首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Hippidions were equids with very distinctive anatomical features. They lived in South America 2.5 million years ago (Ma) until their extinction approximately 10 000 years ago. The evolutionary origin of the three known Hippidion morphospecies is still disputed. Based on palaeontological data, Hippidion could have diverged from the lineage leading to modern equids before 10 Ma. In contrast, a much later divergence date, with Hippidion nesting within modern equids, was indicated by partial ancient mitochondrial DNA sequences. Here, we characterized eight Hippidion complete mitochondrial genomes at 3.4–386.3-fold coverage using target-enrichment capture and next-generation sequencing. Our dataset reveals that the two morphospecies sequenced (H. saldiasi and H. principale) formed a monophyletic clade, basal to extant and extinct Equus lineages. This contrasts with previous genetic analyses and supports Hippidion as a distinct genus, in agreement with palaeontological models. We date the Hippidion split from Equus at 5.6–6.5 Ma, suggesting an early divergence in North America prior to the colonization of South America, after the formation of the Panamanian Isthmus 3.5 Ma and the Great American Biotic Interchange.  相似文献   

2.
The social vole of Cyrenaica, Libya, is the only extant representative of the Cricetidae family found in Africa. Its taxonomic status has been under debate, partly due to the problematic systematics of the entire group of social voles and partly due to the lack of morphological and molecular data from Cyrenaican specimens. In this study, we applied ancient DNA protocols to produce three cytochrome b (cytb) sequences of Cyrenaican voles and built a phylogenetic reconstruction (195 sequences in total) incorporating all available cytb sequences of the remaining social voles, other representatives of the genus Microtus and closely related cricetids. We used this phylogeny to test the performance of the model-based, single-locus, species delimitation approach implemented in mPTP and delimited nine species of social voles. Among them are the Cyrenaican vole, Microtus mustersi and its sister species M. guentheri, distributed along the Mediterranean coasts of southwestern Asia. Biogeographical reconstruction of ancestral area and molecular clock estimations of the time since the divergence of the two sister lineages suggest that their common ancestor dispersed into Africa through a coastal route and was isolated in Cyrenaica as a result of population fragmentation associated with Middle Pleistocenic pluvial/interpluvial cycles. Geographic isolation triggered the speciation process, but species distribution modeling gave evidence of subsequent niche divergence; M. guentheri has adapted to the xeric conditions of its distributional area, while M. mustersi benefited from the milder Cyrenaican climate. The Cyrenaican vole is a relict species more than 200,000 years old, has a small and isolated distribution and probably merits conservation.  相似文献   

3.
Rodents often act as important hosts for ticks and as pathogen reservoirs. At northern latitudes, rodents often undergo multi‐annual population cycles, and the periodic absence of certain hosts may inhibit the survival and recruitment of ticks. We investigated the potential role of common shrews (Sorex araneus) to serve as a supplementary host source to immature life stages (larvae and nymphs) of a generalist tick Ixodes ricinus and a small mammal specialist tick Itrianguliceps, during decreasing abundances of bank voles (Myodes glareolus). We used generalized mixed models to test whether ticks would have a propensity to parasitize a certain host species dependent on host population size and host population composition across two high‐latitude gradients in southern Norway, by comparing tick burdens on trapped animals. Host population size was defined as the total number of captured animals and host population composition as the proportion of voles to shrews. We found that a larger proportion of voles in the host population favored the parasitism of voles by Iricinus larvae (estimate = −1.923, p = .039) but not by nymphs (estimate = −0.307, p = .772). Itrianguliceps larvae did not show a lower propensity to parasitize voles, regardless of host population composition (estimate = 0.875, p = .180), while nymphs parasitized shrews significantly more as vole abundance increased (estimate = 2.106, p = .002). These results indicate that common shrews may have the potential to act as a replacement host during periods of low rodent availability, but long‐term observations encompassing complete rodent cycles may determine whether shrews are able to maintain tick range expansion despite low rodent availability.  相似文献   

4.
The Mediterranean Basin has experienced extensive change in geology and climate over the past six million years. Yet, the relative importance of key geological events for the distribution and genetic structure of the Mediterranean fauna remains poorly understood. Here, we use population genomic and phylogenomic analyses to establish the evolutionary history and genetic structure of common wall lizards (Podarcis muralis). This species is particularly informative because, in contrast to other Mediterranean lizards, it is widespread across the Iberian, Italian, and Balkan Peninsulas, and in extra-Mediterranean regions. We found strong support for six major lineages within P. muralis, which were largely discordant with the phylogenetic relationship of mitochondrial DNA. The most recent common ancestor of extant P. muralis was likely distributed in the Italian Peninsula, and experienced an “Out-of-Italy” expansion following the Messinian salinity crisis (∼5 Mya), resulting in the differentiation into the extant lineages on the Iberian, Italian, and Balkan Peninsulas. Introgression analysis revealed that both inter- and intraspecific gene flows have been pervasive throughout the evolutionary history of P. muralis. For example, the Southern Italy lineage has a hybrid origin, formed through admixture between the Central Italy lineage and an ancient lineage that was the sister to all other P. muralis. More recent genetic differentiation is associated with the onset of the Quaternary glaciations, which influenced population dynamics and genetic diversity of contemporary lineages. These results demonstrate the pervasive role of Mediterranean geology and climate for the evolutionary history and population genetic structure of extant species.  相似文献   

5.
Restriction fragments from purified mitochondrial DNA can be readily detected following rapid end-labeling with [α-³²]nucleoside triphosphates and separation by gel electrophoresis. Mitochondrial DNA from 12 populations of Meloidogyne species was digested with 12 restriction enzymes producing more than 60 restriction fragments for each species. The mitochondrial genome of M. arenaria is the most genetically distinct of the four species compared. M. arenaria shows approximately 2.1-3.1% nucleotide sequence divergence from the mitochondrial genomes of M. javanica, M. incognita, and M. hapla. Among the latter three species, interspecific estimates of sequence divergence range from 0.7 to 2.3%. Relatively high intraspecific variation in mitochondrial restriction fragment patterns was observed in M. hapla. Intraspecific variation in M. incognita resulted in sequence divergence estimates of 0.5-1.0%. Such polymorphisms can serve as genetic markers for discerning mitochondrial DNA genotypes in nematode populations in the same way that allozymes have been used to discern nuclear DNA genotypes.  相似文献   

6.
The freshwater pearl mussel family Margaritiferidae includes 13 extant species, which are all listed by IUCN as endangered or vulnerable taxa. In this study, an extensive spatial sampling of Margaritifera spp. across the Russian Far East (Amur Basin, Kamchatka Peninsula, Kurile Archipelago and Sakhalin Island) was conducted for a revision of their taxonomy and distribution ranges. Based on their DNA sequences, shell and soft tissue morphology, three valid species were identified: Margaritifera dahurica (Middendorff, 1850), M. laevis (Haas, 1910) and M. middendorffi (Rosén, 1926). M. dahurica ranges across the Amur basin and some of the nearest river systems. M. laevis is distributed in Japan, Sakhalin Island and the Kurile Archipelago. M. middendorffi was previously considered an endemic species of the Kamchatka. However, it is widespread in the rivers of Kamchatka, Sakhalin Island, the Kurile Islands (across the Bussol Strait, which is the most significant biogeographical boundary within the archipelago), and, likely, in Japan. The Japanese species M. togakushiensis Kondo & Kobayashi, 2005 seems to be conspecific with M. middendorffi because of similar morphological patterns, small shell size (<100 mm long) and overlapped ranges, but it is in need of a separate revision. Phylogenetic analysis reveals that two NW Pacific margaritiferid species, M. laevis and M. middendorffi, formed a monophyletic 18S rDNA clade together with the North American species M. marrianae and M. falcata. The patterns that were found in these Margaritifera spp. are similar to those of freshwater fishes, indicating multiple colonizations of Eastern Asia by different mitochondrial lineages, including an ancient Beringian exchange between freshwater faunas across the Pacific.  相似文献   

7.
The cricket Velarifictorus micado is widely distributed in East Asia and colonized the United States of America (the USA) in 1959. It has two life cycles: egg and nymph diapause. We aimed to investigate the biogeographic boundary between them and determine when and why V. micado diverged. Mitochondrial fragments including COI and CytB were used for haplotype network, demographic analysis, and divergence time estimation in individuals of East Asia. We selected several samples from the USA to find out the colonization origin. The haplotype network indicated there were three lineages based on COI, NE lineage (the egg diapause and mainly distributed in the northern regions), SE lineage (the egg diapause and mainly distributed in the southern regions), and SN lineage (the nymph diapause and mainly distributed in the southern regions). The molecular chronograms indicated that the first divergence of V. micado into two main lineages, NE and southern lineages (SE and SN), was essentially bounded by the Yangtze River. It occurred around ~0.79 Ma (95% HPD: 1.13–0.46 Ma) in the Middle Pleistocene Transition. This was followed by the divergence of the southern lineage into two sublineages, SE and SN lineage, occurred around ~0.50 Ma (95% HPD: 0.71–0.25 Ma), corresponding to the time of development of glaciers in various parts of the Qinghai–Tibet Plateau (QTP) (0.73–0.46 Ma). SE lineage might originate from southwestern China based on the comparison between the haplotype network based on COI and CytB. Our study suggested that divergences of lineages have twice co‐occurred with tendency of cooling climatic in Asia after the Mid‐Pleistocene, and the life‐history strategy may play an important role in lineage diversification. Additionally, our results indicated that the USA populations were revealed at least twice separate Asian invasions. These both belonged to the egg diapause, which might provide a new perspective for invasion control.  相似文献   

8.
Recent genetic studies have challenged the traditional view that the ancestors of British Celtic people spread from central Europe during the Iron Age and have suggested a much earlier origin for them as part of the human recolonization of Britain at the end of the last glaciation. Here we propose that small mammals provide an analogue to help resolve this controversy. Previous studies have shown that common shrews (Sorex araneus) with particular chromosomal characteristics and water voles (Arvicola terrestris) of a specific mitochondrial (mt) DNA lineage have peripheral western/northern distributions with striking similarities to that of Celtic people. We show that mtDNA lineages of three other small mammal species (bank vole Myodes glareolus, field vole Microtus agrestis and pygmy shrew Sorex minutus) also form a ‘Celtic fringe’. We argue that these small mammals most reasonably colonized Britain in a two-phase process following the last glacial maximum (LGM), with climatically driven partial replacement of the first colonists by the second colonists, leaving a peripheral geographical distribution for the first colonists. We suggest that these natural Celtic fringes provide insight into the same phenomenon in humans and support its origin in processes following the end of the LGM.  相似文献   

9.
Pigmy elephants inhabited the islands from the Mediterranean region during the Pleistocene period but became extinct in the course of the Holocene. Despite striking distinctive anatomical characteristics related to insularity, some similarities with the lineage of extant Asian elephants have suggested that pigmy elephants could be most probably seen as members of the genus Elephas. Poulakakis et al. (2006) have recently challenged this view by recovering a short mtDNA sequence from an 800 000 year old fossil of the Cretan pigmy elephant (Elephas creticus). According to the authors of this study, a deep taxonomic revision of Cretan dwarf elephants would be needed, as the sequence exhibits clear affinities with woolly mammoth haplotypes. However, we point here many aspects that seriously weaken the strength of the ancient DNA evidence reported.  相似文献   

10.
Climate warming alters plant composition and population dynamics of arctic ecosystems. In particular, an increase in relative abundance and cover of deciduous shrub species (shrubification) has been recorded. We inferred genetic variation of common shrub species (Alnus alnobetula, Betula nana, Salix sp.) through time. Chloroplast genomes were assembled from modern plants (n = 15) from the Siberian forest‐tundra ecotone. Sedimentary ancient DNA (sedaDNA; n = 4) was retrieved from a lake on the southern Taymyr Peninsula and analyzed by metagenomics shotgun sequencing and a hybridization capture approach. For A. alnobetula, analyses of modern DNA showed low intraspecies genetic variability and a clear geographical structure in haplotype distribution. In contrast, B. nana showed high intraspecies genetic diversity and weak geographical structure. Analyses of sedaDNA revealed a decreasing relative abundance of Alnus since 5,400 cal yr BP, whereas Betula and Salix increased. A comparison between genetic variations identified in modern DNA and sedaDNA showed that Alnus variants were maintained over the last 6,700 years in the Taymyr region. In accordance with modern individuals, the variants retrieved from Betula and Salix sedaDNA showed higher genetic diversity. The success of the hybridization capture in retrieving diverged sequences demonstrates the high potential for future studies of plant biodiversity as well as specific genetic variation on ancient DNA from lake sediments. Overall, our results suggest that shrubification has species‐specific trajectories. The low genetic diversity in Aalnobetula suggests a local population recruitment and growth response of the already present communities, whereas the higher genetic variability and lack of geographical structure in B. nana may indicate a recruitment from different populations due to more efficient seed dispersal, increasing the genetic connectivity over long distances.  相似文献   

11.
12.
This article presents data on the genetic variability of the northern red-backed vole and the bank vole that live sympatrically in West Siberia. The two species of voles have comparable, relatively high indices of genetic variability of inter simple sequences repeats DNA. The proportion of polymorphic DNA markers is 95–98%, and the Nei’s genetic diversity index is 0.33–0.35. A total of 47–58% of allozyme loci in the voles are polymorphic, and the average heterozygosity per locus is 0.058 in the northern red-backed vole and 0.054 in the bank vole. Interpopulation differentiation is less pronounced in the red-backed vole (F ST 0.293) compared to the bank vole (F ST 0.475). Individuals of the hybrid line of the bank vole with the mitochondrial haplotype of the red-backed vole have been found by PCR typing of cytochrome b gene fragment of mtDNA. The distribution boundary of the hybrid line of bank voles goes farther to the northeast than was shown in earlier works. The proportion of hybrid specimens range from 2 to 34%. The indices of genetic variability in the hybrid line of the bank vole are lower than those of the parental species.  相似文献   

13.
14.
Mesomys Wagner, 1845 (Rodentia, Echimyidae, Eumysopinae) currently has four recognized species, three of which occur in Brazil: Mesomys hispidus (probably a species complex), Moccultus, and Mstimulax. Mesomys leniceps is found in montane forests of northern Peru. Mesomys stimulax, the focus of the present study, has a distribution that is restricted to the central and eastern Amazonia south of the Amazon River, extending from the left bank of the Tapajós River to the right bank of the Tocantins River, and south to the southeast portion of Pará State. The genus presents karyotypes with diploid number 2n = 60 and Fundamental Number (FN) = 116 for Mhispidus and Mstimulax, and 2n = 42, FN = 54 for Moccultus. We studied the karyotype of a female specimen of Mstimulax collected from the Tapirapé‐Aquiri National Forest, Marabá, Pará, Brazil, in the Xingu/Tocantins interfluvium. The obtained karyotype (2n = 60 and FN = 110) differs from that described in the literature for both Mstimulax and Mhispidus by exhibiting more biarmed chromosomes, probably due to pericentric inversions and/or centromeric repositioning, and exhibiting differences in the amount and distribution of constitutive heterochromatin (CH). These results suggest that, similar to what has already been proposed for Mhispidus, Mstimulax may represent a species complex and/or cryptic species. The mechanisms of chromosomal diversification in Mesomys and the biogeographic implications are discussed reinforcing the need for broad systematic review for Mesomys.  相似文献   

15.
Phylogeography interprets molecular genetic variation in a spatial and temporal context. Molecular clocks are frequently used to calibrate phylogeographic analyses, however there is mounting evidence that molecular rates decay over the relevant timescales. It is therefore essential that an appropriate rate is determined, consistent with the temporal scale of the specific analysis. This can be achieved by using temporally spaced data such as ancient DNA or by relating the divergence of lineages directly to contemporaneous external events of known time. Here we calibrate a Eurasian field vole (Microtus agrestis) mitochondrial genealogy from the well-established series of post-glacial geophysical changes that led to the formation of the Baltic Sea and the separation of the Scandinavian peninsula from the central European mainland. The field vole exhibits the common phylogeographic pattern of Scandinavian colonization from both the north and the south, however the southernmost of the two relevant lineages appears to have originated in situ on the Scandinavian peninsula, or possibly in the adjacent island of Zealand, around the close of the Younger Dryas. The mitochondrial substitution rate and the timescale for the genealogy are closely consistent with those obtained with a previous calibration, based on the separation of the British Isles from mainland Europe. However the result here is arguably more certain, given the level of confidence that can be placed in one of the central assumptions of the calibration, that field voles could not survive the last glaciation of the southern part of the Scandinavian peninsula. Furthermore, the similarity between the molecular clock rate estimated here and those obtained by sampling heterochronous (ancient) DNA (including that of a congeneric species) suggest that there is little disparity between the measured genetic divergence and the population divergence that is implicit in our land-bridge calibration.  相似文献   

16.
17.
Coelacanths are lobe-finned fish represented by two extant species, Latimeria chalumnae in South Africa and Comoros and L. menadoensis in Indonesia. Due to their intermediate phylogenetic position between ray-finned fish and tetrapods in the vertebrate lineage, they are of great interest from an evolutionary point of view. In addition, extant specimens look similar to 300 million-year-old fossils; because of their apparent slowly evolving morphology, coelacanths have been often described as « living fossils ». As an underlying cause of such a morphological stasis, several authors have proposed a slow evolution of the coelacanth genome. Accordingly, sequencing of the L. chalumnae genome has revealed a globally low substitution rate for protein-coding regions compared to other vertebrates. However, genome and gene evolution can also be influenced by transposable elements, which form a major and dynamic part of vertebrate genomes through their ability to move, duplicate and recombine. In this work, we have searched for evidence of transposition activity in coelacanth genomes through the comparative analysis of orthologous genomic regions from both Latimeria species. Comparison of 5.7 Mb (0.2%) of the L. chalumnae genome with orthologous Bacterial Artificial Chromosome clones from L. menadoensis allowed the identification of 27 species-specific transposable element insertions, with a strong relative contribution of CR1 non-LTR retrotransposons. Species-specific homologous recombination between the long terminal repeats of a new coelacanth endogenous retrovirus was also detected. Our analysis suggests that transposon activity is responsible for at least 0.6% of genome divergence between both Latimeria species. Taken together, this study demonstrates that coelacanth genomes are not evolutionary inert: they contain recently active transposable elements, which have significantly contributed to post-speciation genome divergence in Latimeria.  相似文献   

18.
Kogiids are known by two living species, the pygmy and dwarf sperm whale (Kogia breviceps and K. sima). Both are relatively rare, and as their names suggest, they are closely related to the sperm whale, all being characterized by the presence of a spermaceti organ. However, this organ is much reduced in kogiids and may have become functionally different. Here we describe a fossil kogiid from the late Miocene of Panama and we explore the evolutionary history of the group with special attention to this evolutionary reduction. The fossil consists of cranial material from the late Tortonian (~7.5 Ma) Piña facies of the Chagres Formation in Panama. Detailed comparison with other fossil and extant kogiids and the results of a phylogenetic analysis place the Panamanian kogiid, herein named Nanokogia isthmia gen. et sp. nov., as a taxon most closely related to Praekogia cedrosensis from the Messinian (~6 Ma) of Baja California and to Kogia spp. Furthermore our results show that reduction of the spermaceti organ has occurred iteratively in kogiids, once in Thalassocetus antwerpiensis in the early-middle Miocene, and more recently in Kogia spp. Additionally, we estimate the divergence between extant species of Kogia at around the late Pliocene, later than previously predicted by molecular estimates. Finally, comparison of Nanokogia with the coeval Scaphokogia cochlearis from Peru shows that these two species display a greater morphological disparity between them than that observed between the extant members of the group. We hypothesize that this reflects differences in feeding ecologies of the two species, with Nanokogia being more similar to extant Kogia. Nanokogia shows that kogiids have been part of the Neotropical marine mammal communities at least since the late Miocene, and gives us insight into the evolutionary history and origins of one of the rarest groups of living whales.  相似文献   

19.
The effects of the direct interaction between hybridization and speciation—two major contrasting evolutionary processes—are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within-island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50 000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island—ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole.  相似文献   

20.
Phylogeographic lineages are interpreted as the product of repeated isolation in glacial refugia, leading to vicariant differentiation. Being restricted to a given geographic area could also promote adaptive divergence in response to local conditions. The role of phylogeny and climate in the evolution of the bank vole (Myodes glareolus) was investigated here, focusing on molar tooth shape, a morphological feature related to the exploitation of food resources. A balanced role of phylogeny and climate was demonstrated. Response to environmental factors led to morphological convergence of bank voles from different lineages living in similar environments, and to within-lineage divergence in extreme environments. An important interaction of climate and phylogeny was found, suggesting that each lineage is living in a particular environment. This lineage-specific adaptation to a range of environmental conditions may have conditioned the potential of post-glacial recolonization of each lineage. Morphological covariation with environmental conditions further highlights the potential of adaptation of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号