by CD45 in vitro. We concluded that phosphorylated PLD2, aided by Grb2, mediates lipase activity, whereas dephosphorylated PLD2 mediates an induction of cell proliferation, and the specific residues involved in this newly discovered regulation of PLD2 are Y179 and Y511.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号