首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: BACKGROUND: Pompe disease (Glycogen storage disease type II, GSD II, acid alpha-glucosidase deficiency, acid maltase deficiency, OMIM # 232300) is an autosomal-recessive lysosomal storage disorder due to a deficiency of acid alpha-glucosidase (GAA, acid maltase, EC 3.2.1.20, Swiss-Prot P10253). Clinical manifestations are dominated by progressive weakness of skeletal muscle throughout the clinical spectrum. In addition, the classic infantile form is characterised by hypertrophic cardiomyopathy. Methods: In a cross-sectional single-centre study we clinically assessed 3 patients with classic infantile Pompe disease and 39 patients with non-classic presentations, measured their acid alpha-glucosidase activities and analysed their GAA genes. Results: Classic infantile patients had nearly absent residual enzyme activities and a typical clinical course with hypertrophic cardiomyopathy until the beginning of therapy. The disease manifestations in non-classic patients were heterogeneous. There was a broad variability in the decline of locomotive and respiratory function. The age of onset ranged from birth to late adulthood and correlated with enzyme activities. Molecular analysis revealed as many as 33 different mutations, 14 of which are novel. All classic infantile patients had two severe mutations. The most common mutation in the non-classic group was c.-32-13T>G. It was associated with a milder course in this subgroup. Conclusion: Disease manifestation strongly correlates with the nature of the GAA mutations, while the variable progression in non-classic Pompe disease is likely to be explained by yet unknown modifying factors. This study provides the first comprehensive dataset on the clinical course and the mutational spectrum of Pompe disease in Germany.  相似文献   

2.
The classic phenotype of Fabry disease, X-linked alpha -galactosidase A (alpha -Gal A) deficiency, has an estimated incidence of approximately 1 in 50,000 males. The recent recognition of later-onset variants suggested that this treatable lysosomal disease is more frequent. To determine the disease incidence, we undertook newborn screening by assaying the alpha-Gal A activity in blood spots from 37,104 consecutive Italian male neonates. Enzyme-deficient infants were retested, and "doubly screened-positive" infants and their relatives were diagnostically confirmed by enzyme and mutation analyses. Twelve (0.03%) neonates had deficient alpha-Gal A activities and specific mutations, including four novel missense mutations (M51I, E66G, A73V, and R118C), three missense mutations (F113L, A143T, and N215S) identified previously in later-onset patients, and one splicing defect (IVS5(+1G-->T)) reported in a patient with the classic phenotype. Molecular modeling and in vitro overexpression of the missense mutations demonstrated structures and residual activities, which were rescued/enhanced by an alpha-Gal A-specific pharmacologic chaperone, consistent with mutations that cause the later-onset phenotype. Family studies revealed undiagnosed Fabry disease in affected individuals. In this population, the incidence of alpha-Gal A deficiency was 1 in approximately 3,100, with an 11 : 1 ratio of patients with the later-onset : classic phenotypes. If only known disease-causing mutations were included, the incidence would be 1 in approximately 4,600, with a 7 : 1 ratio of patients with the later-onset : classic phenotypes. These results suggest that the later-onset phenotype of Fabry disease is underdiagnosed among males with cardiac, cerebrovascular, and/or renal disease. Recognition of these patients would permit family screening and earlier therapeutic intervention. However, the higher incidence of the later-onset phenotype in patients raises ethical issues related to when screening should be performed--in the neonatal period or at early maturity, perhaps in conjunction with screening for other treatable adult-onset disorders.  相似文献   

3.
The classic anatomo-clinic paradigm based on clinical syndromes is fraught with problems. Nevertheless, for multiple reasons, clinicians are reluctant to embrace a more pathophysiological approach, even though this is the prevalent paradigm under "which basic sciences work. In recent decades, nonlinear dynamics ("chaos theory") and fractal geometry have provided powerful new tools to analyze physiological systems. However, these tools are embedded in the pathophysiological perspective and are not easily translated to our classic syndromes. This article comments on the problems raised by the conventional anatomo-clinic paradigm and reviews three areas in which the influence of nonlinear dynamics and fractal geometry can be especially prominent: disease as a loss of complexity, the idea of homeostasis, and fractals in pathology.  相似文献   

4.
Trapp CM  Oberfield SE 《Steroids》2012,77(4):342-346
Congenital adrenal hyperplasia (CAH) is a family of autosomal recessive disorders. 21-Hydroxylase deficiency, in which there are mutations in CYP21A2 (the gene encoding the adrenal 21-hydroxylase enzyme), is the most common form (90%) of CAH. In classic CAH there is impaired cortisol production with diagnostic increased levels of 17-OH progesterone. Excess androgen production results in virilization and in the newborn female may cause development of ambiguous external genitalia. Three-fourths of patients with classic CAH also have aldosterone insufficiency, which can result in salt-wasting; in infancy this manifests as shock, hyponatremia and hyperkalemia. CAH has a reported incidence of 1:10,000-1:20,000 births although there is an increased prevalence in certain ethnic groups. Nonclassic CAH (NCCAH) is a less severe form of the disorder, in which there is 20-50% of 21-hydroxylase enzyme activity (vs. 0-5% in classic CAH) and no salt wasting. The degree of symptoms related to androgen excess is variable and may be progressive with age, although some individuals are asymptomatic. NCCAH has an incidence of 1:1000-1:2000 births (0.1-0.2% prevalence) in the White population; an even higher prevalence is noted in certain ethnic groups such as Ashkenazi Jews (1-2%). As many as two-thirds of persons with NCCAH are compound heterozygotes and carry a severe and mild mutation on different alleles. This paper discusses the genetics of NCCAH, along with its variable phenotypic expression, and reviews the clinical course in untreated patients, which includes rapid early childhood growth, advanced skeletal age, premature adrenarche, acne, impaired reproductive function in both sexes and hirsutism as well as menstrual disorders in females. Finally, it addresses treatment with glucocorticoids vs. non treatment and other therapies, particularly with respect to long term issues such as adult metabolic disease including insulin resistance, cardiovascular disease, metabolic syndrome, and bone mineral density.  相似文献   

5.
Renal disease is rare today in classic adult gout, and gout is rare in renal disease--especially in the young. Here we summarise studies in 158 patients from 31 kindreds diagnosed with familial juvenile hyperuricaemic nephropathy FJHN from a total of 230 kindred members studied in Great Britain. Some patients have been followed for up to 30 years, and allopurinol has ameliorated the progression of the renal disease in all 113 surviving members provided: They have been diagnosed and treated sufficiently early. Compliance with allopurinol treatment and diet has been as important as early recognition. Hypertension has been rigorously controlled. The use of oral contraceptives has been avoided, as has pregnancy in any female with a Glomelar Filtration Rate GFR <70 ml/min. The question arising is: Why is FJHN the most prevalent genetic purine disorder diagnosed in Britain? Is it a lack of awareness which needs to be improved Europe-wide?  相似文献   

6.
Myasthenia gravis is a relatively rare neurological disease that is associated with loss of the acetylcholine receptors that initiate muscle contraction. This results in muscle weakness, which can be life-threatening. The story of how both the physiological basis of the disease and the role of acetylcholine-receptor-specific antibodies were determined is a classic example of the application of basic science to clinical medicine, and it has provided a model for defining other antibody-mediated disorders of the peripheral and central nervous systems.  相似文献   

7.
BACKGROUND: Fabry disease (OMIM 301500) is an X-linked inborn error of glycosphingolipid metabolism resulting from mutations in the alpha-galactosidase A (alpha-Gal A) gene. The disease is phenotypically heterogeneous with classic and variant phenotypes. To assess the molecular heterogeneity, define genotype/phenotype correlations, and for precise carrier identification, the nature of the molecular lesions in the alpha-Gal A gene was determined in 40 unrelated families with Fabry disease. MATERIALS AND METHODS: Genomic DNA was isolated from affected males or obligate carrier females and the entire alpha-Gal A coding region and flanking sequences were amplified by PCR and analyzed by automated sequencing. Haplotype analyses were performed with polymorphisms within and flanking the alpha-Gal A gene. RESULTS: Twenty new mutations were identified (G43R, R49G, M72I, G138E, W236X, L243F, W245X, S247C, D266E, W287C, S297C, N355K, E358G, P409S, g1237del15, g10274insG, g10679insG, g10702delA, g11018insA, g11185-delT), each in a single family. In the remaining 20 Fabry families, 18 previously reported mutations were detected (R49P, D92N, C94Y, R112C [two families], F113S, W162X, G183D, R220X, R227X, R227Q, Q250X, R301X, R301Q, G328R, R342Q, E358K, P409A, g10208delAA [two families]). Haplotype analyses indicated that the families with the R112C or g10208delAA mutations were not related. The proband with the D266E lesion had a severe classic phenotype, having developed renal failure at 15 years. In contrast, the patient with the S247C mutation had a variant phenotype, lacking the classic manifestations and having mild renal involvement at 64 years. CONCLUSIONS: These results further define the heterogeneity of alpha-Gal A mutations causing Fabry disease, permit precise heterozygote detection and prenatal diagnosis in these families, and provide additional genotype/phenotype correlations in this lysosomal storage disease.  相似文献   

8.
Glycogen storage disease type IV (GSD-IV), also known as Andersen disease or amylopectinosis (MIM 23250), is a rare autosomal recessive disorder caused by a deficiency of glycogen branching enzyme (GBE) leading to the accumulation of amylopectin-like structures in affected tissues. The disease is extremely heterogeneous in terms of tissue involvement, age of onset and clinical manifestations. The human GBE cDNA is approximately 3-kb in length and encodes a 702-amino acid protein. The GBE amino acid sequence shows a high degree of conservation throughout species. The human GBE gene is located on chromosome 3p14 and consists of 16 exons spanning at least 118 kb of chromosomal DNA. Clinically the classic Andersen disease is a rapidly progressive disorder leading to terminal liver failure unless liver transplantation is performed. Several mutations have been reported in the GBE gene in patients with classic phenotype. Mutations in the GBE gene have also been identified in patients with the milder non-progressive hepatic form of the disease. Several other variants of GSD-IV have been reported: a variant with multi-system involvement including skeletal and cardiac muscle, nerve and liver; a juvenile polysaccharidosis with multi-system involvement but normal GBE activity; and the fatal neonatal neuromuscular form associated with a splice site mutation in the GBE gene. Other presentations include cardiomyopathy, arthrogryposis and even hydrops fetalis. Polyglucosan body disease, characterized by widespread upper and lower motor neuron lesions, can present with or without GBE deficiency indicating that different biochemical defects could result in an identical phenotype. It is evident that this disease exists in multiple forms with enzymatic and molecular heterogeneity unparalleled in the other types of glycogen storage diseases.  相似文献   

9.
Fabry disease is a progressive disease characterized by an enzymatic deficiency of acid alpha-galactosidase and glycosphingolipids storage within the lysosomes. The disease has two phenotypes: classic and nonclassic. Excessive daytime sleepiness is a common sign reported by patients and can be caused by a circadian rhythm sleep disorder. Activity and rest cycle, variation of body temperature and melatonin biosynthesis are known rhythmicity markers. In the face of these evidences, our goal was to evaluate the rhythmic profile in Fabry’s disease patients using rhythmicity markers. For this purpose, we recruited 17 patients diagnosed with Fabry disease (11 classic and 6 nonclassic variant) that answered the Epworth Sleepiness Scale and the Morningness–Eveningness questionnaire adapted from Horne and Ostberg; recorded activity and body temperature rhythms by an actigraphy during at least 10 days and collected urine to assess 6-sulfatoxymelatonin excretion load during the day (from the second urine in the morning until 7 p.m.) and night (starting from 7 p.m. until the first urine in the morning of the following day). We observed that control subjects presented higher excretion load of 6-sulfatoxymelatonin during the night (p < 0.05, d = 7.8), as expected. Patients with the nonclassic variant presented an inversion on 6-sulfatoxymelatonin daily profile (p < 0.05, d = 3.8) and there was no difference between the day and night profile of classic variant patients when compared to the other two groups. Patients with the classic variant also presented temperature period greater than 24 hours (p < 0.05, d = 2.0). Therefore, we came to the conclusion that there is an alteration in the circadian rhythms in Fabry disease patients, evidenced by modifications in the 6-sulfatoxymelatonin daily profile and in the body temperature rhythm period.  相似文献   

10.
Huntington disease is a classic example of an autosomal dominant trait. Over the years, however, a number of investigators have reported anomalies regarding the age of onset of the disease that are inconsistent with this paradigm. We propose two models in which a maternal factor--cytoplasmic in one case, autosomal or X-linked in the other--acts to delay onset in a manner consistent with the previously reported anomalies. Relevant data from the Huntington's Disease Research Roster are presented that reinforce and extend the previous observations.  相似文献   

11.
Brooks PJ  Cheng TF  Cooper L 《DNA Repair》2008,7(6):834-848
The classic model for neurodegeneration due to mutations in DNA repair genes holds that DNA damage accumulates in the absence of repair, resulting in the death of neurons. This model was originally put forth to explain the dramatic loss of neurons observed in patients with xeroderma pigmentosum neurologic disease, and is likely to be valid for other neurodegenerative diseases due to mutations in DNA repair genes. However, in trichiothiodystrophy (TTD), Aicardi-Goutières syndrome (AGS), and Cockayne syndrome (CS), abnormal myelin is the most prominent neuropathological feature. Myelin is synthesized by specific types of glial cells called oligodendrocytes. In this review, we focus on new studies that illustrate two disease mechanisms for myelin defects resulting from mutations in DNA repair genes, both of which are fundamentally different than the classic model described above. First, studies using the TTD mouse model indicate that TFIIH acts as a co-activator for thyroid hormone-dependent gene expression in the brain, and that a causative XPD mutation in TTD results in reduction of this co-activator function and a dysregulation of myelin-related gene expression. Second, in AGS, which is caused by mutations in either TREX1 or RNASEH2, recent evidence indicates that failure to degrade nucleic acids produced during S-phase triggers activation of the innate immune system, resulting in myelin defects and calcification of the brain. Strikingly, both myelin defects and brain calcification are both prominent features of CS neurologic disease. The similar neuropathology in CS and AGS seems unlikely to be due to the loss of a common DNA repair function, and based on the evidence in the literature, we propose that vascular abnormalities may be part of the mechanism that is common to both diseases. In summary, while the classic DNA damage accumulation model is applicable to the neuronal death due to defective DNA repair, the myelination defects and brain calcification seem to be better explained by quite different mechanisms. We discuss the implications of these different disease mechanisms for the rational development of treatments and therapies.  相似文献   

12.
Fabry disease is an X-linked disorder of α-galactosidase A (GLA) deficiency. Our previous interim analysis (1 July 2014 to 31 December 2015) revealed plasma globotriaosylsphingosine as a promising primary screening biomarker for Fabry disease probands. Herein, we report the final results, including patients enrolled from 1 January to 31 December 2016 for evaluating the potential of plasma globotriaosylsphingosine and GLA activity as a combined screening marker. We screened 5691 patients (3439 males) referred from 237 Japanese specialty clinics based on clinical findings suggestive of Fabry disease using plasma globotriaosylsphingosine and GLA activity as primary screening markers, and GLA variant status as a secondary screening marker. Of the 14 males who tested positive in the globotriaosylsphingosine screen (≥2.0 ng/mL), 11 with low GLA activity (<4.0 nmol/h/mL) displayed GLA variants (four classic, seven late-onset) and one with normal GLA activity and no pathogenic variant displayed lamellar bodies in affected organs, indicating late-onset biopsy-proven Fabry disease. Of the 19 females who tested positive in the globotriaosylsphingosine screen, eight with low GLA activity displayed GLA variants (six classic, two late-onset) and five with normal GLA activity displayed a GLA variant (one classic) and no pathogenic variant (four late-onset biopsy-proven). The combination of plasma globotriaosylsphingosine and GLA activity can be a primary screening biomarker for classic, late-onset, and late-onset biopsy-proven Fabry disease probands.  相似文献   

13.
The protein alpha-synuclein is considered to play a major role in the etiology of Parkinson's disease. Because it is found in a classic amyloid fibril form within the characteristic intra-neuronal Lewy body deposits of the disease, aggregation of the protein is thought to be of critical importance, but the context in which the protein undergoes aggregation within cells remains unknown. The normal function of synucleins is poorly understood, but appears to involve membrane interactions, and in particular reversible binding to synaptic vesicle membranes. Structural studies of different states of alpha-synuclein, in the absence and presence of membranes or membrane mimetics, have led to models of how membrane-bound forms of the protein may contribute both to functional properties of the protein, as well as to membrane-induced self-assembly and aggregation. This article reviews this area, with a focus on a particular model that has emerged in the past few years. This article is part of a Special Issue entitled: Protein Folding in Membranes.  相似文献   

14.
A case of recurrent hydrops fetalis, diagnosed on second trimester's ultrasonography, has led to the diagnosis of sialic acid storage disease. No classic etiology was found after the first accident. The recurrence in subsequent pregnancy raised the possibility of a storage disease that was confirmed by amniocentesis. The diagnosis of Salla's disease was based on high levels of free sialic acid in amniotic fluid and fetal cells culture and by specific histologic features on fetopathologic examination. Diagnosis of inherited diseases is important because it implies a high risk of recurrence which makes mandatory genetic counseling and prenatal care in subsequent pregnancies.  相似文献   

15.

Background

Pompe disease (Glycogen storage disease type II, GSD II, acid alpha-glucosidase deficiency, acid maltase deficiency, OMIM # 232300) is an autosomal-recessive lysosomal storage disorder due to a deficiency of acid alpha-glucosidase (GAA, acid maltase, EC 3.2.1.20, Swiss-Prot P10253). Clinical manifestations are dominated by progressive weakness of skeletal muscle throughout the clinical spectrum. In addition, the classic infantile form is characterised by hypertrophic cardiomyopathy.

Methods

In a cross-sectional single-centre study we clinically assessed 3 patients with classic infantile Pompe disease and 39 patients with non-classic presentations, measured their acid alpha-glucosidase activities and analysed their GAA genes.

Results

Classic infantile patients had nearly absent residual enzyme activities and a typical clinical course with hypertrophic cardiomyopathy until the beginning of therapy. The disease manifestations in non-classic patients were heterogeneous. There was a broad variability in the decline of locomotive and respiratory function. The age of onset ranged from birth to late adulthood and correlated with enzyme activities. Molecular analysis revealed as many as 33 different mutations, 14 of which are novel. All classic infantile patients had two severe mutations. The most common mutation in the non-classic group was c.-32-13?T?>?G. It was associated with a milder course in this subgroup.

Conclusions

Disease manifestation strongly correlates with the nature of the GAA mutations, while the variable progression in non-classic Pompe disease is likely to be explained by yet unknown modifying factors. This study provides the first comprehensive dataset on the clinical course and the mutational spectrum of Pompe disease in Germany.  相似文献   

16.
The presence of neurotensin in various human tumor cell lines was investigated by radioimmunoassay. High concentrations (0.06-5.1 pmol/mg protein) were detected in 50% of the classic but not variant small cell lung cancer or other human tumor cell lines examined. Biochemical studies indicated that the main peak of immunoreactivity coeluted with synthetic neurotensin using gel filtration and high pressure liquid chromatography techniques. Also, the rate of neurotensin secretion increased approximately 2-fold when theophylline was added which elevated intracellular levels of cAMP 4-fold. Because neurotensin is present in and secreted from many classic small cell lung cancer cells, it may function as a regulatory peptide in this disease.  相似文献   

17.
A systematic review to examine the efficacy of computer-based cognitive interventions for cognitively healthy older adults was conducted. Studies were included if they met the following criteria: average sample age of at least 55 years at time of training; participants did not have Alzheimer's disease or mild cognitive impairment; and the study measured cognitive outcomes as a result of training. Theoretical articles, review articles, and book chapters that did not include original data were excluded. We identified 151 studies published between 1984 and 2011, of which 38 met inclusion criteria and were further classified into three groups by the type of computerized program used: classic cognitive training tasks, neuropsychological software, and video games. Reported pre-post training effect sizes for intervention groups ranged from 0.06 to 6.32 for classic cognitive training interventions, 0.19 to 7.14 for neuropsychological software interventions, and 0.09 to 1.70 for video game interventions. Most studies reported older adults did not need to be technologically savvy in order to successfully complete or benefit from training. Overall, findings are comparable or better than those from reviews of more traditional, paper-and-pencil cognitive training approaches suggesting that computerized training is an effective, less labor intensive alternative.  相似文献   

18.
Efforts were directed to identify the specific mutations in the alpha-galactosidase A (alpha-Gal A) gene which cause Fabry disease in families of Japanese origin. By polymerase-chain-reaction-amplification of DNA from reverse-transcribed mRNA and genomic DNA, different point mutations were found in two unrelated Fabry hemizygotes. A hemizygote with classic disease manifestations and no detectable alpha-Gal A activity had a G-to-A transition in exon 1 (codon 44) which substituted a termination codon (TAG) for a tryptophan codon (TGG) and created an NheI restriction site. This point mutation would predict a truncated alpha-Gal A polypeptide, consistent with the observed absence of enzymatic activity and a classic Fabry phenotype. In an unrelated Japanese hemizygote who had an atypical clinical course characterized by late-onset cardiac involvement and significant residual alpha-Gal activity, a G-to-A transition in exon 6 (codon 301) resulted in the replacement of a glutamine for an arginine residue. This amino acid substitution apparently altered the properties of the enzyme such that sufficient enzymatic activity was retained to markedly alter the disease course. Identification of these mutations permitted accurate molecular heterozygote diagnosis in these families.  相似文献   

19.
Paroxysmal nocturnal hemoglobinuria (PNH) is a disease linked to a somatic mutation which is accompanied by expansion of cell clones deficient in molecules needed to make cell membrane anchors for proteins. These mutations can be found in diverse forms, resulting in differing diagnostic and therapeutic implications. Flow cytometry is the recommended technology for confirming diagnosis and monitoring patients. However, the technological approach differs according to whether the aim is to diagnose classic PNH (Marchiafava-Micheli syndrome) or identify one of the sub-populations that can occur in cases of bone marrow failure, where the disease affects PNH cells.  相似文献   

20.
Renal disease is rare today in classic adult gout, and gout is rare in renal disease—especially in the young. Here we summarise studies in 158 patients from 31 kindreds diagnosed with familial juvenile hyperuricaemic nephropathy FJHN from a total of 230 kindred members studied in Great Britain. Some patients have been followed for up to 30 years, and allopurinol has ameliorated the progression of the renal disease in all 113 surviving members provided: 1. They have been diagnosed and treated sufficiently early.

2. Compliance with allopurinol treatment and diet has been as important as early recognition.

3. Hypertension has been rigorously controlled.

4. The use of oral contraceptives has been avoided, as has pregnancy in any female with a Glomelar Filtration Rate GFR <70 ml/min.

The question arising is: Why is FJHN the most prevalent genetic purine disorder diagnosed in Britain? Is it a lack of awareness which needs to be improved Europe-wide?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号