首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent theoretical and experimental work suggests that species diversity enhances the temporal stability of communities. However, empirical support largely comes from experimental communities. The relationship between diversity and stability in natural communities, and the ones facing environmental changes in particular, has received less attention. We created a gradient of fertility in a natural alpine meadow community to test the effects of diversity and fertilization on the temporal variability of community cover and cover of component species and to determine the importance of asynchrony, portfolio effects, cover and dominance for diversity-stability relationships. Although fertilization strongly reduced species richness, the temporal stability in community cover increased with fertilization. Most species showed a decline of temporal stability in mean population cover with fertilization, but two grass species, which dominated fertilized communities after 10 years, showed an increase of stability. Detailed analysis revealed that the increased dominance of these two highly stable grass species was associated with increased community stability at high levels of fertilization. In contrast, we found little support for other mechanisms that have been proposed to contribute to community stability, such as changes in asynchrony and portfolio effects. We conclude that the presence of highly productive species that have stabilizing properties dominate fertilized assemblages and enhance ecosystem stability.  相似文献   

2.
Biomass temporal stability plays a key role in maintaining sustainable ecosystem functions and services of grasslands, and climate change has exerted a profound impact on plant biomass. However, it remains unclear how the community biomass stability in alpine meadows responds to changes in some climate factors (e.g., temperature and precipitation). Long‐term field aboveground biomass monitoring was conducted in four alpine meadows (Haiyan [HY], Henan [HN], Gande [GD], and Qumalai [QML]) on the Qinghai‐Tibet Plateau. We found that climate factors and ecological factors together affected the community biomass stability and only the stability of HY had a significant decrease over the study period. The community biomass stability at each site was positively correlated with both the stability of the dominant functional group and functional groups asynchrony. The effect of dominant functional groups on community stability decreased with the increase of the effect of functional groups asynchrony on community stability and there may be a ‘trade‐off’ relationship between the effects of these two factors on community stability. Climatic factors directly or indirectly affect community biomass stability by influencing the stability of the dominant functional group or functional groups asynchrony. Air temperature and precipitation indirectly affected the community stability of HY and HN, but air temperature in the growing season and nongrowing season had direct negative and direct positive effects on the community stability of GD and QML, respectively. The underlying mechanisms varied between community composition and local climate conditions. Our findings highlighted the role of dominant functional group and functional groups asynchrony in maintaining community biomass stability in alpine meadows and we highlighted the importance of the environmental context when exploring the stability influence mechanism. Studies of community stability in alpine meadows along with different precipitation and temperature gradients are needed to improve our comprehensive understanding of the mechanisms controlling alpine meadow stability.  相似文献   

3.
植物群落中不同“功能身份”物种的多样性与特定生态系统功能之间具有何种关系及其作用机制尚不明确。通过在高寒矮嵩草(Kobresia humilis)草甸为期5年的刈割(不刈割、留茬3 cm、留茬1 cm)、施肥(施肥、不施肥)和浇水(浇水、不浇水)控制实验, 研究了刈割与土壤资源获得性梯度上不同“功能身份”物种(群落中所有物种、响应物种、作用物种和共有物种)的多样性变化与群落地上净初级生产力和稳定性的关系以及稳定性机制。研究结果显示: 群落中响应物种、作用物种和共有物种数分别占全部物种数的36.6%、18.3%和64.8%, 物种多样性对生态系统功能具有不同的效应, 净初级生产力主要受响应物种和作用物种的多样性变化影响, 而稳定性则主要由共有物种的多样性变化决定; 群落稳定性的维持主要依赖于共有物种的多样性增加, 其作用机制是投资组合效应, 而超产效应和异步性效应对稳定性并无作用; 刈割和施肥对物种多样性、稳定性和净初级生产力具有相反的影响, 前者能增加物种多样性和稳定性, 并降低净初级生产力, 而后者的作用正相反。这与群落中全部物种的多样性变化受刈割影响较大, 而作用物种的多样性变化受资源获得性影响较大有关。上述结果表明高寒草甸生态系统地上净初级生产力主要由少数影响生产力的作用物种的多样性决定, 而稳定性则由大量共有物种的多样性所掌控。投资组合效应是物种多样性导致稳定性的机制。由于群落中不同物种的多样性效应具有分异性, 对于特定的生态系统功能而言, 物种的“功能身份”可能比物种多样性本身更重要, 不加区别地笼统定义物种多样性与生态系统功能的关系可能欠妥。  相似文献   

4.
Yang H  Jiang L  Li L  Li A  Wu M  Wan S 《Ecology letters》2012,15(6):619-626
Anthropogenic perturbations may affect biodiversity and ecological stability as well as their relationships. However, diversity-stability patterns and associated mechanisms under human disturbances have rarely been explored. We conducted a 7-year field experiment examining the effects of mowing and nutrient addition on the diversity and temporal stability of herbaceous plant communities in a temperate steppe in northern China. Mowing increased population and community stability, whereas nutrient addition had the opposite effects. Stability exhibited positive relationships with species richness at population, functional group and community levels. Treatments did not alter these positive diversity-stability relationships, which were associated with the stabilising effect of species richness on component populations, species asynchrony and portfolio effects. Despite the difficulty of pinpointing causal mechanisms of diversity-stability patterns observed in nature, our results suggest that diversity may still be a useful predictor of the stability of ecosystems confronted with anthropogenic disturbances.  相似文献   

5.
Domestic livestock grazing has caused dramatic changes in plant community composition across the globe. However, the response of plant species abundance in communities subject to grazing has not often been investigated through a functional lens, especially for belowground traits. Grazing directly impacts aboveground plant tissues, but the relationships between above‐ and belowground traits, and their influence on species abundance are also not well known. We collected plant trait and species relative abundance data in the grazed and nongrazed meadow plant communities in a species‐rich subalpine ecosystem of the Qinghai–Tibet Plateau. We measured three aboveground traits (leaf photosynthesis rate, specific leaf area, and maximum height) and five belowground traits (root average diameter, root biomass, specific root length, root tissue density, and specific root area). We tested for shifts in the relationship between species relative abundance and among all measured traits under grazing compared with the nongrazed meadow. We also compared the power of above‐ and belowground traits to predict species relative abundance. We observed a significant shift from a resource conservation strategy to a resource acquisition strategy. Moreover, this resource conservation versus resource acquisition trade‐off can also determine species relative abundance in the grazed and nongrazed plant communities. Specifically, abundant species in the nongrazed meadow had aboveground and belowground traits that are associated with high resource conservation, whereas aboveground and belowground traits that are correlated with high resource acquisition determined species relative abundance in the grazed meadow. However, belowground traits were found to explain more variances in species relative abundance than aboveground traits in the nongrazed meadow, while aboveground and belowground traits had comparable predictive power in the grazed meadow. We show that species relative abundance in both the grazed and the nongrazed meadows can be predicted by both aboveground traits and belowground traits associated with a resource acquisition versus conservation trade‐off. More importantly, we show that belowground traits have higher predictive power of species relative abundance than aboveground traits in the nongrazed meadow, whereas in the grazed meadows, above‐ and belowground traits had comparable high predictive power.  相似文献   

6.
Host nutrient supply can mediate host–pathogen and pathogen–pathogen interactions. In terrestrial systems, plant nutrient supply is mediated by soil microbes, suggesting a potential role of soil microbes in plant diseases beyond soil‐borne pathogens and induced plant defenses. Long‐term nitrogen (N) enrichment can shift pathogenic and nonpathogenic soil microbial community composition and function, but it is unclear if these shifts affect plant–pathogen and pathogen–pathogen interactions. In a growth chamber experiment, we tested the effect of long‐term N enrichment on infection by Barley Yellow Dwarf Virus (BYDV‐PAV) and Cereal Yellow Dwarf Virus (CYDV‐RPV), aphid‐vectored RNA viruses, in a grass host. We inoculated sterilized growing medium with soil collected from a long‐term N enrichment experiment (ambient, low, and high N soil treatments) to isolate effects mediated by the soil microbial community. We crossed soil treatments with a N supply treatment (low, high) and virus inoculation treatment (mock‐, singly‐, and co‐inoculated) to evaluate the effects of long‐term N enrichment on plant–pathogen and pathogen–pathogen interactions, as mediated by N availability. We measured the proportion of plants infected (i.e., incidence), plant biomass, and leaf chlorophyll content. BYDV‐PAV incidence (0.96) declined with low N soil (to 0.46), high N supply (to 0.61), and co‐inoculation (to 0.32). Low N soil mediated the effect of N supply on BYDV‐PAV: instead of N supply reducing BYDV‐PAV incidence, the incidence increased. Additionally, ambient and low N soil ameliorated the negative effect of co‐inoculation on BYDV‐PAV incidence. BYDV‐PAV infection only reduced chlorophyll when plants were grown with low N supply and ambient N soil. There were no significant effects of long‐term N soil on CYDV‐RPV incidence. Soil inoculant with different levels of long‐term N enrichment had different effects on host–pathogen and pathogen–pathogen interactions, suggesting that shifts in soil microbial communities with long‐term N enrichment may mediate disease dynamics.  相似文献   

7.
Global change is shifting the timing of biological events, leading to temporal mismatches between biological events and resource availability. These temporal mismatches can threaten species’ populations. Importantly, temporal mismatches not only exert strong pressures on the population dynamics of the focal species, but can also lead to substantial changes in pairwise species interactions such as host–pathogen systems. We adapted an established individual‐based model of host–pathogen dynamics. The model describes a viral agent in a social host, while accounting for the host''s explicit movement decisions. We aimed to investigate how temporal mismatches between seasonal resource availability and host life‐history events affect host–pathogen coexistence, that is, disease persistence. Seasonal resource fluctuations only increased coexistence probability when in synchrony with the hosts’ biological events. However, a temporal mismatch reduced host–pathogen coexistence, but only marginally. In tandem with an increasing temporal mismatch, our model showed a shift in the spatial distribution of infected hosts. It shifted from an even distribution under synchronous conditions toward the formation of disease hotspots, when host life history and resource availability mismatched completely. The spatial restriction of infected hosts to small hotspots in the landscape initially suggested a lower coexistence probability due to the critical loss of susceptible host individuals within those hotspots. However, the surrounding landscape facilitated demographic rescue through habitat‐dependent movement. Our work demonstrates that the negative effects of temporal mismatches between host resource availability and host life history on host–pathogen coexistence can be reduced through the formation of temporary disease hotspots and host movement decisions, with implications for disease management under disturbances and global change.  相似文献   

8.
Andrew Wilby  Moshe Shachak 《Oikos》2004,106(2):209-216
Compensatory population dynamics among species stabilise aggregate community variables. Inter-specific competition is thought to be stabilising as it promotes asynchrony among populations. However, we know little about other inter-specific interactions, such as facilitation and granivory. Such interactions are also likely to influence population synchrony and community stability, especially in harsh environments where they are thought to have relatively strong effects in plant communities. We use a manipulative experiment to test the effects of granivores (harvester ants) and nurse plants (dwarf shrubs) on annual plant community dynamics in the Negev desert, Israel. We present evidence for weak and inconsistent effects of harvester ants on plant abundance and on population and community stability. By contrast, we show that annual communities under shrubs were more species rich, had higher plant density and were temporally less variable than communities in the inter-shrub matrix. Species richness and plant abundance were also more resistant to drought in the shrub under-storey compared with the inter-shrub matrix, although population dynamics in both patch types were synchronised. Hence, we show that inter-specific interactions other than competition affect community stability, and that hypothesised mechanisms linking compensatory dynamics and community stability may not operate to the same extent in arid plant communities.  相似文献   

9.
The interspecific plant interactions along grazing and aridity stress gradients represent a major research issue in plant ecology. However, the combined effects of these two factors on plant–plant interactions have been poorly studied in the northeast of Iran. To fill this knowledge gap, 144 plots were established in 12 study sites with different grazing intensities (high vs. low) and climatic characteristics (arid vs. semiarid) in northeastern Iran. A dominant shrub, Artemisia kopetdaghensis, was selected as the model species. Further, we studied changes in plant life strategies along the combined grazing and aridity stress gradients. In this study, we used relative interaction indices calculated for species richness, Shannon diversity, and species cover to determine plant–plant interactions using linear mixed‐effect models (LMM). The indicator species analysis was used to identify the indicator species for the undercanopy of shrub and for the adjacent open areas. The combined effects of grazing and aridity affected the plant–plant interactions and plant life strategies (CSR) of indicator species. A. kopetdaghensis showed the highest facilitation effect under high stress conditions (high grazing, high aridity), which turned into competition under the low stress conditions (low grazing, low aridity). In the arid region, the canopy of the shrub protected ruderals, annual forbs, and grasses in both high and low grazing intensities. In the semiarid region and high grazing intensity (low aridity/high grazing), the shrubs protected mostly perennial forbs with C‐strategy. Our findings highlight the importance of context‐dependent shrub management to restore the vegetation damaged by the intensive grazing.  相似文献   

10.
Medium‐to‐high elevation grasslands provide critical services in agriculture and ecosystem stabilization, through high biodiversity and providing food for wildlife. However, these ecosystems face elevated risks of disruption due to predicted soil and climate changes. Separating the effects of soil and climate, however, is difficult in situ, with previous experiments focusing largely on monocultures instead of natural grassland communities. We experimentally exposed model grassland communities, comprised of three species grown on either local or reference soil, to varied climatic environments along an elevational gradient in the European Alps, measuring the effects on species and community traits. Although species‐specific biomass varied across soil and climate, species'' proportional contributions to community‐level biomass production remained consistent. Where species experienced low survivorship, species‐level biomass production was maintained through increased productivity of surviving individuals; however, maximum species‐level biomass was obtained under high survivorship. Species responded directionally to climatic variation, spatially separating differentially by plant traits (including height, reproduction, biomass, survival, leaf dry weight, and leaf area) consistently across all climates. Local soil variation drove stochastic trait responses across all species, with high levels of interactions occurring between site and species. This soil variability obscured climate‐driven responses: we recorded no directional trait responses for soil‐corrected traits like observed for climate‐corrected traits. Our species‐based approach contributes to our understanding of grassland community stabilization and suggests that these communities show some stability under climatic variation.  相似文献   

11.
AimsAmidst the Campos de Altitude (Highland Grasslands) in the Brazilian Atlantic Forest, woody communities grow either clustered in tree islands or interspersed within the herbaceous matrix. The functional ecology, diversity, and biotic processes shaping these plant communities are largely unstudied. We characterized the functional assembly and diversity of these tropical montane woody communities and investigated how they fit within Grime''s CSR (C—competitor, S—stress‐tolerant, R—ruderal) scheme, what functional trade‐offs they exhibit, and how traits and functional diversity vary in response to bamboo presence/absence.MethodsTo characterize the functional composition of the community, we sampled five leaf traits and wood density along transects covering the woody communities both inside tree islands and outside (i.e., isolated woody plants in the grasslands community). Then, we used Mann–Whitney test, t test, and variation partitioning to determine the effects of inside versus outside tree island and bamboo presence on community‐weighted means, woody species diversity, and functional diversity.ResultsWe found a general SC/S strategy with drought‐related functional trade‐offs. Woody plants in tree islands had more acquisitive traits than those within the grasslands. Trait variation was mostly taxonomically than spatially driven, and species composition varied between inside and outside tree islands. Leaf thickness, wood density, and foliar water uptake were unrelated to CSR strategies, suggesting independent trait dimensions and multiple drought‐coping strategies within the predominant S strategy. Islands with bamboo presence showed lower Simpson diversity, lower functional dispersion, lower foliar water uptake, and greater leaf thickness than in tree islands without bamboo.ConclusionsThe observed functional assembly hints toward large‐scale environmental abiotic filtering shaping a stress‐tolerant community strategy, and small‐scale biotic interactions driving small‐scale trait variation. We recommend experimental studies with fire, facilitation treatments, ecophysiological and recruitment traits to elucidate on future tree island expansion and community response to climate change.  相似文献   

12.
BackgroundPlant–pollinator community diversity has been found to decrease under conditions of drought stress; however, research into the temporal dimensions of this phenomenon remains limited. In this study, we investigated the effect of seasonal drought on the temporal niche dynamics of entomophilous flowering plants in a water‐limited ecosystem. We hypothesized that closely related native and exotic plants would tend to share similar life history and that peak flowering events would therefore coincide with phylogenetic clustering in plant communities based on expected phenological responses of plant functional types to limitations in soil moisture availability.LocationGaliano Island, British Columbia, Canada.MethodsCombining methods from pollinator research and phylogenetic community ecology, we tested the influence of environmental filtering over plant community phenology across gradients of landscape disturbance and soil moisture. Floral resource availability and community structure were quantified by counts of flowering shoots. We constructed a robust phylogeny to analyze spatial and temporal variation in phylogenetic patterns across the landscape, testing the significance of the observed patterns against a randomly generated community phylogeny. Phylogenetic metrics were then regressed against factors of disturbance and soil moisture availability.ResultsCritical seasonal fluctuations in floral resources coincided with significant phylogenetic clustering in plant communities, with decreasing plant diversity observed under conditions of increasing drought stress. Exotic plant species in the Asteraceae became increasingly pervasive across the landscape, occupying a late season temporal niche in drought‐stressed environments.Main conclusionResults suggest that environmental filtering is the dominant assembly process structuring the temporal niche of plant communities in this water‐limited ecosystem. Based on these results, and trends seen elsewhere, the overall diversity of plant–pollinator communities may be expected to decline with the increasing drought stress predicted under future climate scenarios.  相似文献   

13.
Carnivore intraguild dynamics depend on a complex interplay of environmental affinities and interspecific interactions. Context‐dependency is commonly expected with varying suites of interacting species and environmental conditions but seldom empirically described. In South Africa, decentralized approaches to conservation and the resulting multi‐tenure conservation landscapes have markedly altered the environmental stage that shapes the structure of local carnivore assemblages. We explored assemblage‐wide patterns of carnivore spatial (residual occupancy probability) and temporal (diel activity overlap) co‐occurrence across three adjacent wildlife‐oriented management contexts—a provincial protected area, a private ecotourism reserve, and commercial game ranches. We found that carnivores were generally distributed independently across space, but existing spatial dependencies were context‐specific. Spatial overlap was most common in the protected area, where species occur at higher relative abundances, and in game ranches, where predator persecution presumably narrows the scope for spatial asymmetries. In the private reserve, spatial co‐occurrence patterns were more heterogeneous but did not follow a dominance hierarchy associated with higher apex predator densities. Pair‐specific variability suggests that subordinate carnivores may alternate between pre‐emptive behavioral strategies and fine‐scale co‐occurrence with dominant competitors. Consistency in species‐pairs diel activity asynchrony suggested that temporal overlap patterns in our study areas mostly depend on species'' endogenous clock rather than the local context. Collectively, our research highlights the complexity and context‐dependency of guild‐level implications of current management and conservation paradigms; specifically, the unheeded potential for interventions to influence the local network of carnivore interactions with unknown population‐level and cascading effects.  相似文献   

14.
Plasminogen activator inhibitor‐1 (PAI‐1) is the primary inhibitor for plasminogen activators, tissue‐type plasminogen activator (tPA) and urokinase‐type plasminogen activator (uPA). As a unique member in the serine protease inhibitor (serpin) family, PAI‐1 is metastable and converts to an inactive, latent structure with a half‐life of 1–2 hr under physiological conditions. Unusual effects of metals on the rate of the latency conversion are incompletely understood. Previous work has identified two residues near the N‐terminus, H2 and H3, which reside in a high‐affinity copper‐binding site in PAI‐1 [Bucci JC, McClintock CS, Chu Y, Ware GL, McConnell KD, Emerson JP, Peterson CB (2017) J Biol Inorg Chem 22:1123–1,135]. In this study, neighboring residues, H10, E81, and H364, were tested as possible sites that participate in Cu(II) coordination at the high‐affinity site. Kinetic methods, gel sensitivity assays, and isothermal titration calorimetry (ITC) revealed that E81 and H364 have different roles in coordinating metal and mediating the stability of PAI‐1. H364 provides a third histidine in the metal‐coordination sphere with H2 and H3. In contrast, E81 does not appear to be required for metal ligation along with histidines; contacts made by the side‐chain carboxylate upon metal binding are perturbed and, in turn, influence dynamic fluctuations within the region encompassing helices D, E, and F and the W86 loop that are important in the pathway for the PAI‐1 latency conversion. This investigation underscores a prominent role of protein dynamics, noncovalent bonding networks and ligand binding in controlling the stability of the active form of PAI‐1.  相似文献   

15.
Endozoochory, a mutualistic interaction between plants and frugivores, is one of the key processes responsible for maintenance of tropical biodiversity. Islands, which have a smaller subset of plants and frugivores when compared with mainland communities, offer an interesting setting to understand the organization of plant–frugivore communities vis‐a‐vis the mainland sites. We examined the relative influence of functional traits and phylogenetic relationships on the plant–seed disperser interactions on an island and a mainland site. The island site allowed us to investigate the organization of the plant–seed disperser community in the natural absence of key frugivore groups (bulbuls and barbets) of Asian tropics. The endemic Narcondam Hornbill was the most abundant frugivore on the island and played a central role in the community. Species strength of frugivores (a measure of relevance of frugivores for plants) was positively associated with their abundance. Among plants, figs had the highest species strength and played a central role in the community. Island‐mainland comparison revealed that the island plant–seed disperser community was more asymmetric, connected, and nested as compared to the mainland community. Neither phylogenetic relationships nor functional traits (after controlling for phylogenetic relationships) were able to explain the patterns of interactions between plants and frugivores on the island or the mainland pointing toward the diffused nature of plant–frugivore interactions. The diffused nature is a likely consequence of plasticity in foraging behavior and trait convergence that contribute to governing the interactions between plants and frugivores. This is one of the few studies to compare the plant–seed disperser communities between a tropical island and mainland and demonstrates key role played by a point‐endemic frugivore in seed dispersal on island.  相似文献   

16.
施肥和刈割分别对植物群落物种多样性和生产力有重要的影响。采用不同施肥水平和刈割频度, 研究了施肥和刈割对亚高山草甸植物群落物种多样性与生产力及其关系的影响。结果显示, 5年的施肥和刈割处理对群落地上生物量均有显著影响, 但对物种多样性影响不显著; 物种多样性与生产力之间的关系因施肥和刈割次数的不同而不同, 有负相关、二次函数关系和不相关等几种类型, 多数为不相关。此结果表明施肥和刈割并不总是一致性地影响群落物种多样性与生产力。因此, 不同施肥和刈割处理下的亚高山草甸植物群落生产力与物种多样性之间并没有确定的关系。  相似文献   

17.
在草地刈割过程中, 群落地上生物量的时间稳定性与物种多样性及物种异步性关系密切。本文基于2014-2018年的野外刈割实验, 研究了围封(对照, 无刈割)、轻度(留茬8 cm)、中度(留茬5 cm)和重度(留茬2 cm)等不同刈割强度对内蒙古大针茅(Stipa grandis)典型草原地上生物量时间稳定性的影响。结果表明: (1)与围封相比, 刈割对群落时间稳定性无显著影响, 但对种群平均时间稳定性影响显著, 重度刈割处理的种群平均时间稳定性显著降低; 且种群平均时间稳定性与群落时间稳定性无显著相关关系, 表明这二者独立波动。(2)与围封相比, 重度刈割处理的物种丰富度显著降低, 但它与群落时间稳定性无显著相关关系, 表明物种丰富度不是群落地上生物量时间稳定性的主导因素; 此外, 重度刈割处理的群落抵抗力显著降低, 但也与群落时间稳定性无显著相关关系。(3)异步性与群落稳定性存在极显著正相关关系, 但刈割对异步性无显著影响, 故未造成群落稳定性显著变化。因此, 异步性可能是影响群落时间稳定性的主导效应之一, 在草地管理与利用过程中, 可从物种异步性角度来对草地稳定性进行评价。  相似文献   

18.
Theory predicts that the temporal stability of productivity, measured as the ratio of the mean to the standard deviation of community biomass, increases with species richness and evenness. We used experimental species mixtures of grassland plants to test this hypothesis and identified the mechanisms involved. Additionally, we tested whether biodiversity, productivity and temporal stability were similarly influenced by particular types of species interactions. We found that productivity was less variable among years in plots planted with more species. Temporal stability did not depend on whether the species were planted equally abundant (high evenness) or not (realistically low evenness). Greater richness increased temporal stability by increasing overyielding, asynchrony of species fluctuations and statistical averaging. Species interactions that favoured unproductive species increased both biodiversity and temporal stability. Species interactions that resulted in niche partitioning or facilitation increased both productivity and temporal stability. Thus, species interactions can promote biodiversity and ecosystem services.  相似文献   

19.
The impact of biodiversity on the stability of ecological communities has been debated among biologists for more than a century. Recently summarized empirical evidence suggests that biodiversity tends to enhance the temporal stability of community-level properties such as biomass; however, the underlying mechanisms driving this relationship remain poorly understood. Here, we report the results of a microcosm study in which we used simplified systems of freshwater microalgae to explore how the phylogenetic relatedness of species influences the temporal stability of community biomass by altering the nature of their competitive interactions. We show that combinations of two species that are more evolutionarily divergent tend to have lower temporal stability of biomass. In part, this is due to negative ‘selection effects’ in which bicultures composed of distantly related species are more likely to contain strong competitors that achieve low biomass. In addition, bicultures of distantly related species had on average weaker competitive interactions, which reduced compensatory dynamics and decreased the stability of community biomass. Our results demonstrate that evolutionary history plays a key role in controlling the mechanisms, which give rise to diversity–stability relationships. As such, patterns of shared ancestry may help us predict the ecosystem-level consequences of biodiversity loss.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号