首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study of Astragalus holmgreniorum examines its adaptations to the warm desert environment and whether these adaptations will enable it to persist. Its spring ephemeral hemicryptophyte life‐history strategy is unusual in warm deserts. We used data from a 22‐year demographic study supplemented with reproductive output, seed bank, and germinant survival studies to examine the population dynamics of this species using discrete‐time stochastic matrix modeling. The model showed that A. holmgreniorum is likely to persist in the warm desert in spite of high dormant‐season mortality. It relies on a stochastically varying environment with high inter‐annual variation in precipitation for persistence, but without a long‐lived seed bank, environmental stochasticity confers no advantage. Episodic high reproductive output and frequent seedling recruitment along with a persistent seed bank are adaptations that facilitate its survival. These adaptations place its life‐history strategy further along the spectrum from “slower” to “faster” relative to other perennial spring ephemerals. The extinction risk for small populations is relatively high even though mean λ s > 1 because of the high variance in year quality. This risk is also strongly dependent on seed bank starting values, creating a moving window of extinction risk that varies with population size through time. Astragalus holmgreniorum life‐history strategy combines the perennial spring ephemeral life form with features more characteristic of desert annuals. These adaptations permit persistence in the warm desert environment. A promising conclusion is that new populations of this endangered species can likely be established through direct seeding.  相似文献   

2.
Why invasive species can rapidly adapt to novel environments is a puzzling question known as the genetic paradox of invasive species. This paradox is explainable in terms of transposable elements (TEs) activity, which are theorized to be powerful mutational forces to create genetic variation. Mikania micrantha, a noxious invasive weed, in this sense provides an excellent opportunity to test the explanation. The genetic and epigenetic variation of 21 invasive populations of M. micrantha in southern China have been examined by using transposon display (TD) and transposon methylation display (TMD) techniques to survey 12 TE superfamilies. Our results showed that M. micrantha populations maintained an almost equally high level of TE‐based genetic and epigenetic variation and they have been differentiated into subpopulations genetically and epigenetically. A similar positive spatial genetic and epigenetic structure pattern was observed within 300 m. Six and seven TE superfamilies presented significant genetic and epigenetic isolation by distance (IBD) pattern. In total, 59 genetic and 86 epigenetic adaptive TE loci were identified. Of them, 51 genetic and 44 epigenetic loci were found to correlate with 25 environmental variables (including precipitation, temperature, vegetation coverage, and soil metals). Twenty‐five transposon‐inserted genes were sequenced and homology‐based annotated, which are found to be involved in a variety of molecular and cellular functions. Our research consolidates the importance of TE‐associated genetic and epigenetic variation in the rapid adaptation and invasion of M. micrantha.  相似文献   

3.
The genus Blumea (Asteroideae, Asteraceae) comprises about 100 species, including herbs, shrubs, and small trees. Previous studies have been unable to resolve taxonomic issues and the phylogeny of the genus Blumea due to the low polymorphism of molecular markers. Therefore, suitable polymorphic regions need to be identified. Here, we de novo assembled plastomes of the three Blumea species Boxyodonta, B. tenella, and B. balsamifera and compared them with 26 other species of Asteroideae after correction of annotations. These species have quadripartite plastomes with similar gene content, genome organization, and inverted repeat contraction and expansion comprising 113 genes, including 80 protein‐coding, 29 transfer RNA, and 4 ribosomal RNA genes. The comparative analysis of codon usage, amino acid frequency, microsatellite repeats, oligonucleotide repeats, and transition and transversion substitutions has revealed high resemblance among the newly assembled species of Blumea. We identified 10 highly polymorphic regions with nucleotide diversity above 0.02, including rps16‐trnQ, ycf1, ndhF‐rpl32, petN‐psbM, and rpl32‐trnL, and they may be suitable for the development of robust, authentic, and cost‐effective markers for barcoding and inference of the phylogeny of the genus Blumea. Among these highly polymorphic regions, five regions also co‐occurred with oligonucleotide repeats and support use of repeats as a proxy for the identification of polymorphic loci. The phylogenetic analysis revealed a close relationship between Blumea and Pluchea within the tribe Inuleae. At tribe level, our phylogeny supports a sister relationship between Astereae and Anthemideae rooted as Gnaphalieae, Calenduleae, and Senecioneae. These results are contradictory to recent studies which reported a sister relationship between “Senecioneae and Anthemideae” and “Astereae and Gnaphalieae” or a sister relationship between Astereae and Gnaphalieae rooted as Calenduleae, Anthemideae, and then Senecioneae using nuclear genome sequences. The conflicting phylogenetic signals observed at the tribal level between plastidt and nuclear genome data require further investigation.  相似文献   

4.
5.
Sequestration, that is, the accumulation of plant toxins into body tissues for defense, was predicted to incur physiological costs and may require resistance traits different from those of non‐sequestering insects. Alternatively, sequestering species could experience a cost in the absence of toxins due to selection on physiological homeostasis under permanent exposure of sequestered toxins in body tissues. Milkweed bugs (Heteroptera: Lygaeinae) sequester high amounts of plant‐derived cardenolides. Although being potent inhibitors of the ubiquitous animal enzyme Na+/K+‐ATPase, milkweed bugs can tolerate cardenolides by means of resistant Na+/K+‐ATPases. Both adaptations, resistance and sequestration, are ancestral traits of the Lygaeinae. Using four milkweed bug species (Heteroptera: Lygaeidae: Lygaeinae) and the related European firebug (Heteroptera: Pyrrhocoridae: Pyrrhocoris apterus) showing different combinations of the traits “cardenolide resistance” and “cardenolide sequestration,” we tested how the two traits affect larval growth upon exposure to dietary cardenolides in an artificial diet system. While cardenolides impaired the growth of P. apterus nymphs neither possessing a resistant Na+/K+‐ATPase nor sequestering cardenolides, growth was not affected in the non‐sequestering milkweed bug Arocatus longiceps, which possesses a resistant Na+/K+‐ATPase. Remarkably, cardenolides increased growth in the sequestering dietary specialists Caenocoris nerii and Oncopeltus fasciatus but not in the sequestering dietary generalist Spilostethus pandurus, which all possess a resistant Na+/K+‐ATPase. We furthermore assessed the effect of dietary cardenolides on additional life history parameters, including developmental speed, longevity of adults, and reproductive success in O. fasciatus. Unexpectedly, nymphs under cardenolide exposure developed substantially faster and lived longer as adults. However, fecundity of adults was reduced when maintained on cardenolide‐containing diet for their entire lifetime but not when adults were transferred to non‐toxic sunflower seeds. We speculate that the resistant Na+/K+‐ATPase of milkweed bugs is selected for working optimally in a “toxic environment,” that is, when sequestered cardenolides are stored in the body.  相似文献   

6.
7.
8.
9.
10.
Species of Osmanthus are economically important ornamental trees, yet information regarding their plastid genomes (plastomes) have rarely been reported, thus hindering taxonomic and evolutionary studies of this small but enigmatic genus. Here, we performed comparative genomics and evolutionary analyses on plastomes of 16 of the 28 currently accepted species, with 11 plastomes newly sequenced. Phylogenetic studies identified four main lineages within the genus that are here designated the: “Caucasian Osmanthus” (corresponding to O. decorus), “Siphosmanthus” (corresponding to O. sect. Siphosmanthus), “O. serrulatus + O. yunnanensis,” and “Core Osmanthus: (corresponding to O. sect. Osmanthus + O. sect. Linocieroides). Molecular clock analysis suggested that Osmanthus split from its sister clade c. 15.83 Ma. The estimated crown ages of the lineages were the following: genus Osmanthus at 12.66 Ma; “Siphosmanthus” clade at 5.85 Ma; “O. serrulatus + O. yunnanensis” at 4.89 Ma; and “Core Osmanthus: clade at 6.2 Ma. Ancestral state reconstructions and trait mapping showed that ancestors of Osmanthus were spring flowering and originated at lower elevations. Phylogenetic principal component analysis clearly distinguished spring‐flowering species from autumn‐flowering species, suggesting that flowering time differentiation is related to the difference in ecological niches. Nucleotide substitution rates of 80 common genes showed slow evolutionary pace and low nucleotide variations, all genes being subjected to purifying selection.  相似文献   

11.
The process of phenotypic adaptation to the environments is widely recognized. However, comprehensive studies integrating phylogenetic, phenotypic, and ecological approaches to assess this process are scarce. Our study aims to assess whether local adaptation may explain intraspecific differentiation by quantifying multidimensional differences among populations in closely related lucanid species, Platycerus delicatulus and Platycerus kawadai, which are endemic saproxylic beetles in Japan. First, we determined intraspecific analysis units based on nuclear and mitochondrial gene analyses of Platycerus delicatulus and Platycerus kawadai under sympatric and allopatric conditions. Then, we compared differences in morphology and environmental niche between populations (analysis units) within species. We examined the relationship between morphology and environmental niche via geographic distance. P. kawadai was subdivided into the “No introgression” and “Introgression” populations based on mitochondrial COI gene – nuclear ITS region discordance. P. delicatulus was subdivided into “Allopatric” and “Sympatric” populations. Body length differed significantly among the populations of each species. For P. delicatulus, character displacement was suggested. For P. kawadai, the morphological difference was likely caused by geographic distance or genetic divergence rather than environmental differences. The finding showed that the observed mitochondrial–nuclear discordance is likely due to historical mitochondrial introgression following a range of expansion. Our results show that morphological variation among populations of P. delicatulus and Pkawadai reflects an ecological adaptation process based on interspecific interactions, geographic distance, or genetic divergence. Our results will deepen understanding of ecological specialization processes across the distribution and adaptation of species in natural systems.  相似文献   

12.
Disentangling the factors underlying the diversification of geographically variable species with a wide geographical range is essential to understanding the initial stages and drivers of the speciation process. The Amazilia Hummingbird, Amazilis amazilia, is found along the Pacific coast from northern Ecuador down to the Nazca Valley of Peru, and is currently classified as six phenotypically differentiated subspecies. We aimed to resolve the evolutionary relationships of the six subspecies, to assess the geographical pattern and extent of evolutionary divergence, and to test for introgression using both a mtDNA marker and a genome‐by‐sequencing dataset from 86 individuals from across the species range. The consensus phylogenetic tree separated the six subspecies into three distinct clades, corresponding with the Ecuador lowlands (Aamazilia dumerilii), the Ecuador highlands (Aamazilia alticola and A. amazilia azuay), and the Peruvian coast (Aamazilia leucophoea, Aamazilia amazilia, and A. amazilia caeruleigularis). However, an unresolved mtDNA network suggests that the diversification of the subspecies was recent and rapid. We found evidence of gene flow among the subspecies Aamazilia dumerilii, Aamazilia alticola, and Aamazilia leucophoea, with strong genetic isolation of the subspecies Aamazilia azuay in the isolated Yunguilla Valley of Ecuador. Finally, environmental data from each subspecies’ capture locations were concordant with the three distinct clades. Overall, our results suggest that both expansions into new habitats and geographic isolation shaped the present‐day phylogeny and range of the Aamazilia subspecies, and that Aamazilia azuay may be genetically divergent enough to be considered a separate species.  相似文献   

13.
Understanding and preserving intraspecific diversity (ISD) is important for species conservation. However, ISD units do not have taxonomic standards and are not universally recognized. The terminology used to describe ISD is varied and often used ambiguously. We compared definitions of terms used to describe ISD with use in recent studies of three fish taxa: sticklebacks (Gasterosteidae), Pacific salmon and trout (Oncorhynchus spp., “PST”), and lampreys (Petromyzontiformes). Life history describes the phenotypic responses of organisms to environments and includes biological parameters that affect population growth or decline. Life‐history pathway(s) are the result of different organismal routes of development that can result in different life histories. These terms can be used to describe recognizable life‐history traits. Life history is generally used in organismal‐ and ecology‐based journals. The terms paired species/species pairs have been used to describe two different phenotypes, whereas in some species and situations a continuum of phenotypes may be expressed. Our review revealed overlapping definitions for race and subspecies, and subspecies and ecotypes. Ecotypes are genotypic adaptations to particular environments, and this term is often used in genetic‐ and evolution‐based journals. “Satellite species” is used for situations in which a parasitic lamprey yields two or more derived, nonparasitic lamprey species. Designatable Units, Evolutionary Significant Units (ESUs), and Distinct Population Segments (DPS) are used by some governments to classify ISD of vertebrate species within distinct and evolutionary significant criteria. In situations where the genetic or life‐history components of ISD are not well understood, a conservative approach would be to call them phenotypes.

The terminology used to describe intraspecific diversity is varied and often used ambiguously. “Ecotype” was originally used to describe patterns in genes and ecology, and recent studies employing this term tend to report a genetic basis in ISD. By contrast, “life history” describes biological parameters that affect demography, and this term tends to be used in organismal‐ and ecology‐based journals.  相似文献   

14.
Pseudotaxus chienii, belonging to the monotypic genus Pseudotaxus (Taxaceae), is a relict conifer endemic to China. Its populations are usually small and patchily distributed, having a low capacity of natural regeneration. To gain a clearer understanding of how landscape variables affect the local adaptation of P. chienii, we applied EST‐SSR markers in conjunction with landscape genetics methods: (a) to examine the population genetic pattern and spatial genetic structure; (b) to perform genome scan and selection scan to identify outlier loci and the associated landscape variables; and (c) to model the ecological niche under climate change. As a result, P. chienii was found to have a moderate level of genetic variation and a high level of genetic differentiation. Its populations displayed a significant positive relationship between the genetic and geographical distance (i.e., “isolation by distance” pattern) and a strong fine‐scale spatial genetic structure within 2 km. A putatively adaptive locus EMS6 (functionally annotated to cellulose synthase A catalytic subunit 7) was identified, which was found significantly associated with soil Cu, K, and Pb content and the combined effects of temperature and precipitation. Moreover, P. chienii was predicted to experience significant range contractions in future climate change scenarios. Our results highlight the potential of specific soil metal content and climate variables as the driving force of adaptive genetic differentiation in P. chienii. The data would also be useful to develop a conservation action plan for P. chienii.  相似文献   

15.
The phylogeny of symbiotic genes of Astragalus glycyphyllos L. (liquorice milkvetch) nodule isolates was studied by comparative sequence analysis of nodA, nodC, nodH and nifH loci. In all these genes phylograms, liquorice milkvetch rhizobia (closely related to bacteria of three species, i.e. Mesorhizobium amorphae, Mesorhizobium septentrionale and Mesorhizobium ciceri) formed one clearly separate cluster suggesting the horizontal transfer of symbiotic genes from a single ancestor to the bacteria being studied. The high sequence similarity of the symbiotic genes of A. glycyphyllos rhizobia (99–100% in the case of nodAC and nifH genes, and 98–99% in the case of nodH one) points to the relatively recent (in evolutionary scale) lateral transfer of these genes. In the nodACH and nifH phylograms, A. glycyphyllos nodule isolates were grouped together with the genus Mesorhizobium species in one monophyletic clade, close to M. ciceri, Mesorhizobium opportunistum and Mesorhizobium australicum symbiovar biserrulae bacteria, which correlates with the close relationship of these rhizobia host plants. Plant tests revealed the narrow host range of A. glycyphyllos rhizobia. They formed effective symbiotic interactions with their native host (A. glycyphyllos) and Amorpha fruticosa but not with 11 other fabacean species. The nodules induced on A. glycyphyllos roots were indeterminate with apical, persistent meristem, an age gradient of nodule tissues and cortical vascular bundles. To reflect the symbiosis-adaptive phenotype of rhizobia, specific for A. glycyphyllos, we propose for these bacteria the new symbiovar “glycyphyllae”, based on nodA and nodC genes sequences.  相似文献   

16.
The Omei wood frog (Rana omeimontis), endemic to central China, belongs to the family Ranidae. In this study, we achieved detail knowledge about the mitogenome of the species. The length of the genome is 20,120 bp, including 13 protein‐coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a noncoding control region. Similar to other amphibians, we found that only nine genes (ND6 and eight tRNA genes) are encoded on the light strand (L) and other genes on the heavy strand (H). Totally, The base composition of the mitochondrial genome included 27.29% A, 28.85% T, 28.87% C, and 15.00% G, respectively. The control regions among the Rana species were found to exhibit rich genetic variability and A + T content. R. omeimontis was clustered together with R. chaochiaoensis in phylogenetic tree. Compared to R. amurensis and R. kunyuensi, it was more closely related to R. chaochiaoensis, and a new way of gene rearrangement (ND6‐trnE‐Cytb‐D‐loop‐trnL2 (CUN)‐ND5‐D‐loop) was also found in the mitogenome of R. amurensis and R. kunyuensi. Our results about the mitochondrial genome of R. omeimontis will contribute to the future studies on phylogenetic relationship and the taxonomic status of Rana and related Ranidae species.  相似文献   

17.
Pernicious placenta previa with placenta percreta (PP) is a catastrophic condition during pregnancy. However, the underlying pathogenesis remains unclear. In the present study, the placental tissues of normal cases and PP tissues of pernicious placenta previa cases were collected to determine the expression profile of protein‐coding genes, miRNAs, and lncRNAs through sequencing. Weighted gene co‐expression network analysis (WGCNA), accompanied by miRNA target prediction and correlation analysis, were employed to select potential hub protein‐coding genes and lncRNAs. The expression levels of selected protein‐coding genes, Wnt5A and MAPK13, were determined by quantitative PCR and immunohistochemical staining, and lncRNA PTCHD1‐AS and PAPPA‐AS1 expression levels were determined by quantitative PCR and fluorescence in situ hybridization. The results indicated that 790 protein‐coding genes, 382 miRNAs, and 541 lncRNAs were dysregulated in PP tissues, compared with normal tissues. WGCNA identified coding genes in the module (ME) black and ME turquoise modules that may be involved in the pathogenesis of PP. The selected potential hub protein‐coding genes, Wnt5A and MAPK13, were down‐regulated in PP tissues, and their expression levels were positively correlated with the expression levels of PTCHD1‐AS and PAPPA‐AS1. Further analysis demonstrated that PTCHD1‐AS and PAPPA‐AS1 regulated Wnt5A and MAPK13 expression by interacting with specific miRNAs. Collectively, our results provided multi‐omics data to better understand the pathogenesis of PP and help identify predictive biomarkers and therapeutic targets for PP.  相似文献   

18.
Climatic change will affect elevational vegetation distribution because vegetation distribution is related to thermal conditions. However, how elevational species distributions are determined by biotic and abiotic factors is not clear. The long‐term plot census along an elevational gradient is indispensable to clarify mechanisms of elevational distribution of tree species. Two congeneric conifers, the less shade‐tolerant Abies veitchii and shade‐tolerant A. mariesii, dominate at low and high elevations, respectively, in the subalpine zone in Japan. This study investigated the population dynamics of the two species at three elevations (low, middle, high) for 13 years to examine why the two species dominated the different elevations from the viewpoints of competition and disturbance. This study showed that growth and survival rates were not highest at the most dominant elevations for each species. At the high elevation where A. mariesii dominated and small disturbances frequently occurred, the recruitment rate of A. mariesii was highest among the three elevations and that of A. veitchii was largely decreased by tree competition. However, A. veitchii was dominant earlier than A. mariesii at the low elevation after large disturbances by the high growth rate of individual trees. Therefore, A. mariesii was superior to A. veitchii at the high elevation because of its high recruitment rate and large reduction of recruitment of A. veitchii due to competition, while A. veitchii was superior to A. mariesii at the low elevation after large disturbances because of higher growth rate than A. mariesii. It is suggested that the elevational distributions of the two species were determined by elevational changes in population dynamics in relation to competition and disturbance. Long‐term observational studies of forest dynamics among various elevations are indispensable to predict the effects of climatic change on vegetation distribution.  相似文献   

19.
Translocations or other movements of wildlife sometimes accomplish their intended objectives, but unforeseen consequences may arise and disrupt locally adapted ecological communities, restructure or dilute genetic integrity of populations or subspecies of the moved organism, and otherwise negatively influences a species’ long‐term fitness. Two historical populations of Mottled Ducks (Anas fulvigula) exist and are endemic to (1) Mexico and the West‐Gulf Coast (A. f. maculosa) regions of the United States and (2) Florida (A. f. fulvigula). From 1975 to 1983, 1285 Mottled Ducks from Florida, Louisiana, and Texas were released to coastal South Carolina, primarily to ultimately establish a legally harvestable population. This movement stirred mixed reactions amid the conservation community. Contemporary information suggests an increasing Mottled Duck population in South Carolina and possibly dispersing into Georgia. Herein, I objectively discuss the potential consequences of this new population per the birds’ evolution, ecology, and management. Ultimately, I suggest that this translocation is a long‐term benefit to the species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号