首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Trait evolution among a set of species—a central theme in evolutionary biology—has long been understood and analyzed with respect to a species tree. However, the field of phylogenomics, which has been propelled by advances in sequencing technologies, has ushered in the era of species/gene tree incongruence and, consequently, a more nuanced understanding of trait evolution. For a trait whose states are incongruent with the branching patterns in the species tree, the same state could have arisen independently in different species (homoplasy) or followed the branching patterns of gene trees, incongruent with the species tree (hemiplasy). Another evolutionary process whose extent and significance are better revealed by phylogenomic studies is gene flow between different species. In this work, we present a phylogenomic method for assessing the role of hybridization and introgression in the evolution of polymorphic or monomorphic binary traits. We apply the method to simulated evolutionary scenarios to demonstrate the interplay between the parameters of the evolutionary history and the role of introgression in a binary trait’s evolution (which we call xenoplasy). Very importantly, we demonstrate, including on a biological data set, that inferring a species tree and using it for trait evolution analysis in the presence of gene flow could lead to misleading hypotheses about trait evolution.  相似文献   

2.
Traits do not evolve independently. To understand how trait changes under selection might constrain adaptive changes, phenotypic and genetic correlations are typically considered within species, but these capture constraints across a few generations rather than evolutionary time. For longer-term constraints, comparisons are needed across species but associations may arise because of correlated selection pressures rather than genetic interactions. Implementing a unique approach, we use known patterns of selection to separate likely trait correlations arising due to correlated selection from those reflecting genetic constraints. We examined the evolution of stress resistance in >90 Drosophila species adapted to a range of environments, while controlling for phylogeny. Initially we examined the role of climate and phylogeny in shaping the evolution of starvation and body size, two traits previously not examined in this context. Following correction for phylogeny only a weak relationship between climate and starvation resistance was detected, while all of the variation in the relationship between body size and climate could be attributed to phylogeny. Species were divided into three environmental groups (hot and dry, hot and wet, cold) with the expectation that, if genetic correlations underpin trait correlations, these would persist irrespective of the environment, whereas selection-driven evolution should produce correlations dependent on the environment. We found positive associations between most traits in hot and dry environments coupled with high trait means. In contrast few trait correlations were observed in hot/wet and cold environments. These results suggest trait associations are primarily driven by correlated selection rather than genetic interactions, highlighting that such interactions are unlikely to limit evolution of stress resistance.  相似文献   

3.
Environmental variation favors the evolution of phenotypic plasticity. For many species, we understand the costs and benefits of different phenotypes, but we lack a broad understanding of how plastic traits evolve across large clades. Using identical experiments conducted across North America, we examined prey responses to predator cues. We quantified five life‐history traits and the magnitude of their plasticity for 23 amphibian species/populations (spanning three families and five genera) when exposed to no cues, crushed‐egg cues, and predatory crayfish cues. Embryonic responses varied considerably among species and phylogenetic signal was common among the traits, whereas phylogenetic signal was rare for trait plasticities. Among trait‐evolution models, the Ornstein–Uhlenbeck (OU) model provided the best fit or was essentially tied with Brownian motion. Using the best fitting model, evolutionary rates for plasticities were higher than traits for three life‐history traits and lower for two. These data suggest that the evolution of life‐history traits in amphibian embryos is more constrained by a species’ position in the phylogeny than is the evolution of life history plasticities. The fact that an OU model of trait evolution was often a good fit to patterns of trait variation may indicate adaptive optima for traits and their plasticities.  相似文献   

4.
Dispersal, the behaviour ensuring gene flow, tends to covary with a number of morphological, ecological and behavioural traits. While species‐specific dispersal behaviours are the product of each species’ unique evolutionary history, there may be distinct interspecific patterns of covariation between dispersal and other traits (‘dispersal syndromes’) due to their shared evolutionary history or shared environments. Using dispersal, phylogeny and trait data for 15 terrestrial and semi‐terrestrial animal Orders (> 700 species), we tested for the existence and consistency of dispersal syndromes across species. At this taxonomic scale, dispersal increased linearly with body size in omnivores, but decreased above a critical length in herbivores and carnivores. Species life history and ecology significantly influenced patterns of covariation, with higher phylogenetic signal of dispersal in aerial dispersers compared with ground dwellers and stronger evidence for dispersal syndromes in aerial dispersers and ectotherms, compared with ground dwellers and endotherms. Our results highlight the complex role of dispersal in the evolution of species life‐history strategies: good dispersal ability was consistently associated with high fecundity and survival, and in aerial dispersers it was associated with early maturation. We discuss the consequences of these findings for species evolution and range shifts in response to future climate change.  相似文献   

5.
6.
In the classic view introduced by R. A. Fisher, a quantitative trait is encoded by many loci with small, additive effects. Recent advances in quantitative trait loci mapping have begun to elucidate the genetic architectures underlying vast numbers of phenotypes across diverse taxa, producing observations that sometimes contrast with Fisher''s blueprint. Despite these considerable empirical efforts to map the genetic determinants of traits, it remains poorly understood how the genetic architecture of a trait should evolve, or how it depends on the selection pressures on the trait. Here, we develop a simple, population-genetic model for the evolution of genetic architectures. Our model predicts that traits under moderate selection should be encoded by many loci with highly variable effects, whereas traits under either weak or strong selection should be encoded by relatively few loci. We compare these theoretical predictions with qualitative trends in the genetics of human traits, and with systematic data on the genetics of gene expression levels in yeast. Our analysis provides an evolutionary explanation for broad empirical patterns in the genetic basis for traits, and it introduces a single framework that unifies the diversity of observed genetic architectures, ranging from Mendelian to Fisherian.  相似文献   

7.
A considerable body of theory pertaining to the evolution of canalization has emerged recently, yet there have been few empirical investigations of their predictions. To address this, patterns of canalization and trait correlation were investigated under the individual and joint effects of the introgression of a loss-of-function allele of the Distal-less gene and high-temperature stress on a panel of iso-female lines. Variation was examined for number of sex comb teeth and the length of the basi-tarsus on the pro-thoracic leg of male Drosophila melanogaster. I demonstrate that whereas there is evidence for trait canalization, there is no evidence to support the hypothesis of the evolution of genetic canalization as a response to microenvironmental canalization. Furthermore, I demonstrate that although there are genetic correlations between these traits, there is no association between their measures of canalization. I discuss the prospects of the evolutionary lability of the Distal-less gene within the context of changes in genetic variation and covariation.  相似文献   

8.
Phytoplankton species traits have been used to successfully predict the outcome of competition, but these traits are notoriously laborious to measure. If these traits display a phylogenetic signal, phylogenetic distance (PD) can be used as a proxy for trait variation. We provide the first investigation of the degree of phylogenetic signal in traits related to competition in freshwater green phytoplankton. We measured 17 traits related to competition and tested whether they displayed a phylogenetic signal across a molecular phylogeny of 59 species of green algae. We also assessed the fit of five models of trait evolution to trait variation across the phylogeny. There was no significant phylogenetic signal for 13 out of 17 ecological traits. For 7 traits, a non-phylogenetic model provided the best fit. For another 7 traits, a phylogenetic model was selected, but parameter values indicated that trait variation evolved recently, diminishing the importance of common ancestry. This study suggests that traits related to competition in freshwater green algae are not generally well-predicted by patterns of common ancestry. We discuss the mechanisms by which the link between phylogenetic distance and phenotypic differentiation may be broken.  相似文献   

9.
One outcome of interspecific hybridization and subsequent effects of evolutionary forces is introgression, which is the integration of genetic material from one species into the genome of an individual in another species. The evolution of several groups of eukaryotic species has involved hybridization, and cases of adaptation through introgression have been already established. In this work, we report on PhyloNet-HMM—a new comparative genomic framework for detecting introgression in genomes. PhyloNet-HMM combines phylogenetic networks with hidden Markov models (HMMs) to simultaneously capture the (potentially reticulate) evolutionary history of the genomes and dependencies within genomes. A novel aspect of our work is that it also accounts for incomplete lineage sorting and dependence across loci. Application of our model to variation data from chromosome 7 in the mouse (Mus musculus domesticus) genome detected a recently reported adaptive introgression event involving the rodent poison resistance gene Vkorc1, in addition to other newly detected introgressed genomic regions. Based on our analysis, it is estimated that about 9% of all sites within chromosome 7 are of introgressive origin (these cover about 13 Mbp of chromosome 7, and over 300 genes). Further, our model detected no introgression in a negative control data set. We also found that our model accurately detected introgression and other evolutionary processes from synthetic data sets simulated under the coalescent model with recombination, isolation, and migration. Our work provides a powerful framework for systematic analysis of introgression while simultaneously accounting for dependence across sites, point mutations, recombination, and ancestral polymorphism.  相似文献   

10.
The utility of plant functional traits for predictive ecology relies on our ability to interpret trait variation across multiple taxonomic and ecological scales. Using extensive data sets of trait variation within species, across species and across communities, we analysed whether and at what scales leaf economics spectrum (LES) traits show predicted trait–trait covariation. We found that most variation in LES traits is often, but not universally, at high taxonomic levels (between families or genera in a family). However, we found that trait covariation shows distinct taxonomic scale dependence, with some trait correlations showing opposite signs within vs. across species. LES traits responded independently to environmental gradients within species, with few shared environmental responses across traits or across scales. We conclude that, at small taxonomic scales, plasticity may obscure or reverse the broad evolutionary linkages between leaf traits, meaning that variation in LES traits cannot always be interpreted as differences in resource use strategy.  相似文献   

11.
Resolving natural phenotypic variation into genetic and molecular components is a major objective in biology. Over the past decade, tomato interspecific introgression lines (ILs), each carrying a single 'exotic' chromosome segment from a wild species, have exposed thousands of quantitative trait loci (QTL) affecting plant adaptation, morphology, yield, metabolism, and gene expression. QTL for fruit size and sugar composition were isolated by map-based cloning, while others were successfully implemented in marker-assisted breeding programs. More recently, integrating the multitude of IL-QTL into a single database has unraveled some unifying principles about the architecture of complex traits in plants.  相似文献   

12.
Comparative analysis is a potentially powerful approach to study the effects of ecological traits on genetic variation and rate of evolution across species. However, the lack of suitable datasets means that comparative studies of correlates of genetic traits across an entire clade have been rare. Here, we use a large DNA-barcode dataset (5062 sequences) of water beetles to test the effects of species ecology and geographical distribution on genetic variation within species and rates of molecular evolution across species. We investigated species traits predicted to influence their genetic characteristics, such as surrogate measures of species population size, latitudinal distribution and habitat types, taking phylogeny into account. Genetic variation of cytochrome oxidase I in water beetles was positively correlated with occupancy (numbers of sites of species presence) and negatively with latitude, whereas substitution rates across species depended mainly on habitat types, and running water specialists had the highest rate. These results are consistent with theoretical predictions from nearly-neutral theories of evolution, and suggest that the comparative analysis using large databases can give insights into correlates of genetic variation and molecular evolution.  相似文献   

13.
14.
A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders'' equation (), which predicts evolutionary change for a suite of phenotypic traits () as a product of directional selection acting on them (β) and the genetic variance–covariance matrix for those traits (G). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates.  相似文献   

15.
The many documented examples of parallel and convergent evolution in similar environments are strong evidence for the role of natural selection in the evolution of trait variation. However, species may respond to selection in different ways; idiosyncrasies of their evolutionary history may affect how different species respond to the same selective pressure. To determine whether evolutionary history affects trait-environment associations in a recently diverged lineage, we investigated within-species trait-environment associations in the white proteas, a closely related monophyletic group. We first used manovas to determine the relative importance of shared response to selection, evolutionary history and unique responses to selection on trait variation. We found that on average, similar associations to the environment across species explained trait variation, but that the species had different mean trait values. We also detected species-specific associations of traits with the environmental gradients. To identify the traits associated uniquely with the environment, we used a structural equation model. Our analysis showed that the species differed in how their traits were associated with each of the environmental variables. Further, in the cases of two root traits (root mass and root length/mass ratio), two species differed in the direction of their associations (e.g. populations in one species had heavier roots in warmer areas, and populations in the other species had lighter roots in warmer areas). Our study shows that even in a closely related group of species, evolutionary history may have an effect on both the size and direction of adaptations to the environment.  相似文献   

16.
Predictable trait variation across environments suggests shared adaptive responses via repeated genetic evolution, phenotypic plasticity or both. Matching of trait–environment associations at phylogenetic and individual scales implies consistency between these processes. Alternatively, mismatch implies that evolutionary divergence has changed the rules of trait–environment covariation. Here we tested whether species adaptation alters elevational variation in blood traits. We measured blood for 1217 Andean hummingbirds of 77 species across a 4600-m elevational gradient. Unexpectedly, elevational variation in haemoglobin concentration ([Hb]) was scale independent, suggesting that physics of gas exchange, rather than species differences, determines responses to changing oxygen pressure. However, mechanisms of [Hb] adjustment did show signals of species adaptation: Species at either low or high elevations adjusted cell size, whereas species at mid-elevations adjusted cell number. This elevational variation in red blood cell number versus size suggests that genetic adaptation to high altitude has changed how these traits respond to shifts in oxygen availability.  相似文献   

17.
Dispersal—the movement of an individual from the site of birth to a different site for reproduction—is an ecological and evolutionary driver of species ranges that shapes patterns of colonization, connectivity, gene flow, and adaptation. In plants, the traits that influence dispersal often vary within and among species, are heritable, and evolve in response to the fitness consequences of moving through heterogeneous landscapes. Spatial and temporal variation in the quality and quantity of habitat are important sources of selection on dispersal strategies across species ranges. While recent reviews have evaluated the interactions between spatial variation in habitat and dispersal dynamics, the extent to which geographic variation in temporal variability can also shape range-wide patterns in dispersal traits has not been synthesized. In this paper, we summarize key predictions from metapopulation models that evaluate how dispersal evolves in response to spatial and temporal habitat variability. Next, we compile empirical data that quantify temporal variability in plant demography and patterns of dispersal trait variation across species ranges to evaluate the hypothesis that higher temporal variability favors increased dispersal at plant range limits. We found some suggestive evidence supporting this hypothesis while more generally identifying a major gap in empirical work evaluating plant metapopulation dynamics across species ranges and geographic variation in dispersal traits. To address this gap, we propose several future research directions that would advance our understanding of the interplay between spatiotemporal variability and dispersal trait variation in shaping the dynamics of current and future species ranges.  相似文献   

18.
Species across the tree of life can switch between asexual and sexual reproduction. In facultatively sexual species, the ability to switch between reproductive modes is often environmentally dependent and subject to local adaptation. However, the ecological and evolutionary factors that influence the maintenance and turnover of polymorphism associated with facultative sex remain unclear. We studied the ecological and evolutionary dynamics of reproductive investment in the facultatively sexual model species, Daphnia pulex. We found that patterns of clonal diversity, but not genetic diversity varied among ponds consistent with the predicted relationship between ephemerality and clonal structure. Reconstruction of a multi-year pedigree demonstrated the coexistence of clones that differ in their investment into male production. Mapping of quantitative variation in male production using lab-generated and field-collected individuals identified multiple putative quantitative trait loci (QTL) underlying this trait, and we identified a plausible candidate gene. The evolutionary history of these QTL suggests that they are relatively young, and male limitation in this system is a rapidly evolving trait. Our work highlights the dynamic nature of the genetic structure and composition of facultative sex across space and time and suggests that quantitative genetic variation in reproductive strategy can undergo rapid evolutionary turnover.  相似文献   

19.
The quantitative characterization of the ecology of individual phytoplankton taxa is essential for model resolution of many aspects of aquatic ecosystems. Existing literature cannot directly parameterize all phytoplankton taxa of interest, as many traits and taxa have not been sampled. However, valuable clues on the value of traits are found in the evolutionary history of species and in common correlations between traits. These two resources were exploited with an existing, statistically consistent method built upon evolutionary concepts. From a new data set with >700 observations on freshwater phytoplankton traits and a qualitative phytoplankton phylogeny, estimates were derived for the size, growth rate, phosphate affinity, and susceptibility to predation of 277 phytoplankton types, from evolutionary ancestors to present‐day species. These estimates account simultaneously for phylogenetic relationships between types, as imposed by the phylogeny, and approximate power‐law relationships (e.g., allometric scaling laws) between traits, as reconstructed from the data set. Results suggest that most phytoplankton traits are to some extent conserved in evolution: cross‐validation demonstrated that the use of phylogenetic information significantly improves trait value estimates. By providing trait value estimates as well as uncertainties, these results could benefit most quantitative studies involving phytoplankton.  相似文献   

20.
The presence of phylogenetic signal is assumed to be ubiquitous. However, for microorganisms, this may not be true given that they display high physiological flexibility and have fast regeneration. This may result in fundamentally different patterns of resemblance, that is, in variable strength of phylogenetic signal. However, in microbiological inferences, trait similarities and therewith microbial interactions with its environment are mostly assumed to follow evolutionary relatedness. Here, we tested whether indeed a straightforward relationship between relatedness and physiological traits exists for aerobic methane‐oxidizing bacteria (MOB). We generated a comprehensive data set that included 30 MOB strains with quantitative physiological trait information. Phylogenetic trees were built from the 16S rRNA gene, a common phylogenetic marker, and the pmoA gene which encodes a subunit of the key enzyme involved in the first step of methane oxidation. We used a Blomberg's K from comparative biology to quantify the strength of phylogenetic signal of physiological traits. Phylogenetic signal was strongest for physiological traits associated with optimal growth pH and temperature indicating that adaptations to habitat are very strongly conserved in MOB. However, those physiological traits that are associated with kinetics of methane oxidation had only weak phylogenetic signals and were more pronounced with the pmoA than with the 16S rRNA gene phylogeny. In conclusion, our results give evidence that approaches based solely on taxonomical information will not yield further advancement on microbial eco‐evolutionary interactions with its environment. This is a novel insight on the connection between function and phylogeny within microbes and adds new understanding on the evolution of physiological traits across microbes, plants and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号