首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pressor responses to increases in cerebrospinal fluid (CSF) sodium in Wistar rats and to high salt intake in spontaneously hypertensive rats (SHR) involve both brain ouabainlike activity ("ouabain") and the brain renin-angiotensin system (RAS). Because some of the effects of "ouabain" are mediated by the median preoptic nucleus (MnPO) and this nucleus contains all elements of the RAS, the present study assessed possible interactions of "ouabain" and ANG II in this nucleus. In conscious Wistar rats, injection of ANG II into the MnPO significantly increased mean arterial pressure (MAP) and heart rate (HR). This response was not affected by pretreatment with a subpressor dose of ouabain. MAP and HR increases by ouabain in the MnPO were significantly attenuated by MnPO pretreatment with losartan. In Wistar rats, losartan in the MnPO also abolished pressor and HR responses to intracerebroventricular 0.3 M NaCl and attenuated MAP and HR responses to intracerebroventricular ouabain. Five weeks of a high-salt diet in SHRs resulted in exacerbation of hypertension and increased responses to air-jet stress and intracerebroventricular guanabenz. Losartan injected into the MnPO reversed the salt-sensitive component of the hypertension and normalized the depressor response to guanabenz but did not change responses to air-jet stress. We conclude that in the MnPO, ANG II via AT(1) receptors mediates cardiovascular responses to an acute increase in CSF sodium as well as the chronic pressor responses to high sodium intake in SHR.  相似文献   

2.
The role of the suprachiasmatic nucleus/medial preoptic area region of the hypothalamus in the expression of rat hypothalamic growth hormone-releasing factor-induced feeding in the rat was examined. Rats were tested for their 90-min food intake following microinjections of growth hormone-releasing factor (0.0, 0.01, 0.1 or 1.0 pmol) aimed at the suprachiasmatic nucleus/medial preoptic area region. It was found that growth hormone-releasing factor dose-dependently stimulated food intake with the 1.0 pmol dose being the most effective, increasing food intake by approximately 200%. Injections outside the suprachiasmatic nucleus/medial preoptic area region were ineffective. These data are taken to suggest that the suprachiasmatic nucleus/medial preoptic area region of the hypothalamus is important for the central stimulatory effects of growth hormone-releasing factor on feeding.  相似文献   

3.
Estradiol (E2) exerts an inhibitory effect on food intake in a variety of species. While compelling evidence indicates that central, rather than peripheral, estrogen receptors (ERs) mediate this effect, the exact brain regions involved have yet to be conclusively identified. In order to identify brain regions that are sufficient for E2's anorectic effect, food intake was monitored for 48 h following acute, unilateral, microinfusions of vehicle and two doses (0.25 and 2.5 μg) of a water-soluble form of E2 in multiple brain regions within the hypothalamus and midbrain of ovariectomized rats. Dose-related decreases in 24-h food intake were observed following E2 administration in the medial preoptic area (MPOA), arcuate nucleus (ARC), and dorsal raphe nucleus (DRN). Within the former two brain areas, the larger dose of E2 also decreased 4-h food intake. Food intake was not influenced, however, by similar E2 administration in the paraventricular nucleus, lateral hypothalamus, or ventromedial nucleus. These data suggest that E2-responsive neurons within the MPOA, ARC, and DRN participate in the estrogenic control of food intake and provide specific brain areas for future investigations of the cellular mechanism underlying estradiol's anorexigenic effect.  相似文献   

4.
Input to the nucleus medianus of the preoptic region has been suggested to be involved in both the drinking and pressor responses elicited by the central administration of angiotensin II. Evidence in support of this suggestion has been gained principally from electrical lesion experiments. This lesion procedure does not differentiate between the cells of the region and fibers coursing through the region. To test the hypothesis that cells in this region are involved in both the pressor and drinking responses elicited by central administration of angiotensin II, injections of kainic acid were made to induce lesions of the cells, while sparing fibers of passage. Drinking and blood pressure responses were determined pre- and post-lesion in the chronically instrumented awake rat. Injections of 50 ng angiotensin II in a 2-microL volume into a lateral cerebral ventricle of the conscious rat elicited pronounced drinking and pressor responses with a latency of 3-5 min. Lesions of the median preoptic region produced by injecting 1.0 microgram of kainic acid in 0.25 microL for 15 s attenuated or blocked the drinking response and increased the latency to drink induced by central injections of angiotensin II. However, kainic acid lesions did not significantly alter the pressor responses produced by angiotensin II administration. These results suggest that cells in the median preoptic region are involved in the drinking response but do not participate in the pressor response elicited by angiotensin II administration into a lateral cerebral ventricle of the conscious rat.  相似文献   

5.
Previous data have consistently demonstrated an inhibitory effect of androgens on stress-induced hypothalamic-pituitary-adrenal (HPA) responses. Several brain regions may influence androgen-mediated inhibition of the HPA axis, including the medial preoptic area. To test the role of the medial preoptic nucleus (MPN) specifically, we examined in high- and low-testosterone-replaced gonadectomized rats bearing discrete bilateral lesions of the MPN basal and stress-induced indexes of HPA function, and the relative levels of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) mRNA in the amygdala. High testosterone replacement decreased plasma adrenocorticotropin hormone (ACTH) and paraventricular nucleus (PVN) Fos responses to restraint exposure in sham- but not in MPN-lesioned animals. AVP-, but not CRH-immunoreactivity staining in the external zone of the median eminence was increased by testosterone in sham animals, and MPN lesions blocked this increment in AVP. A similar interaction between MPN lesions and testosterone occurred on AVP mRNA levels in the medial nucleus of the amygdala. These findings support an involvement of MPN projections in mediating the AVP response to testosterone in both the medial parvocellular PVN and medial amygdala. We conclude that the MPN forms part of an integral circuit that mediates the central effects of gonadal status on neuroendocrine and central stress responses.  相似文献   

6.
Opioid regulation of reproduction has been widely studied. However, the role of opioid receptor-like 1 receptor (NOP; also referred to as ORL-1 and OP4) and its endogenous ligand orphanin FQ/nociceptin (OFQ/N) have received less attention despite their extensive distribution throughout nuclei of the limbic-hypothalamic system, a circuit that regulates reproductive behavior in the female rat. Significantly, the expression of both receptor and ligand is regulated in a number of these nuclei by estradiol and progesterone. Activation of NOP in the ventromedial nucleus of the hypothalamus (VMH) of estradiol-primed nonreceptive female rats facilitates lordosis. NOPs are also expressed in the medial preoptic nucleus (MPN), however, their roles in reproductive behavior have not been studied. The present experiments examined the role of NOP in the regulation of lordosis in the MPN and tested whether endogenous OFQ/N in the MPN and VMH mediates reproductive behavior. Activation of NOP by microinfusion of OFQ/N in the MPN facilitated lordosis in estradiol-primed sexually nonreceptive female rats. Passive immunoneutralization of OFQ/N in either the MPN or the VMH reduced lordosis in estradiol-primed females, but had no effect on lordosis in estradiol+progesterone-primed sexually receptive rats. These studies suggest that OFQ/N has a central role in estradiol-only induced sexual receptivity, and that progesterone appears to involve additional circuits that mediate estradiol+progesterone sexual receptivity.  相似文献   

7.
Male Holtzman rats weighting 200-250 g were anesthetized with zoletil 50 mg/Kg (tiletamine chloridrate 125,0 mg and zolazepan chloridrate 125,0 mg) into quadriceps muscle and submitted an electrolytic lesion of the lateral hypothalamus (LH) and a stainless steel cannula was implanted into their median preoptic nucleus (MnPO). We investigated the effects of the injection into the (MnPO) of FK 409 (20 microg/0.5 microl), a nitric oxide (NO) donor, and N(W)-nitro-L-arginine methyl ester (L-NAME) 40 microg/0.5 microl, a nitric oxide synthase inhibitor (NOSI), on the water and sodium appetite and the natriuretic, diuretic and cardiovascular effects induced by injection of L-NAME and FK 409 injected into MnPO in rats with LH lesions. Controls were injected with a similar volume of 0.15 M NaCl. L-NAME injected into MnPO produced an increase in water and sodium intake and in sodium and urine excretion and increase de mean arterial pressure (MAP). FK 409 injected into MnPO did not produce any change in the hydro electrolytic and cardiovascular parameters in LH-sham and lesioned rats. FK 409 injected before L-NAME attenuated its effects. These data show that electrolytic lesion of the LH reduces fluid and sodium intake as well as sodium and urine excretion, and the pressor effect induced by L-NAME. LH involvement with NO of the MnPO excitatory and inhibitory mechanisms related to water and sodium intake, sodium excretion and cardiovascular control is suggested.  相似文献   

8.
Previously we have found that small lesions confined to the medial preoptic nucleus (MPN) or the suprachiasmatic nucleus (SCN) blocked the cyclic release of gonadotropins in the female rat, inducing a persistent estrous state. Since the MPN is located just caudal to the organum vasculosum of the lamina terminalis (OVLT) where LHRH cell bodies are most concentrated, we applied an immunocytochemical technique to examine the possibility that the lesions had simply disrupted LHRH neurons or fibers. Using a new anti-LHRH provided by Dr. V. D. Ramirez, we found that the distribution pattern of immunoreactive LHRH cell bodies and fibers was similar to that previously reported, although the staining was more intense and extensive with low background. There was no concentration of LHRH cell bodies and fibers in the MPN or SCN and, in fact, these nuclei generally showed a lower density of stained elements than did surrounding tissue. In persistent estrous animals with lesions confined to the MPN there was no detectable reduction of stained fibers in the median eminence. These results, along with the results of other workers, suggest that persistent estrus following lesions of the MPN or SCN is not due to reduction of LHRH neurons or fibers. Rather, they support the hypothesis that these nuclei are critical for triggering the ovulatory release of LHRH.  相似文献   

9.
Systemic salt loading has been reported to facilitate operant heat-escape/cold-seeking behavior. In the present study, we hypothesized that the median preoptic nucleus (MnPO) would be involved in this mechanism. Rats were divided into two groups (n = 6 each): one group had the MnPO lesion with ibotenic acid (4.0 mug) and the other was the vehicle control. After subcutaneous injection (10 ml/kg) of either isotonic- (154 mM) or hypertonic-saline (2,500 mM), each rat was placed in a behavior box, where the ambient temperature was changed to 26 degrees C, 35 degrees C, and 40 degrees C every 1 h. The position of a rat in the box and the body core temperature (T(core)) were monitored. A rat could trigger 0 degrees C air for 45 s in the 35 degrees C and 40 degrees C heat when moved in a specific area in the box (operant behavior). In the control group, counts of the operant behavior were greater (P < 0.05) in the hypertonic- than in the isotonic-saline injection (17 +/- 2 and 10 +/- 2 at 35 degrees C, 24 +/- 2 and 18 +/- 1 at 40 degrees C). T(core) remained unchanged throughout the exposure, although the level was lower (P < 0.05) in the hypertonic- than in the isotonic-saline trial (36.6 +/- 0.2 degrees C and 37.4 +/- 0.1 degrees C at 26 degrees C and 36.9 +/- 0.2 degrees C and 37.4 +/- 0.1 degrees C at 40 degrees C, respectively). However, in the MnPO-lesion group, counts of the behavior were similar between the hypertonic- and isotonic-saline injection trials (10 +/- 2 and 8 +/- 1 at 35 degrees C, and 17 +/- 1 and 16 +/- 1 at 40 degrees C, respectively). T(core) increased (P < 0.05) in the heat in both trials (36.8 +/- 0.1 degrees C and 37.4 +/- 0.1 degrees C at 26 degrees C and 37.4 +/- 0.2 degrees C and 37.8 +/- 0.2 degrees C at 40 degrees C in the hypertonic- and isotonic-saline injection trials, respectively). These results may suggest that, at least in part, the MnPO is involved in the facilitation of heat-escape/cold-seeking behavior during osmotic stimulation.  相似文献   

10.
This experiment tested the effects of an intracerebroventricular injection of prostaglandin E1 on the sympathetic activation and the thermogenic changes in rats with ibotenate lesions of the ventromedial hypothalamus. Under pentobarbital anesthesia, twelve Sprague-Dawley male rats were lesioned bilaterally in the ventromedial hypothalamus with an injection of ibotenic acid (30 nmol into each side). Sham lesions were carried out in other twelve control rats. After 48 h, all animals were anesthetized with ethyl-urethane. The firing rate of the sympathetic nerves innervating the interscapular brown adipose tissue and the colonic and interscapular brown adipose tissue temperatures were monitored before and after an intracerebroventricular injection of prostaglandin E1 (500 ng) or saline. Prostaglandin E1 induced an increase in the firing rate of sympathetic nerves and the colonic and interscapular brown adipose tissue temperatures. These effects were reduced by the ventromedial hypothalamic lesion. Since ibotenic acid destroys cell bodies, the findings indicate that neurons of the ventromedial hypothalamus play a considerable role in the control of sympathetic activation and the thermogenic changes during prostaglandin E1 hyperthermia.  相似文献   

11.
The medial preoptic nucleus (MPN) plays an essential role in the coordination of behaviours and physiological responses necessary for reproduction. Since ageing is associated with a progressive deterioration of reproductive functions we have explored the possibility that changes in the structural organization of the MPN might be implicated in this process. Thus, we have estimated the volume of the MPN, and the total number and size of its neurons, using stereological methods, and quantitatively evaluated the dendritic trees of MPN neurons in Golgi-impregnated material. Male and female rats, aged 6, 24 and 30 months, were independently analysed. No cell loss was observed in aged rats of both sexes. However, the volume of the MPN and the somatic size of its neurons were remarkably enlarged in aged rats. No significant age-related changes in the size or shape of the dendritic trees or in dendritic spine density were found. To evaluate whether the changes observed in aged rats could be ascribed to an altered interaction between gonadal steroids and steroid-sensitive neurons, we have additionally estimated the to tal number of MPN neurons immunoreactive for the estrogen receptor-α. No significant age-related variations were detected. The age effects upon the MPN were more marked in females than in males and, consequently, the sexual dimorphisms in neuronal size and in the number of estrogen receptor-immunoreactive neurons were blunted in aged rats.  相似文献   

12.
《Hormones and behavior》2012,61(5):540-548
Sexual receptivity, lordosis, can be induced by sequential estradiol and progesterone or extended exposure to high levels of estradiol in the female rat. In both cases estradiol initially inhibits lordosis through activation of β-endorphin (β-END) neurons of the arcuate nucleus of the hypothalamus (ARH) that activate μ-opioid receptors (MOP) in the medial preoptic nucleus (MPN). Subsequent progesterone or extended estradiol exposure deactivates MPN MOP to facilitate lordosis. Opioid receptor-like receptor-1 (ORL-1) is expressed in ARH and ventromedial hypothalamus (VMH). Infusions of its endogenous ligand, orphanin FQ (OFQ/N, aka nociceptin), into VMH–ARH region facilitate lordosis. Whether OFQ/N acts in ARH and/or VMH and whether OFQ/N is necessary for steroid facilitation of lordosis are unclear. In Exp I, OFQ/N infusions in VMH and ARH that facilitated lordosis also deactivated MPN MOP indicating that OFQ/N facilitation of lordosis requires deactivation of ascending ARH-MPN projections by directly inhibiting ARH β-END neurons and/or through inhibition of excitatory VMH–ARH pathways to proopiomelanocortin neurons. It is unclear whether OFQ/N activates the VMH output motor pathways directly or via the deactivation of MPN MOP. In Exp II we tested whether ORL-1 activation is necessary for estradiol-only or estradiol + progesterone lordosis facilitation. Blocking ORL-1 with UFP-101 inhibited estradiol-only lordosis and MPN MOP deactivation but had no effect on estradiol + progesterone facilitation of lordosis and MOP deactivation. In conclusion, steroid facilitation of lordosis inhibits ARH β-END neurons to deactivate MPN MOP, but estradiol-only and estradiol + progesterone treatments appear to use different neurotransmitter systems to inhibit ARH-MPN signaling.  相似文献   

13.
Sexual receptivity, lordosis, can be induced by sequential estradiol and progesterone or extended exposure to high levels of estradiol in the female rat. In both cases estradiol initially inhibits lordosis through activation of β-endorphin (β-END) neurons of the arcuate nucleus of the hypothalamus (ARH) that activate μ-opioid receptors (MOP) in the medial preoptic nucleus (MPN). Subsequent progesterone or extended estradiol exposure deactivates MPN MOP to facilitate lordosis. Opioid receptor-like receptor-1 (ORL-1) is expressed in ARH and ventromedial hypothalamus (VMH). Infusions of its endogenous ligand, orphanin FQ (OFQ/N, aka nociceptin), into VMH–ARH region facilitate lordosis. Whether OFQ/N acts in ARH and/or VMH and whether OFQ/N is necessary for steroid facilitation of lordosis are unclear. In Exp I, OFQ/N infusions in VMH and ARH that facilitated lordosis also deactivated MPN MOP indicating that OFQ/N facilitation of lordosis requires deactivation of ascending ARH-MPN projections by directly inhibiting ARH β-END neurons and/or through inhibition of excitatory VMH–ARH pathways to proopiomelanocortin neurons. It is unclear whether OFQ/N activates the VMH output motor pathways directly or via the deactivation of MPN MOP. In Exp II we tested whether ORL-1 activation is necessary for estradiol-only or estradiol + progesterone lordosis facilitation. Blocking ORL-1 with UFP-101 inhibited estradiol-only lordosis and MPN MOP deactivation but had no effect on estradiol + progesterone facilitation of lordosis and MOP deactivation. In conclusion, steroid facilitation of lordosis inhibits ARH β-END neurons to deactivate MPN MOP, but estradiol-only and estradiol + progesterone treatments appear to use different neurotransmitter systems to inhibit ARH-MPN signaling.  相似文献   

14.
It has been suggested that the sympathetic nervous system contributes to the short-term control of feeding. The adrenergic innervation of some splanchnic organs seems to be especially involved in such processes, since catecholamines reduce feeding only when injected intraperitoneally or intraportally. In this work, the effects of neonatal sympathetic denervation with guanethidine (Gnt) upon food intake were assessed in adult rats. Gnt-treated male rats had lower body weight gain. The hypophagic response to intraperitoneal (ip) norepinephrine was 70% higher in Gnt-treated animals as compared to controls (P < 0.05); that of epinephrine (E) by 33% (P < 0.05) and that of isoproterenol was not significantly modified. As in normal rats, the hypophagic effect was much stronger after ip than after intramuscular (im) administration (P < 0.05). On the other hand, resting oxygen consumption (VO2) was consistently lower in denervated animals. Ip E administration did not modify VO2, while im E caused increased motor activity and VO2 (P < 0.05). In contrast to control rats, the respiratory exchange ratio in ad libitum fed Gnt rats did not decrease after Ip E administration, suggesting a lack of effect upon lipid mobilization. The lower rate of body weight gain induced by neonatal Gnt sympathectomy might be due to lower daily food intake possibly related, in part, to the sensitization of the alpha-adrenergic porto-hepatic response to endogenous catecholamines. Compared with controls, Gnt-treated rats also showed a limited thermogenic capacity not related to feeding, and a greater degree of carbohydrate oxidation, possibly due to a defect in E-induced lipolysis, which is beta-adrenergic.  相似文献   

15.
We have previously demonstrated a functional role of the preoptic area and anterior hypothalamus (PO/AH) in thermoregulation in freely moving rats at various temperature conditions by using microdialysis and biotelemetry methods. In the present study, we perfused tetrodotoxin (TTX) solution into the PO/AH to investigate whether this manipulation can modify thermoregulation in exercising rats. Male Wistar rats were trained for 3 wk by treadmill running. Body core temperature (Tb), heart rate (HR), and tail skin temperature (Ttail) were measured. Rats ran for 120 min at speed of 10 m/min, with TTX (5 microM) perfused into the left PO/AH during the last 60 min of exercise through a microdialysis probe (control, n=12; TTX, n=12). Tb, HR, and Ttail increased during the first 20 min of exercise. Thereafter, Tb, HR, and Ttail were stable in both groups. Perfusion of TTX into the PO/AH evoked an additional rise in Tb (control: 38.2 +/- 0.1 degrees C, TTX: 39.3 +/- 0.2 degrees C; P <0.001) with a significant decrease in Ttail (control: 31.2 +/- 0.5 degrees C, TTX: 28.3 +/- 0.7 degrees C; P <0.01) and a significant increase in HR (control: 425.2 +/- 12 beats/min, TTX: 502.1 +/- 13 beats/min; P <0.01). These results suggest that the TTX-induced hyperthermia was the result of both an impairment of heat loss and an elevation of heat production during exercise. We therefore propose the PO/AH as an important thermoregulatory site in the brain during exercise.  相似文献   

16.
Both temporary access to a running wheel and temporary exposure to light systematically influence the phase producing entrainment of the circadian activity rhythm in the golden hamster (Mesocricetus auratus). However, precise determination of entrainment limits remains methodologically difficult, because such calculations may be influenced by varying experimental paradigms. In this study, effects on the entrainment of the activity pattern during successive light-dark (LD) cycles of stepwise decreasing periods, as well as wheel running activity, were investigated. In particular, the hamster activity rhythm under LD cycles with a period (T) shorter than 22 h was studied, i.e., when the LD cycle itself had been shown to be an insufficiently strong zeitgeber to synchronize activity rhythms. Indeed, it was confirmed that animals without a wheel do not entrain under 11:11-h LD cycles (T = 22 h). Subsequently providing hamsters continuous access to a running wheel established entrainment to T = 22 h. Moreover, this paradigm underwent further reductions of the T period to T = 19.6 h without loss of entrainment. Furthermore, restricting access to the wheel did not result in loss of entrainment, while even entrainment to T = 19 h was observed. To explain this observed shift in the lower entrainment limit, our speculation centers on changes in pacemaker response facilitated by stepwise changes of T spaced very far apart, thus allowing time for adaptation.  相似文献   

17.
Recent data suggests that neurons expressing the long form of the leptin receptor form at least two distinct groups within the caudal nucleus of the solitary tract (NTS): a group within the lateral NTS (Slt) and one within the medial (Sm) and gelantinosa (Sg) NTS. Discrete injections of leptin into Sm and Sg, a region that receives chemoreceptor input, elicit increases in arterial pressure (AP) and renal sympathetic nerve activity (RSNA). However, the effect of microinjections of leptin into Slt, a region that receives baroreceptor input is unknown. Experiments were done in the urethane-chloralose anesthetized, paralyzed and artificially ventilated Wistar or Zucker obese rat to determine leptin's effect in Slt on heart rate (HR), AP and RSNA during electrical stimulation of the aortic depressor nerve (ADN). Depressor sites within Slt were first identified by the microinjection of l-glutamate (Glu; 0.25 M; 10 nl) followed by leptin microinjections. In the Wistar rat leptin microinjection (50 ng; 20 nl) into depressor sites within the lateral Slt elicited increases in HR and RSNA, but no changes in AP. Additionally, leptin injections into Slt prior to Glu injections at the same site or to stimulation of the ADN were found to attenuate the decreases in HR, AP and RSNA to both the Glu injection and ADN stimulation. In Zucker obese rats, leptin injections into NTS depressor sites did not elicit cardiovascular responses, nor altered the cardiovascular responses elicited by stimulation of ADN. Those data suggest that leptin acts at the level of NTS to alter the activity of neurons that mediate the cardiovascular responses to activation of the aortic baroreceptor reflex.  相似文献   

18.
In Syrian hamsters (Mesocricetus autatus) arginine-vasopressin (AVP) within the medial preoptic-anterior hypothalamus (MPOA-AH) plays a critical role in the control of a hormone-dependent behavior called flank marking. The present study investigated whether ovarian hormones influence flank marking by altering the response of the MPOA-AH to AVP. The amount of flank marking stimulated by microinjection of AVP (9 μM in 200 nl saline) into the MPOA-AH varied significantly over the 4 days of the estrous cycle with the lowest levels of flank marking observed on estrus. A second experiment demonstrated that administration of progesterone significantly reduced AVP-stimulated flank marking in estradiol-treated ovariectomized hamsters. These data support the hypothesis that the changing levels of estradiol and progesterone during the estrous cycle influence flank marking by altering the sensitivity or response of the MPOA-AH to AVP.  相似文献   

19.
The central component of the medial preoptic nucleus (MPNc) of the rat has served as an excellent model of sexual differentiation. The MPNc is larger in adult males than in females, and its development is regulated by perinatal gonadal hormones. Although testosterone (T) and its metabolite estradiol (E) sexually differentiate this region, the exact mechanism by which they act during development is not known. There is a dramatic sex difference in the expression of progesterone receptors (PR) in the MPN during development; perinatal males express higher levels of PR than females. Additionally, PR expression during this time is dependent on exposure to T. Thus, PR induction may be one mechanism by which T sexually differentiates the MPN. The present study investigated the potential role of PR in the sexual differentiation of the MPNc. Anatomical examination of PR distribution within the MPN of neonatal males revealed the presence of PR immunoreactive cells within the MPNc, suggesting a direct route of action for PR in the development of the MPNc. Additionally, we measured the effects of neonatal RU486 treatment, a progesterone and glucocorticoid receptor antagonist, on subsequent MPNc volume in neonatally T-treated females and neonatally castrated males, given T. RU486 treatment reduced the MPNc volume of T-treated females while it increased the volume in T-treated, neonatally castrated males. These results, taken together with the expression of PR in the MPNc, suggest that PR may influence the sexual differentiation of the MPNc volume.  相似文献   

20.
The projection from the medial preoptic area to the median eminence of the cat was clarified by electron microscopy. After placing the electrolytic lesion in the preoptic area several kinds of degenerating neuronal processes and terminals were observed in the external layer of the median eminence. The one was dark shrunk terminals containing dense cored vesicles, the other was the dark ones containing myeline figure-like structure. The relationship between catecholamine-containing nerve endings and RH/IH-containing endings in the external layer of the median eminence was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号