首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 629 毫秒
1.
2.
Fas Activated Serine/Threonine Kinase (FASTK) family is a protein family encoded in the nuclear genome that spans the mitochondria and executes numerous functions, and consists of FASTK, the founding member along with 5 homologous proteins FASTKD1-5. Up regulation of FASTK family members have not only been implicated in tumour progression and invasion but also in increased resistance to chemotherapy proven by their knockdown leading to increased sensitivity to drugs. Thus, this review reports the implication of FASTK proteins in cancer and hence provides a scope to emphasise the role of these proteins in Oral Cancer.  相似文献   

3.
Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
SDR5C1 is an amino and fatty acid dehydrogenase/reductase, moonlighting as a component of human mitochondrial RNase P, which is the enzyme removing 5′-extensions of tRNAs, an early and crucial step in tRNA maturation. Moreover, a subcomplex of mitochondrial RNase P catalyzes the N1-methylation of purines at position 9, a modification found in most mitochondrial tRNAs and thought to stabilize their structure. Missense mutations in SDR5C1 cause a disease characterized by progressive neurodegeneration and cardiomyopathy, called HSD10 disease. We have investigated the effect of selected mutations on SDR5C1''s functions. We show that pathogenic mutations impair SDR5C1-dependent dehydrogenation, tRNA processing and methylation. Some mutations disrupt the homotetramerization of SDR5C1 and/or impair its interaction with TRMT10C, the methyltransferase subunit of the mitochondrial RNase P complex. We propose that the structural and functional alterations of SDR5C1 impair mitochondrial RNA processing and modification, leading to the mitochondrial dysfunction observed in HSD10 patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号