首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The self-associative properties of cytidine-rich oligonucleotides into symmetrical i-motif tetramers give to these oligonucleotides the capacity of forming supramolecular structures (sms) that have potential applications in the nanotechnology domain. In order to facilitate sms formation, oligonucleotides containing two cytidine stretches of unequal length (CnXCm) separated by a non-cytidine spacer were synthesized. They were designed to associate into a tetramer including an i-motif core built by intercalation of the C·C+ pairs of the longer C stretch with the two dangling non-intercalated strands of the shorter C stretch at each end. Gel filtration chromatography shows that the non-intercalated C-rich ends give to this structure the capacity of forming extremely stable sms. Using C7GC4 as a model, we find that the sms formation rate varies as the oligonucleotide concentration and increases at high temperature. Competitively with the tetramer involved in sms elongation, CnXCm oligonucleotides form i-motif dimers that compete with sms elongation. The dimer stability is strongly reduced when the pH is moved away from the cytidine pK. This results in an equilibrium shift towards the tetramer and in the acceleration of the sms formation rate. The chromatograms of the sms formed by C7GC4 indicate a broad distribution. In a 1.5 mM solution incubated at 37°C, the equilibrium distribution is centered on a molecular weight corresponding to the assembly of nine tetramers and the upper limit corresponds to 80 tetramers. The lifetime of this structure is about 4 days at 40°C, pH 4.6.  相似文献   

3.
We have created a hybrid i-motif composed of two DNA and two peptide nucleic acid (PNA) strands from an equimolar mixture of a C-rich DNA and analogous PNA sequence. Nano-electrospray ionization mass spectrometry confirmed the formation of a tetrameric species, composed of PNA–DNA heteroduplexes. Thermal denaturation and CD experiments revealed that the structure was held together by C-H+-C base pairs. High resolution NMR spectroscopy confirmed that PNA and DNA form a unique complex comprising five C-H+-C base pairs per heteroduplex. The imino protons are protected from D2O exchange suggesting intercalation of the heteroduplexes as seen in DNA4 i-motifs. FRET established the relative DNA and PNA strand polarities in the hybrid. The DNA strands were arranged antiparallel with respect to one another. The same topology was observed for PNA strands. Fluorescence quenching revealed that both PNA–DNA parallel heteroduplexes are intercalated, such that both DNA strands occupy one of the narrow grooves. H1′–H1′ NOEs show that both heteroduplexes are fully intercalated and that both DNA strands are disposed towards a narrow groove, invoking sugar–sugar interactions as seen in DNA4 i-motifs. The hybrid i-motif shows enhanced thermal stability, intermediate pH dependence and forms at relatively low concentrations making it an ideal nanoscale structural element for pH-based molecular switches. It also serves as a good model system to assess the contribution of sugar–sugar contacts in i-motif tetramerization.  相似文献   

4.
PNA is a promising molecule for antisense therapy of trinucleotide repeat disorders. We present the first crystal structures of RNA–PNA duplexes. They contain CUG repeats, relevant to myotonic dystrophy type I, and CAG repeats associated with poly-glutamine diseases. We also report the first PNA–PNA duplex containing mismatches. A comparison of the PNA homoduplex and the PNA–RNA heteroduplexes reveals PNA''s intrinsic structural properties, shedding light on its reported sequence selectivity or intolerance of mismatches when it interacts with nucleic acids. PNA has a much lower helical twist than RNA and the resulting duplex has an intermediate conformation. PNA retains its overall conformation while locally there is much disorder, especially peptide bond flipping. In addition to the Watson–Crick pairing, the structures contain interesting interactions between the RNA''s phosphate groups and the Π electrons of the peptide bonds in PNA.  相似文献   

5.
Using NMR methods, we have resolved the i-motif structures formed by d(AACCCC) and by d(CCCCAA), two versions of the DNA sequence repeated in the telomeric regions of the C-rich strand of tetrahymena chromosomes. Both oligonucleotides form fully symmetrical i-motif tetramers built by intercalation of two hemiprotonated duplexes containing four C•C+ pairs. The structures are extremely stable. In the tetramer of d(AACCCC), the outermost C•C+ pairs are formed by the cytidines of the 5′ ends of the cytidine tracts. A2 forms an A2•A2 (H6trans–N7) pair stacked to C3•C3+ and cross-strand stacked to A1. At 0°C, the lifetimes of the hemiprotonated pairs range from 1 ms for the outermost pair to ~1 h for the innermost pairs. The tetramer of d(CCCCAA) adopts two distinct intercalation topologies in slow conformational exchange. One, whose outermost C•C+ pairs are built by the cytidines of the 5′ end and the other by those of the 3′ end. In both topologies, the adenosine bases are fairly well stacked to the adjacent C•C+ pairs. They are not paired but form symmetrical pseudo-pairs with their H6cis amino proton and N1 nitrogen pointing towards each other.  相似文献   

6.
We studied the structure and mechanical properties of DNA i-motif nanowires by means of molecular dynamics computer simulations. We built up to 230 nm-long nanowires, based on a repeated TC5 sequence from crystallographic data, fully relaxed and equilibrated in water. The unusual C⋅C+ stacked structure, formed by four ssDNA strands arranged in an intercalated tetramer, is here fully characterized both statically and dynamically. By applying stretching, compression, and bending deformations with the steered molecular dynamics and umbrella sampling methods, we extract the apparent Young’s and bending moduli of the nanowire, as well as estimates for the tensile strength and persistence length. According to our results, the i-motif nanowire shares similarities with structural proteins, as far as its tensile stiffness, but is closer to nucleic acids and flexible proteins, as far as its bending rigidity is concerned. Furthermore, thanks to its very thin cross section, the apparent tensile toughness is close to that of a metal. Besides their yet to be clarified biological significance, i-motif nanowires may qualify as interesting candidates for nanotechnology templates, due to such outstanding mechanical properties.  相似文献   

7.
Studies on hydration are important for better understanding of structure and function of nucleic acids. We compared the hydration of self-complementary DNA, RNA and 2′-O-methyl (2′-OMe) oligonucleotides GCGAAUUCGC, (UA)6 and (CG)3 using the osmotic stressing method. The number of water molecules released upon melting of oligonucleotide duplexes, ΔnW, was calculated from the dependence of melting temperature on water activity and the enthalpy, both measured with UV thermal melting experiments. The water activity was changed by addition of ethylene glycol, glycerol and acetamide as small organic co-solutes. The ΔnW was 3–4 for RNA duplexes and 2–3 for DNA and 2′-OMe duplexes. Thus, the RNA duplexes were hydrated more than the DNA and the 2′-OMe oligonucleotide duplexes by approximately one to two water molecules depending on the sequence. Consistent with previous studies, GC base pairs were hydrated more than AU pairs in RNA, whereas in DNA and 2′-OMe oligonucleotides the difference in hydration between these two base pairs was relatively small. Our data suggest that the better hydration of RNA contributes to the increased enthalpic stability of RNA duplexes compared with DNA duplexes.  相似文献   

8.
To investigate nucleic acid base pairing and stacking via atom-specific mutagenesis and crystallography, we have synthesized for the first time the 6-Se-deoxyguanosine phosphoramidite and incorporated it into DNAs via solid-phase synthesis with a coupling yield over 97%. We found that the UV absorption of the Se-DNAs red-shifts over 100 nm to 360 nm (ε = 2.3 × 104 M−1 cm−1), the Se-DNAs are yellow colored, and this Se modification is relatively stable in water and at elevated temperature. Moreover, we successfully crystallized a ternary complex of the Se-G-DNA, RNA and RNase H. The crystal structure determination and analysis reveal that the overall structures of the native and Se-modified nucleic acid duplexes are very similar, the selenium atom participates in a Se-mediated hydrogen bond (Se … H–N), and the SeG and C form a base pair similar to the natural G–C pair though the Se-modification causes the base-pair to shift (approximately 0.3 Å). Our biophysical and structural studies provide new insights into the nucleic acid flexibility, duplex recognition and stability. Furthermore, this novel selenium modification of nucleic acids can be used to investigate chemogenetics and structure of nucleic acids and their protein complexes.  相似文献   

9.
DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(ACBrUCGGABrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5′-most A–A base pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H–1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.  相似文献   

10.
SAP18, a polypeptide associated with the Sin3–HDAC co-repressor complex, was identified in a yeast two-hybrid screen as capable of interacting with the Drosophila GAGA factor. The interaction was confirmed in vitro by glutathione S-transferase pull-down assays using recombinant proteins and crude SL2 nuclear extracts. The first 245 residues of GAGA, including the POZ domain, are necessary and sufficient to bind dSAP18. In polytene chromosomes, dSAP18 and GAGA co-localize at a few discrete sites and, in particular, at the bithorax complex where GAGA binds some silenced polycomb response elements. When the dSAP18 dose is reduced, flies heterozygous for the GAGA mutation Trl67 show the homeotic transformation of segment A6 into A5, indicating that GAGA–dSAP18 interaction contributes to the functional regulation of the iab-6 element of the bithorax complex. These results suggest that, through recruitment of the Sin3–HDAC complex, GAGA might contribute to the regulation of homeotic gene expression.  相似文献   

11.
BackgroundThe i-motif is a tetrameric DNA structure based on the formation of hemiprotonated cytosine-cytosine (C+.C) base pairs. i-motifs are widely used in nanotechnology. In biological systems, i-motifs are involved in gene regulation and in control of genome integrity. In vivo, the i-motif forming sequences are subjects of epigenetic modifications, particularly 5-cytosine methylation. In plants, natively occurring methylation patterns lead to a complex network of C+.C, 5mC+.C and 5mC+.5mC base-pairs in the i-motif stem. The impact of complex methylation patterns (CMPs) on i-motif formation propensity is currently unknown.MethodsWe employed CD and UV-absorption spectroscopies, native PAGE, thermal denaturation and quantum-chemical calculations to analyse the effects of native, native-like, and non-native CMPs in the i-motif stem on the i-motif stability and pKa.ResultsCMPs have strong influence on i-motif stability and pKa and influence these parameters in sequence-specific manner. In contrast to a general belief, i) CMPs do not invariably stabilize the i-motif, and ii) when the CMPs do stabilize the i-motif, the extent of the stabilization depends (in a complex manner) on the number and pattern of symmetric 5mC+.5mC or asymmetric 5mC+.C base pairs in the i-motif stem.ConclusionsCMPs can be effectively used to fine-tune i-motif properties. Our data support the notion of epigenetic modifications as a plausible control mechanism of i-motif formation in vivo.General SignificanceOur results have implications in epigenetic regulation of telomeric DNA in plants and highlight the potential and limitations of engineered patterning of cytosine methylations on the i-motif scaffold in nanotechnological applications.  相似文献   

12.
We describe the construction, structural properties and enzymatic substrate abilities of a series of circular DNA oligonucleotides that are entirely composed of the C-rich human telomere repeat, (CCCTAA)n. The nanometer-sized circles range in length from 36 to 60 nt, and act as templates for synthesis of human telomere repeats in vitro. The circles were constructed successfully by the application of a recently developed adenine-protection strategy, which allows for cyclization/ligation with T4 DNA ligase. Thermal denaturation studies showed that at pH 5.0, all five circles form folded structures with similar stability, while at pH 7.0 no melting transitions were seen. Circular dichroism spectra at the two pH conditions showed evidence for i-motif structures at the lower pH value. The series was tested as rolling circle templates for a number of DNA polymerases at pH = 7.3–8.5, using 18mer telomeric primers. Results showed that surprisingly small circles were active, although the optimum size varied from enzyme to enzyme. Telomeric repeats 1000 nt in length could be synthesized in 1 h by the Klenow (exo-) DNA polymerase. The results establish a convenient way to make long human telomeric repeats for in vitro study of their folding and interactions, and establish optimum molecules for carrying this out.  相似文献   

13.
We studied the structure and mechanical properties of DNA i-motif nanowires by means of molecular dynamics computer simulations. We built up to 230 nm-long nanowires, based on a repeated TC5 sequence from crystallographic data, fully relaxed and equilibrated in water. The unusual C⋅C+ stacked structure, formed by four ssDNA strands arranged in an intercalated tetramer, is here fully characterized both statically and dynamically. By applying stretching, compression, and bending deformations with the steered molecular dynamics and umbrella sampling methods, we extract the apparent Young’s and bending moduli of the nanowire, as well as estimates for the tensile strength and persistence length. According to our results, the i-motif nanowire shares similarities with structural proteins, as far as its tensile stiffness, but is closer to nucleic acids and flexible proteins, as far as its bending rigidity is concerned. Furthermore, thanks to its very thin cross section, the apparent tensile toughness is close to that of a metal. Besides their yet to be clarified biological significance, i-motif nanowires may qualify as interesting candidates for nanotechnology templates, due to such outstanding mechanical properties.  相似文献   

14.
Locked nucleic acids (LNAs) and double-stranded small interfering RNAs (siRNAs) are rather new promising antisense molecules for cell culture and in vivo applications. Here, we compare LNA–DNA–LNA gapmer oligonucleotides and siRNAs with a phosphorothioate and a chimeric 2′-O-methyl RNA–DNA gapmer with respect to their capacities to knock down the expression of the vanilloid receptor subtype 1 (VR1). LNA–DNA–LNA gapmers with four or five LNAs on either side and a central stretch of 10 or 8 DNA monomers in the center were found to be active gapmers that inhibit gene expression. A comparative co-transfection study showed that siRNA is the most potent inhibitor of VR1–green fluorescent protein (GFP) expression. A specific inhibition was observed with an estimated IC50 of 0.06 nM. An LNA gapmer was found to be the most efficient single-stranded antisense oligonucleotide, with an IC50 of 0.4 nM being 175-fold lower than that of commonly used phosphorothioates (IC50 ~70 nM). In contrast, the efficiency of a 2′-O-methyl-modified oligonucleotide (IC50 ~220 nM) was 3-fold lower compared with the phosphorothioate. The high potency of siRNAs and chimeric LNA–DNA oligonucleotides make them valuable candidates for cell culture and in vivo applications targeting the VR1 mRNA.  相似文献   

15.
Thermodynamics provides insights into the influence of modified nucleotide residues on stability of nucleic acids and is crucial for designing duplexes with given properties. In this article, we introduce detailed thermodynamic analysis of RNA duplexes modified with unlocked nucleic acid (UNA) nucleotide residues. We investigate UNA single substitutions as well as model mismatch and dangling end effects. UNA residues placed in a central position makes RNA duplex structure less favourable by 4.0–6.6 kcal/mol. Slight destabilization, by ∼0.5–1.5 kcal/mol, is observed for 5′- or 3′-terminal UNA residues. Furthermore, thermodynamic effects caused by UNA residues are extremely additive with ΔG°37 conformity up to 98%. Direct mismatches involving UNA residues decrease the thermodynamic stability less than unmodified mismatches in RNA duplexes. Additionally, the presence of UNA residues adjacent to unpaired RNA residues reduces mismatch discrimination. Thermodynamic analysis of UNA 5′- and 3′-dangling ends revealed that stacking interactions of UNA residues are always less favourable than that of RNA residues. Finally, circular dichroism spectra imply no changes in overall A-form structure of UNA–RNA/RNA duplexes relative to the unmodified RNA duplexes.  相似文献   

16.
Tang Z  Wang K  Tan W  Ma C  Li J  Liu L  Guo Q  Meng X 《Nucleic acids research》2005,33(11):e97
Phosphorylation of nucleic acids is an indispensable process to repair strand interruption of nucleic acids. We have studied the process of phosphorylation using molecular beacon (MB) DNA probes in real-time and with high selectivity. The MB employed in this method is devised to sense the product of a ‘phosphorylation–ligation’ coupled enzyme reaction. Compared with the current assays, this novel method is convenient, fast, selective, highly sensitive and capable of real-time monitoring in a homogenous solution. The preference of T4 polynucleotide kinase (T4 PNK) has been investigated using this approach. The results revealed that a single-stranded oligonucleotide containing guanine at the 5′ termini is most preferred, while those utilizing cytosine in this location are least preferred. The preference of (T)9 was reduced greatly when phosphoryl was modified at the 5′ end, implying that T4 PNK could discern the phosphorylated/unphosphorylated oligonucleotides. The increase of oligonucleotide DNA length leads to an enhancement in preference. A fast and accurate method for assaying the kinase activity of T4 PNK has been developed with a wide linear detection range from 0.002 to 4.0 U/ml in 3 min. The effects of certain factors, such as NTP, ADP, (NH4)2SO4 and Na2HPO4, on phosphorylation have been investigated. This novel approach enables us to investigate the interactions between proteins and nucleic acids in a homogenous solution, such as those found in DNA repair or in drug development.  相似文献   

17.
We describe a physical mRNA mapping strategy employing fluorescent self-quenching reporter molecules (SQRMs) that facilitates the identification of mRNA sequence accessible for hybridization with antisense nucleic acids in vitro and in vivo, real time. SQRMs are 20–30 base oligodeoxynucleotides with 5–6 bp complementary ends to which a 5′ fluorophore and 3′ quenching group are attached. Alone, the SQRM complementary ends form a stem that holds the fluorophore and quencher in contact. When the SQRM forms base pairs with its target, the structure separates the fluorophore from the quencher. This event can be reported by fluorescence emission when the fluorophore is excited. The stem–loop of the SQRM suggests that SQRM be made to target natural stem–loop structures formed during mRNA synthesis. The general utility of this method is demonstrated by SQRM identification of targetable sequence within c-myb and bcl-6 mRNA. Corresponding antisense oligonucleotides reduce these gene products in cells.  相似文献   

18.
Concatemers of d(TCCC) that were first detected through their association with deletions at the RACK7 locus, are widespread throughout the human genome. Circular dichroism spectra show that d(GGGA)n sequences form G-quadruplexes when n > 3, while i-motif structures form at d(TCCC)n sequences at neutral pH when n ≥ 7 in vitro. In the PC3 cell line, deletions are observed only when the d(TCCC)n variant is long enough to form significant levels of unresolved i-motif structure at neutral pH. The presence of an unresolved i-motif at a representative d(TCCC)n element at RACK7 was suggested by experiments showing that that the region containing the d(TCCC)9 element was susceptible to bisulfite attack in native DNA and that d(TCCC)9 oligo formed an i-motif structure at neutral pH. This in turn suggested that that the i-motif present at this site in native DNA must be susceptible to bisulfite mediated deamination even though it is a closed structure. Bisulfite deamination of the i-motif structure in the model oligodeoxynucleotide was confirmed using mass spectrometry analysis. We conclude that while G-quadruplex formation may contribute to spontaneous mutation at these sites, deletions actually require the potential for i-motif to form and remain unresolved at neutral pH.  相似文献   

19.
We investigated the molecular basis for Ca-dependent inactivation of the cardiac L-type Ca channel. Transfection of HEK293 cells with the wild-type α1C or its 3′ deletion mutant (α1C−3′del) produced channels that exhibited prominent Ca-dependent inactivation. To identify structural regions of α1C involved in this process, we analyzed chimeric α1 subunits in which one of the major intracellular domains of α1C was replaced by the corresponding region from the skeletal muscle α1S subunit (which lacks Ca-dependent inactivation). Replacing the NH2 terminus or the III–IV loop of α1C with its counterpart from α1S had no appreciable effect on Ca channel inactivation. In contrast, replacing the I–II loop of α1C with the corresponding region from α1S dramatically slowed the inactivation of Ba currents while preserving Ca-dependent inactivation. A similar but less pronounced result was obtained with a II–III loop chimera. These results suggest that the I–II and II–III loops of α1C may participate in the mechanism of Ca-dependent inactivation. Replacing the final 80% of the COOH terminus of α1C with the corresponding region from α1S completely eliminated Ca-dependent inactivation without affecting inactivation of Ba currents. Significantly, Ca-dependent inactivation was restored to this chimera by deleting a nonconserved, 211–amino acid segment from the end of the COOH terminus. These results suggest that the distal COOH terminus of α1S can block Ca-dependent inactivation, possibly by interacting with other proteins or other regions of the Ca channel. Our findings suggest that structural determinants of Ca-dependent inactivation are distributed among several major cytoplasmic domains of α1C.  相似文献   

20.
Epidemiological studies on Greenland Inuits in the 1970s and subsequent human studies have established an inverse relationship between the ingestion of omega-3 fatty acids [C20–22 ω 3 polyunsaturated fatty acids (PUFA)], blood levels of C20–22 ω 3 PUFA, and mortality associated with cardiovascular disease (CVD). C20–22 ω 3 PUFA have pleiotropic effects on cell function and regulate multiple pathways controlling blood lipids, inflammatory factors, and cellular events in cardiomyocytes and vascular endothelial cells. The hypolipemic, anti-inflammatory, anti-arrhythmic properties of these fatty acids confer cardioprotection. Accordingly, national heart associations and government agencies have recommended increased consumption of fatty fish or ω 3 PUFA supplements to prevent CVD. In addition to fatty fish, sources of ω 3 PUFA are available from plants, algae, and yeast. A key question examined in this review is whether nonfish sources of ω 3 PUFA are as effective as fatty fish-derived C20–22 ω 3 PUFA at managing risk factors linked to CVD. We focused on ω 3 PUFA metabolism and the capacity of ω 3 PUFA supplements to regulate key cellular events linked to CVD. The outcome of our analysis reveals that nonfish sources of ω 3 PUFA vary in their capacity to regulate blood levels of C20–22 ω 3 PUFA and CVD risk factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号