首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sensory adaptation by the chemotaxis system of Escherichia coli requires adjustments of the extent of methyl esterification of the chemotaxis receptor proteins. One mechanism utilized by E. coli to make such adjustments is to control the activity of CheB, the enzyme responsible for removing receptor methyl ester groups. Previous work has established the existence of a multicomponent signal transduction pathway that enables the chemotaxis receptor proteins to control the methylesterase activity in response to chemotactic stimuli. We isolated and characterized CheB mutants that do not respond normally to this control mechanism. In intact cells these CheB variants could not be activated in response to negative chemotaxis stimuli. Further characterization indicated that these CheB variants could not be phosphorylated by the chemotaxis protein kinase CheA. Disruption of the mechanism responsible for regulating methylesterase activity was also observed in cells carrying chromosomal deletions of either cheA or cheW as well as in cells expressing mutant versions of CheA that lacked kinase activity. These results provide further support for recent proposals that activation of the methylesterase activity of CheB involves phosphorylation of CheB by CheA. Furthermore, our findings suggest that CheW plays an essential role in enabling the chemotaxis receptor proteins to control the methylesterase activity, possibly by controlling the CheA-CheB phosphotransfer reaction.  相似文献   

2.
The definition of signaling pathways in endothelial cells has been hampered by the difficulty of transiently transfecting these cells with high efficiency. This investigation was undertaken to develop an efficient technique for the transfection of endothelial cells for functional analyses. Cells cotransfected with plasmid expressing green fluorescent protein (GFP) and the plasmid of interest were isolated by fluorescence-activated cell sorting (FACS) based on GFP expression. In the sorted cell population, a 2.5-fold enhancement in the number of cells expressing the gene of interest was observed, as confirmed by FACS analysis and Western blotting. Sorted cells retained functional properties, as demonstrated by chemotaxis to the agonist sphingosine 1-phosphate (SPP). To demonstrate the usefulness of this method for defining cellular signaling pathways, cells were cotransfected with plasmids encoding GFP and the carboxyl-terminal domain of the beta-adrenergic receptor kinase (beta ARKct), which inhibits signaling through the beta gamma dimer of heterotrimeric G-proteins. SPP-induced chemotaxis in sorted cells coexpressing beta ARKct was inhibited by 80%, demonstrating that chemotaxis was driven by a beta gamma-dependent pathway. However, no significant inhibition was observed in cells transfected with betaARKct but not enriched by sorting. Thus, we have developed a method for enriching transfected cells that allows the elucidation of crucial mechanisms of endothelial cell activation and function. This method should find wide applicability in studies designed to define pathways responsible for regulation of motility and other functions in these dynamic cells.  相似文献   

3.
Response regulator output in bacterial chemotaxis.   总被引:12,自引:0,他引:12       下载免费PDF全文
Chemotaxis responses in Escherichia coli are mediated by the phosphorylated response-regulator protein P-CheY. Biochemical and genetic studies have established the mechanisms by which the various components of the chemotaxis system, the membrane receptors and Che proteins function to modulate levels of CheY phosphorylation. Detailed models have been formulated to explain chemotaxis sensing in quantitative terms; however, the models cannot be adequately tested without knowledge of the quantitative relationship between P-CheY and bacterial swimming behavior. A computerized image analysis system was developed to collect extensive statistics on freeswimming and individual tethered cells. P-CheY levels were systematically varied by controlled expression of CheY in an E.coli strain lacking the CheY phosphatase, CheZ, and the receptor demethylating enzyme CheB. Tumbling frequency was found to vary with P-CheY concentration in a weakly sigmoidal fashion (apparent Hill coefficient approximately 2.5). This indicates that the high sensitivity of the chemotaxis system is not derived from highly cooperative interactions between P-CheY and the flagellar motor, but rather depends on nonlinear effects within the chemotaxis signal transduction network. The complex relationship between single flagella rotation and free-swimming behavior was examined; our results indicate that there is an additional level of information processing associated with interactions between the individual flagella. An allosteric model of the motor switching process is proposed which gives a good fit to the observed switching induced by P-CheY. Thus the level of intracellular P-CheY can be estimated from behavior determinations: approximately 30% of the intracellular pool of CheY appears to be phosphorylated in fully adapted wild-type cells.  相似文献   

4.
In a previous study, we identified several structurally unrelated scaffolds of the Rho kinase inhibitor using pharmacophore information obtained from the results of a high-throughput screening and structural information from a homology model of Rho kinase. 1H-Indazole is one of the candidate scaffolds on which a new series of potent Rho kinase inhibitors could be developed. In this study, the detailed structure-activity relationship of 1H-indazole analogues was studied. During this study, we found that the cell-free enzyme inhibitory potential of Rho kinase inhibitors having the 1H-indazole scaffold did not necessarily correlate with their inhibitory potential toward the chemotaxis of cultured cells. The choice of the linker substructure was shown to be an important factor for the 1H-indazole analogues to inhibit the chemotaxis of cells. Optimization of the 1H-indazole inhibitors with respect to the in vitro inhibition of monocyte chemotaxis induced by MCP-1 was carried out. The inhibitory potential was improved both in the cell-free enzyme assay and in the chemotaxis assay.  相似文献   

5.
A simplified capillary chemotaxis assay utilizing a hypodermic needle, syringe, and disposable pipette tip was developed to measure bacterial tactic responses. The method was applied to two strains of subsurface microaerophilic bacteria. This method was more convenient than the Adler method and required less practice. Isolate VT10 was a strain of Pseudomonas syringae, which was isolated from the shallow subsurface. It was chemotactically attracted toward dextrose, glycerol, and phenol, which could be used as sole carbon sources, and toward maltose, which could not be used. Isolate MR100 was phylogenetically related to Pseudomonas mendocina and was isolated from the deep subsurface. It showed no tactic response to these compounds, although, it could use dextrose, maltose, and glycerol as carbon sources. The chemotaxis results obtained by the new method were verified by using the swarm plate assay technique. The simplified technique may be useful for routine chemotactic testing.  相似文献   

6.
构建重组 FN多肽 CH50真核表达载体并在小鼠体内表达 ,研究其趋化与抗肿瘤作用 .采用重组 DNA技术构建表达质粒 ;体内进行基因转染 ,采用 RT- PCR鉴定导入基因的表达 ;通过肝素亲和层析、SDS- PAGE和 Western blot鉴定表达产物 ;腹腔细胞计数、Giemsa染色分析以及肌肉组织切片与染色观察体内基因转染后的趋化作用 ;小鼠黑色素瘤模型研究基因转染抑制肿瘤的作用 .从 CH50原核表达载体获得重组多肽的 c DNA,5′端加上小鼠 IFN- 5′端非编码区和信号肽编码区的 c DNA,3′端加上人 FN c DNA的 3′端非编码区 ;将重组 c DNA插入 p REP8质粒 ,即构建出p CH50 3质粒 .巨噬细胞在体内经 p CH50 3转染 ,然后在体外培养 ,能够产生 CH50多肽 .以p CH50 3分别进行腹腔基因转染和肌肉内基因转染 ,均可对免疫细胞产生趋化作用 ;p CH50 3体内转染可以使小鼠腹腔内黑色素肿瘤结节数降低 50 %~ 60 % . CH50真核表达载体 p CH50 3可在小鼠体内表达 ,体内基因转染可趋化免疫细胞和抑制肿瘤结节形成 ,在肿瘤综合治疗中有重要意义 .  相似文献   

7.
Amyloid-beta, the pathologic protein in Alzheimer's disease, induces chemotaxis and production of reactive oxygen species in phagocytic cells, but mechanisms have not been fully defined. Here we provide three lines of evidence that the phagocyte G protein-coupled receptor (N-formylpeptide receptor 2 (FPR2)) mediates these amyloid-beta-dependent functions in phagocytic cells. First, transfection of FPR2, but not related receptors, including the other known N-formylpeptide receptor FPR, reconstituted amyloid-beta-dependent chemotaxis and calcium flux in HEK 293 cells. Second, amyloid-beta induced both calcium flux and chemotaxis in mouse neutrophils (which express endogenous FPR2) with similar potency as in FPR2-transfected HEK 293 cells. This activity could be specifically desensitized in both cell types by preincubation with a specific FPR2 agonist, which desensitizes the receptor, or with pertussis toxin, which uncouples it from G(i)-dependent signaling. Third, specific and reciprocal desensitization of superoxide production was observed when N-formylpeptides and amyloid-beta were used to sequentially stimulate neutrophils from FPR -/- mice, which express FPR2 normally. Potential biological relevance of these results to the neuroinflammation associated with Alzheimer's disease was suggested by two additional findings: first, FPR2 mRNA could be detected by PCR in mouse brain; second, induction of FPR2 expression correlated with induction of calcium flux and chemotaxis by amyloid-beta in the mouse microglial cell line N9. Further, in sequential stimulation experiments with N9 cells, N-formylpeptides and amyloid-beta were able to reciprocally cross-desensitize each other. Amyloid-beta was also a specific agonist at the human counterpart of FPR2, the FPR-like 1 receptor. These results suggest a unified signaling mechanism for linking amyloid-beta to phagocyte chemotaxis and oxidant stress in the brain.  相似文献   

8.
Fibronectin (FN) is a multidomain extracellular matrix protein that induces attachment and chemotactic migration of fibroblastic cells. In this study we analyzed the molecular determinants involved in the FN-induced chemotactic migration of normal and SV40-transformed 3T3 cells. Two different monoclonal antibodies to the cell-binding site of FN blocked chemotaxis to a 140-kD FN fragment (Ca 140) containing the cell-binding domain. A monoclonal antibody to a determinant distant from the cell-binding site did not affect chemotaxis. A synthetic tetrapeptide, RGDS, which represents the major cell-attachment sequence, was able to compete with FN and the Ca 140 fragment in chemotaxis assays, but this peptide itself had no significant chemotactic activity. A larger peptide encompassing this sequence, GRGDSP, was chemotactic, while the peptide GRGESP, where a glutamic acid residue was substituted for aspartic acid, was inactive. Chemotactic migration could be prevented in a dose-dependent manner by a rabbit polyclonal antiserum to a 140-kD cell surface FN receptor. This antibody was more effective on normal than on transformed 3T3 cells. Neither the anti-FN receptor antiserum nor a monoclonal antibody to the cell-binding site of FN blocked migration induced by another potent chemoattractant, platelet-derived growth factor. These data indicate that FN-induced chemotaxis of 3T3 and SV3T3 cells is mediated via the RGDS cell-attachment site of FN and the 140-kD cell surface FN receptor. The interaction is specific and can be altered by transformation.  相似文献   

9.
Myxococcus xanthus cells aggregate and develop into multicellular fruiting bodies in response to starvation. A new M. xanthus locus, designated dif for defective in fruiting, was identified by the characterization of a mutant defective in fruiting body formation. Molecular cloning, DNA sequencing and sequence analysis indicate that the dif locus encodes a new set of chemotaxis homologues of the bacterial chemotaxis proteins MCPs (methyl-accepting chemotaxis proteins), CheW, CheY and CheA. The dif genes are distinct genetically and functionally from the previously identified M. xanthus frz chemotaxis genes, suggesting that multiple chemotaxis-like systems are required for the developmental process of M. xanthus fruiting body formation. Genetic analysis and phenotypical characterization indicate that the M. xanthus dif locus is required for social (S) motility. This is the first report of a M. xanthus chemotaxis-like signal transduction pathway that could regulate or co-ordinate the movement of M. xanthus cells to bring about S motility.  相似文献   

10.
Genetically differerent clones of myeloid leukemic cells have been used to study the activation of normal genes in these malignant cells by the normal physiological inducer of myeloid cell differentiation, the protein MGI. In appropriate clones, MGI induced the normal differentiation-associated property of chemotaxis to a variety of compounds including the steroid hormone dexamethasone. The induced cells could also distinguish among different steroids by chemotaxis, suggesting that there are specific membrane interaction sites for steroids. The sequence of differentiation in these cells was the formation of C3 and Fc rosettes leads to phagocytosis of these rosettes and chemotaxis leads to synthesis and secretion of lysozyme leads to mature macrophages or granulocytes. The use of appropriate mutants and the comparison of induction by MGI and dexamethasone has shown that chemotaxis to casein can be dissociated from: chemotaxis to dexamethasone, ATP, and bacterial factor; formation of C3 or Fc rosettes; phagocytosis of these rosettes; synthesis of lysozyme; and the formation of mature cells. It is suggested from this dissection of normal differentiation that there are different membrane changes for specific chemotaxis, formation of these rosettes, and their phagocytosis, and that induction of each of these properties requires activation of different genes.  相似文献   

11.
Current in vitro assays used in assessing tumor motility could be improved by the development of a simple technique that would facilitate studies of the impact of specific genes on pharmacologically altered chemotaxis. We developed a technique that improves on the classic transwell assay by using fluorescence and luminescence to assess chemotaxis. In this transient transfection system, co-transfection of a reporter construct and a gene with an unknown impact on motility are coupled with biochemical assays to quantitate the number of cells that have received a transferred gene, which subsequently crosses the membrane. This assay was found to be less variable than the conventional transwell chamber and is easily adaptable to studies of cell motility or cell invasion. We also demonstrate that this assay can detect the effect of both genetic and pharmacological inhibition of motility alone and in combination. It therefore has the potential to reveal additive or synergistic effects.  相似文献   

12.
Protein kinase Czeta (PKCzeta) plays a critical role in cancer cell chemotaxis. Upon activation induced by epidermal growth factor (EGF) or chemoattractant SDF-1alpha, PKCzeta redistributes from cytosol to plasma membrane. Based on this property, we developed a rapid cell-based assay for inhibitors of ligand-induced PKCzeta activation. PKCzeta green fluorescent protein (GFP) was transfected into human breast cancer cells, MDA-MB-231, to establish a stable cell line, PKCzeta-GFP/MDA-MB-231. PKCzeta-GFP/MDA-MB-231 maintained phenotypes, such as chemotaxis, adhesion, and cell migration, similar to those of its parental cell line. Therefore it could be used as a representative cancer cell line. EGF induced translocation of PKCzeta-GFP to plasma membrane in a pattern similar to that of endogenous PKCzeta, indicative of activation of PKCzeta Translocation of PKCzeta-GFP could be easily and directly recorded by an inverted fluorescence microscope. Inhibitors of chemotaxis also impaired the translocation of PKCzeta-GFP, which further validated the biological relevance of our assay. Taken together, we have developed a simple, rapid, and reliable assay to detect the ligand-induced activation of PKCzeta in human cancer cells. This assay can be used in screening for inhibitors of PKCzeta activation, which is critically required for cancer cell chemotaxis.  相似文献   

13.
Direct observations of cancer cell invasion underscore the importance of chemotaxis in invasion and metastasis. Yet, there is to date, no established method for real-time imaging of cancer chemotaxis towards factors clinically correlated with metastasis. A chamber has been designed and tested, called the Soon chamber, which allows the direct observation and quantification of cancer cell chemotaxis. The premise for the design of the Soon chamber is the incorporation of a dam, which creates a steep gradient while retaining stability associated with a pressure-driven system. The design is based on the characteristics of cancer cell motility such as relatively low speeds, and slower motility responses to stimuli compared to classical amoeboid cells like neutrophils and Dictyostelium. We tested MTLn3 breast carcinoma cells in the Soon chamber in the presence of an EGF gradient, obtaining hour-long time-lapses of chemotaxis. MTLn3 cells migrated further, more linearly, and at greater speeds within an EGF gradient compared to buffer controls. Computation of the degree of orientation towards the EGF/buffer source showed that MTLn3 cells were significantly more directional toward the EGF gradient compared to buffer controls. Analysis of the time-lapse data obtained during chemotaxis demonstrated that two populations of cancer cells were present. One population exhibited oscillations in directionality occurring at average intervals of 12 min while the second population exhibited sustained high levels of directionality toward the source of EGF. This result suggests that polarized cancer cells can avoid the need for oscillatory path corrections during chemotaxis.  相似文献   

14.
Chemotaxis of rat mast cells toward adenine nucleotides.   总被引:6,自引:0,他引:6  
Rat mucosal mast cells express P2 purinoceptors, occupation of which mobilizes cytosolic Ca2+ and activates a potassium conductance. The primary function of this P2 system in mast cell biology remains unknown. Here, we show that extracellular ADP causes morphological changes in rat bone marrow-cultured mast cells (BMMC) typical of those occurring in cells stimulated by chemotaxins, and that the nucleotides ADP, ATP, and UTP are effective chemoattractants for rat BMMC. ADP was also a chemotaxin for murine J774 monocytes. The nucleotide selectivity and pertussis toxin sensitivity of the rat BMMC migratory response suggest the involvement of P2U receptors. Poorly hydrolyzable derivatives of ADP and ATP were effective chemotaxins, obviating a role for adenosine receptors. Buffering of external Ca2+ at 100 nM or reduction of the electrical gradient driving Ca2+ entry (by elevating external K+) blocked ADP-driven chemotaxis, suggesting a role for Ca2+ influx in this process. Anaphylatoxin C5a was a potent chemotaxin (EC50 approximately 0.5 nM) for J774 monocytes, but it was inactive on rat BMMC in the presence or absence of laminin. Ca2+ removal or elevated [K+] had modest effects on C5a-driven chemotaxis of J774 cells, implicating markedly different requirements for Ca2+ signaling in C5a- vs ADP-mediated chemotaxis. This is supported by the observation that depletion of Ca2+ stores with thapsigargin completely blocked migration induced by ADP but not C5a. These findings suggest that adenine nucleotides liberated from parasite-infested tissue could participate in the recruitment of mast cells by intestinal mucosa.  相似文献   

15.
A method for measuring bacterial chemotaxis parameters in a microcapillary   总被引:1,自引:0,他引:1  
A new method was developed which enables chemotaxis parameters to be measured at a single-cell level inside a capillary for the first time. The chemotaxis chamber consists of two reservoirs communicating through a capillary tube 50 mum in diameter. Chemotaxis parameters are measured inside the capillary using image analysis, after a nearly linear attractant concentration gradient has been generated along the capillary by diffusion. Compared to previously published techniques, this method provides a well-characterized chemoattractant concentration profile in addition to allowing single-cell parameters to be measured inside a fine capillary. This procedure was used to measure the single-cell chemotaxis parameters for Escherichia coli K12, and the results are compared to published data on single E. coli cells chemotaxing in bulk. (c) 1996 John Wiley & Sons, Inc.  相似文献   

16.
The effects of chloramphenicol and p-fluorophenylalanine (p-FPA) on growth, proportion of motile cells, average rate of motility, and the chemotactic response of a methionine auxotroph of Escherichia coli K-12 were studied. Kinetic studies revealed that the inhibition of chemotaxis by p-FPA can be explained by the effect on growth, proportion of motile cells, and average rate of motility rather than a selective inhibition of chemotaxis per se. The effect of chloramphenicol on chemotaxis could not be explained in terms of these characteristics. It is concluded that low concentrations of chloramphenicol, unlike p-FPA, selectively inhibit chemotaxis.  相似文献   

17.
Motility is a major trait for competitive tomato root-tip colonization by Pseudomonas fluorescens. To test the hypothesis that this role of motility is based on chemotaxis toward exudate components, cheA mutants that were defective in flagella-driven chemotaxis but retained motility were constructed in four P. fluorescens strains. After inoculation of seedlings with a 1:1 mixture of wild-type and nonmotile mutants all mutants had a strongly reduced competitive root colonizing ability after 7 days of plant growth, both in a gnotobiotic sand system as well as in nonsterile potting soil. The differences were significant on all root parts and increased from root base to root tip. Significant differences at the root tip could already be detected after 2 to 3 days. These experiments show that chemotaxis is an important competitive colonization trait. The best competitive root-tip colonizer, strain WCS365, was tested for chemotaxis toward tomato root exudate and its major identified components. A chemotactic response was detected toward root exudate, some organic acids, and some amino acids from this exudate but not toward its sugars. Comparison of the minimal concentrations required for a chemotactic response with concentrations estimated for exudates suggested that malic acid and citric acid are among major chemo-attractants for P. fluorescens WCS365 cells in the tomato rhizosphere.  相似文献   

18.
Bacterial chemotaxis to naphthalene   总被引:1,自引:0,他引:1  
The chemotaxis of two pseudomonads, P. putida AZ (Naph+) and P. putida AZ (Naph-), differing in the ability to metabolize naphthalene was studied by the known capillary method of Adler and the densitometric method devised in our laboratory. The migration of P. putida AZ (Naph+) cells toward increasing levels of naphthalene was accompanied by the formation of a migrating front of converted naphthalene. P. putida AZ (Naph-) cells, too, exhibited positive chemotaxis to naphthalene, but they did not form the front of converted naphthalene. The analysis of experimental data in terms of a kinetic model of bacterial chemotaxis showed that the densitometric method is a potential tool for studying bacterial chemotaxis to hydrophobic organic substances.  相似文献   

19.
In a previous study, we show that stimulation of chemotaxis in rat pheochromocytoma PC12 cells by nerve growth factor (NGF) and epidermal growth factor (EGF) requires activation of the RAS-ERK signaling pathway. In this study, we compared the threshold levels of ERK activation required for EGF and NGF-stimulated chemotaxis in PC12 cells. The threshold ERK activity required for NGF to stimulate chemotaxis was approximately 30% lower than that for EGF. PD98059 treatment inhibited EGF stimulation of growth and chemotaxis; however, stimulation of chemotaxis required an EGF concentration approximately 10 times higher than for stimulation of PC12 cell growth. Thus, ERK-dependent cellular functions can be differentially elicited by the concentration of EGF. Also, treatment of PC12 cells with the PI3-K inhibitor LY294002 reduced ERK activation by NGF; thus, higher NGF concentrations were required to initiate chemotaxis and to achieve the same maximal chemotactic response seen in untreated PC12 cells. Therefore, the threshold NGF concentration to stimulate chemotaxis could be adjusted by the crosstalk between the ERK and PI3-K pathways, and the contributions of PI3-K and ERK to signal chemotaxis varied with the concentrations of NGF used. In comparison, LY294002 treatment had no effect on ERK activation by EGF, but the chemotactic response was reduced at all the concentrations of EGF tested indicating that NGF and EGF differed in the utilization of ERK and PI3-K to signal chemotaxis in PC12 cells. (Mol Cell Biochem 271: 29–41, 2005)  相似文献   

20.
Microglia are immune effector cells in the central nervous system (CNS) and their activation, migration and proliferation play crucial roles in brain injuries and diseases. We examined the role of intracellular Ca(2+) -independent phospholipase A(2) (iPLA(2)) in the regulation of microglia chemotaxis toward ADP. Inhibition of iPLA(2) by 4-bromoenol lactone (BEL) or iPLA(2) knockdown exerted a significant inhibition on phosphatidylinositol-3-kinase (PI3K) activation and chemotaxis. Further examination revealed that iPLA(2) knockdown abrogated Src activation, which is required for PI3K activation and chemotaxis. Colocalization studies showed that cSrc-GFP was retained in the endosomal recycling compartment (ERC) in iPLA(2) knockdown cells, but the addition of arachidonic acid (AA) could restore cSrc trafficking to the plasma membrane by allowing the formation/release of recycling endosomes associated with cSrc-GFP. Using BODIPY-AA, we showed that AA is selectively enriched in recycling endosomes. These results suggest that AA is required for the cSrc trafficking to the plasma membrane by controlling the formation/release of recycling endosomes from the ERC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号