首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We experimentally tested the indirect and direct effects of Amblyseius womersleyi on Tetranychus kanzawai. The presence of A. womersleyi indirectly reduced egg production of T. kanzawai by 25.9%, although this effect had less impact than direct egg predation. The mechanism of this indirect effect could be explained by behavioral changes in T. kanzawai females; in the presence of A. womersleyi, T. kanzawai females allocated more time to seeking refuge on webs at the expense of feeding on leaves.  相似文献   

2.
M. Mochizuki 《BioControl》2003,48(2):207-221
To prevent the resurgence of the Kanzawa spider mite, Tetranychus kanzawai Kishida, on tea plants caused by the application of synthetic pyrethroid insecticides (SP), an SP-resistant strain of the predatory mite Amblyseius womersleyi Schicha was released onto tea bushes under SP (permethrin) application. The released predators successfully survived and may be able to suppress T. kanzawai. In the plot where A. womersleyi was released, the damage to new leaves was less severe than in the control plot and the predators remained resistant to the permethrin in the bushes. The selective use of pesticides that are harmless against natural enemies is necessary to achieve a program of integrated tea pest management. Although mortality of adult females of the tested strain in response to SP was from 6.5 to 89.3%, and mortality was more than 95% in response to several carbamate and organophosphate insecticides, usefulness of A. womersleyi as an agent of biological control was successfully demonstrated in the present study.  相似文献   

3.
Studies have proposed that predators of herbivores suffer significant fitness losses from the defense chemicals of host plants, and that herbivores adapted to these chemicals may experience reduced predation risk when residing on such plant species. We examined the effects of oleander, Nerium indicum Mill. (Apocynaceae), a host plant of the spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae), on their prime predator, Neoseiulus womersleyi (Schicha) (Acari: Phytoseiidae), and tested the hypothesis that this host plant provides enemy‐free space. At the study sites, T. kanzawai occurred on oleander shrubs; in contrast, although N. womersleyi was present in the area, no individuals were found on oleander. Tetranychus kanzawai feeding on oleander negatively affected the settlement, development, and egg production of N. womersleyi. The lower egg production was a result of both the direct effects of oleander and the indirect effects via T. kanzawai. Previous studies showed that the fitness of T. kanzawai in the presence of N. womersleyi was lower than that in the absence of the predator, and lower on oleander than on other palatable host plant species in the absence of predators. Our findings suggest that N. womersleyi may not be able to invade T. kanzawai patches on oleander shrubs, which results in the fitness of T. kanzawai being higher on oleander than on other host plant species in the same area when N. womersleyi is present. This supports the hypothesis that T. kanzawai acquires enemy‐free space on oleander using the direct and indirect adverse effects of oleander on their predators as major defense mechanisms.  相似文献   

4.
Mating behaviour often increases predation risk, but the vulnerability within mating pairs differs between the sexes. Such a sex difference is expected to lead to differences in responses to predation risk between the sexes. In the two‐spotted spider mite Tetranychus urticae, males engage in pre‐copulatory mate guarding because only the first mating results in fertilisation. We investigated (i) whether pre‐copulatory pairs are more conspicuous to the predatory mite Phytoseiulus persimilis than solitary females, (ii) whether the vulnerability to the predator differs between sexes within the pre‐copulatory pair, (iii) whether each sex of T. urticae responds to predation risk during pre‐copulatory mate guarding and (iv) whether T. urticae's response to predation risk affects predator behaviour. Because T. urticae females are immobile during pre‐copulatory mate guarding, we observed male behaviour to evaluate effects of predation risk. We found that the predators detect more pre‐copulatory pairs than solitary females and that more females than males of the pre‐copulatory pairs are preyed upon by the predators. The preference of spider mite males for pre‐copulatory pairs versus solitary females was affected by whether or not the female had been exposed to predators during development. Male T. urticae exposed to predation risk did not alter their behaviour. These results suggest that only the most vulnerable sex, that is the female, responds to predation risk, which modifies male behaviour. Regardless of T. urticae females’ experience, however, P. persimilis detected more T. urticae pre‐copulatory pairs than solitary females, suggesting that pre‐copulatory mate guarding itself is dangerous for T. urticae females when these predators are present. We discuss our results in the context of sex‐dependent differences in predation risk.  相似文献   

5.
In egg‐laying animals with no post‐oviposition parental care, between‐ or within‐patch oviposition site selection can determine offspring survival. However, despite the accumulation of evidence supporting the substantial impact predators have on oviposition site selection, few studies have examined whether oviposition site shift within patches (“micro‐oviposition shift”) reduces predation risk to offspring. The benefits of prey micro‐oviposition shift are underestimated in environments where predators cannot disperse from prey patches. In this study, we examined micro‐oviposition shift by the herbivorous mite Tetranychus kanzawai in response to the predatory mite, Neoseiulus womersleyi, by testing its effects on predator patch exploitation in situations where predatory mites were free to disperse from prey patches. Adult T. kanzawai females construct three‐dimensional webs on leaf surfaces and usually lay eggs under the webs; however, females that have experienced predation risks, shift oviposition sites onto the webs even in the absence of current predation risks. We compared the predation of eggs on webs deposited by predator‐experienced females with those on leaf surfaces. Predatory mites left prey patches with more eggs unpredated when higher proportions of prey eggs were located on webs, and egg survival on webs was much higher than that on leaf surfaces. These results indicate that a micro‐oviposition shift by predator‐experienced T. kanzawai protects offspring from predation, suggesting adaptive learning and subsociality in this species. Conversely, fecundity and longevity of predator‐experienced T. kanzawai females were not reduced compared to those of predator‐naïve females; we could not detect any costs associated with the learned micro‐oviposition shift. Moreover, the previously experienced predation risks did not promote between‐patch dispersal of T. kanzawai females against subsequently encountered predators. Based on these results, the relationships of between‐patch oviposition site selection and micro‐oviposition shift are discussed.  相似文献   

6.
In the Kanzawa spider mite, Tetranychus kanzawai (Acari: Tetranychidae), adult males guard pre-reproductive quiescent females. I experimentally examined the effects of density experience during development and/or after adult emergence on precopulatory mate guarding behavior by T. kanzawai males. Mate guarding behavior was modified by density experience after adult emergence. When males had previously experienced high density after adult emergence (n = 71), 73.2% of them engaged in precopulatory mate guarding. In contrast, when males had previously experienced low density after adult emergence (n = 82), 61.0% of them did not guard females. Mate guarding with physical contact occurred more frequently when males had previously experienced a high density of potential rivals than when they had not, but the difference in behavior between the two groups of males was marginally not significant. Nevertheless, these results suggest overall that T. kanzawai males change mate guarding behavior in response to previously experienced density.  相似文献   

7.
We used 11 wild plants to experimentally test the effects of leaf trichomes and leaf quality on host plant acceptance by a phytophagous spider mite, Tetranychus kanzawai, in the absence of predators. There was a positive correlation between leaf hair traits (height/density) and host plant acceptance. We used two model plants (Phaseolus vulgaris and Phaseolus lunatus; the former had higher and denser leaf hairs than the latter) to examine the effects of leaf hairs on the dispersal and fecundity of T. kanzawai in the presence of a predatory mite, Neoseiulus womersleyi. In the presence of N. womersleyi, significantly fewer T. kanzawai females dispersed from a P. vulgaris leaf than from a P. lunatus leaf. Moreover, in the presence of the predator the fecundity of T. kanzawai females on P. lunatus was significantly lower than on P. vulgaris, although in terms of host quality the two plants were equivalent. In the presence of N. womersleyi, T. kanzawai females on P. vulgaris spent more time on webs than those on P. lunatus. Moreover, webs seemed to be less accessible than leaf surfaces to the predator. These results suggest that leaf hairs provide a refuge for T. kanzawai adult females.  相似文献   

8.
On the young leaves, shoots, and buds of Cayratia japonica (Thunb.) Gagnep. (Vitaceae), we observed nutritious bodies called pearl bodies and hypothesized that they are utilized by generalist predators as alternative foods. Some ambulate organisms consume pearl bodies in the wild and the predatory mite Euseius sojaensis (Ehara) (Acari: Phytoseiidae) was considered as a primary candidate. Pearl bodies promoted E. sojaensis settlement on C. japonica leaves and E. sojaensis could prey on the phytophagous mite Tetranychus kanzawai Kishida (Acari: Tetranychidae) when the predators settle on a leaf before the prey. In addition, the presence of pearl bodies did not reduce predation of E. sojaensis on T. kanzawai. This was seemingly because food quality of T. kanzawai was higher than pearl bodies. These results implied that pearl bodies on C. japonica leaves are utilized by E. sojaensis as alternative foods.  相似文献   

9.
Effects of host-plant quality on two-spotted spider mite,Tetranychus urticae Koch, mate location and guarding behaviors were described using a no-choice bioassay. Males and quiescent deutonymphs were collected from lima bean leaves of one of two host qualities. High-chlorophyll (HC) leaves had been infested with spider mites for 6–10 days, while low-chlorophyll (LC) leaves had been infested for>21 days. Three parameters of maleT. urticae guarding behavior were quantified: approach arrestment, and arrestment duration. HC males approached quiescent deutonymphs more often than did LC males, even though host quality of females had no effect on male approach frequency. HC males were arrested more frequently by HC quiescent deutonymphs than were LC males, while LC males were arrested more often by LC females than were HC males. However, a different pattern was observed for arrestment duration. HC males were arrested for twice as long by LC quiescent deutonymphs than by HC females, while the LC-male arrestment durations elicited by HC and LC females did not differ. These results show that host-plant quality affectsT. urticae intersexual communication, in terms of both the female signal and the male response. Whether the differing male responses observed in this study indicate alternativeT. urticae mating strategies or are incidental by-products of host-induced physiological changes remains to be determined.  相似文献   

10.
We used bioassays to evaluate the arrestment response of male twospotted spider mite, Tetranychus urticae Koch, and Banks grass mite, Oligonychus pratensis (Banks) to whole-body extract from conspecific quiescent deutonymphs. We examined the effect of previous behavior on mite response to extract from female quiescent deutonymphs. We also examined male arrestment and guarding behavior in response to 2 extract concentrations and to extract from male quiescent deutonymphs. Male T. urticae and O. pratensis exhibited similar changes in their behavior in response to the different extracts with which we presented them. Males that were guarding quiescent deutonymphs immediately prior to testing spent more time in an untreated 3.5-mm-diameter circle than did males that were previously engaged in other behaviors. However, when nonguarding males were presented with extract of conspecific female quiescent deutonymphs they remained in the stimulus circle as long as guarding males did in an untreated circle. Arrestment duration of nonguarding males increased at 2 higher extract concentrations. The arrestment response was not exclusive to extracts from female quiescent deutonymphs; nonguarding male mites were also arrested by extracts from male quiescent deutonymphs, although for a shorter time. Duration of arrestment was related roughly to size differences between male and female quiescent deutonymphs. Furthermore, males did not show an exclusive preference for guarding conspecific male or female quiescent deutonymphs. It seems unlikely that the arrestant is a specific sex pheromone. Rather, male mites probably use the arrestant as a necessary cue to focus their attention on an individual that may be a suitable mate. Other tactile, visual, and chemical stimuli may then help males to decide whether to remain and assume mate guarding behaviors.  相似文献   

11.
In two adjacent Japanese pear orchards (orchards 1 and 2), we studied the seasonal occurrence of the Kanzawa spider mite, Tetranychus kanzawai, and its predators. Also the response of these predators to the volatiles from kidney bean plants infested with T. kanzawai was investigated using trap boxes in orchard 1. The mite density in orchard 1 was unimodal, with one peak at the end of August. In this orchard, population development of the specialist insect predators, Scolothrips takahashii, Oligota kashmirica benefica and Stethorus japonicus, was almost synchronized with that of the spider mites. These predators disappeared when the density of their prey became very low in mid-September. Both S. takahashii and O. kashmirica benefica abruptly increased in number in orchard 2 when the spider mite population in orchard 1 decreased. These results suggested that some of the predators migrated from orchard 1 to orchard 2. In this period, predator-traps with T. kanzawai-infested bean plants attracted significantly more S. takahashii than traps with uninfested plants. Very few individuals of S. japonicus and O. kashimirica benefica were found in the traps, despite their abundance in orchard 1. The generalist insect predator, Orius sp., was attracted to the traps throughout the experimental period irrespective of the density of spider mites, although this predator was never observed inside the orchards.  相似文献   

12.
To clarify the prey‐finding behavior of the predatory mite Neoseiulus womersleyi (Schicha) (Acari: Phytoseiidae), we studied its olfactory responses to volatiles from the prey‐infested plant on which the mites had been collected. We used a local N. womersleyi population called Kanaya collected from tea (Camellia sinensis L.) (Theaceae) plants infested by Tetranychus kanzawai Kishida (Acari: Tetranychidae) in Kanaya City, Japan. Neoseiulus womersleyi (Kanaya population) were more attracted to volatiles from tea plants infested with five female T. kanzawai per leaf for 7 days than to intact tea leaves in a Y‐tube olfactometer. Tetranychus kanzawai‐induced tea leaf volatiles were identified as (E)‐β‐ocimene, (E)‐4,8‐dimethyl‐1,3,7‐nonatriene, and (E,E)‐α‐farnesene. As olfactory responses are known to differ among local populations of N. womersleyi, we compared the responses of the Kanaya population with those of a Kikugawa population collected from tea plants infested by T. kanzawai in Kikugawa City. To test the influence of previous predation experience, we reared the two populations on tea plants infested by T. kanzawai or on kidney bean plants (Phaseolus vulgaris) infested by Tetranychus urticae Koch. The Kanaya population was more attracted to the volatiles from infested plants on which they had been reared. Because the Kanaya population was not attracted to the plant volatiles they had not previously experienced, the positive response to previously experienced volatiles might be the result of learning. By contrast, the Kikugawa population showed no preference for previously experienced volatiles from infested plants. The implications of this flexibility in foraging behavior are discussed.  相似文献   

13.
After biological control of Tetranychus urticae using Phytoseiulus persimilis, a latent mite pest, Eotetranychus asiaticus, was found on strawberries growing in a plastic greenhouse in western Japan. To determine whether the release ofP. persimilis, an exotic natural enemy of T.urticae, enhanced the occurrence of the latent pest, the efficiency of P. persimilis in controlling E.asiaticus was compared with the efficiency of two indigenous phytoseiid mites, Amblyseius californicus and A. womersleyi, under laboratory conditions. Phytoseiuluspersimilis and A. californicus attacked not onlyT. urticae but also E. asiaticus. However, the predators produced very few eggs and their offspring rarely reached adulthood when fed on E. asiaticus, so their potential as control agents for the latent mite appears to be low. In contrast, A.womersleyi feeding on E. asiaticus reproduced as well as when fed on T. urticae, and exterminated both species of spider mite. This suggests that A. womersleyihas greater potential as a biological control agent in crops where both species may occur. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
By analyzing the volatiles from Tetranychus urticae-infested kidney bean plants (Phaseolus vulgaris) at different times for two days, we found that they were mainly produced in the light. Tetranychus urticae showed a higher oviposition rate and spent more time feeding during the day (in the light) than at night (in the dark). Infested leaves placed in the light attracted the predatory mite Amblyseius womersleyi, whereas those that were placed in the dark for at least 2h in daytime did not. This indicates that presence or absence of light affects the production of herbivore-induced plant volatiles. Amblyseius womersleyi dispersed more frequently and consumed more T. urticae eggs during the day (in the light) than at night (in the dark), whereas their oviposition rate did not differ between day and night. Presence or absence of herbivore-induced plant volatiles in the surroundings did not affect dispersal, predation or oviposition rates of A. womersleyi. These results show that A. womersleyis behavior coincides with the production pattern of herbivore-induced plant volatiles.  相似文献   

15.
Predation rates of Neoseiulus womersleyi and Euseius ovalis feeding on eggs, larvae, or protonymphs of Tetranychus urticae, Tetranychus kanzawai, or Oligonychus mangiferus were measured in a chamber at 25 °C. N. womersleyi immatures consumed 9.73 T. urticae eggs, 13.53 larvae, or 11.57 protonymphs, while gravid females consumed 12.13 T. urticae eggs, 14.37 larvae, or 12.07 protonymphs daily. Female N. womersleyi consumed a total of 218.12 T. urticae eggs, 260.85 larvae, or 222.33 protonymphs, while male N. womersleyi consumed a total of 96.39 T. urticae eggs, 112.23 larvae, or 99.65 protonymphs. When O. mangiferus larvae or protonymphs were offered to E. ovalis, immatures consumed 18.57 larvae or 17.47 protonymphs. Gravid females consumed 16.83 larvae or 12.83 protonymphs daily, with a total of 330.68 larvae or 252 protonymphs. Adult E. ovalis males consumed fewer O. mangiferus larvae (107.69) or protonymphs (91.51) than females. Conversion rate of predation to reproduce was expressed as “Food–reproduction exchange rate” of N. womersleyi was lower on T. urticae than on T. kanzawai. E. ovalis showed a higher food–reproduction exchange rate on O. mangiferus than on T. urticae. The results suggest that N. womersleyi and E. ovalis feed mainly on larvae and protonymphs rather than on the eggs of T. urticae, T. kanzawai, and O. mangiferus. We recommended using T. urticae eggs are suitable food for mass rearing for both N. womersleyi and E. ovalis.  相似文献   

16.
Eriophyid mites are plant parasites that are well adapted to hide away from predators. Tiny and wormlike, they can invade very narrow spaces in plants or form galls that, apart from other functions, serve as a shelter from predation. Previous observations showed that some free-living eriophyids as well as tetranychid mites spend their quiescence on the top of leaf trichomes. Here, I investigated climbing leaf trichomes by the eriophyid, Rhinophytoptus concinnus, and tested whether it enables the herbivores to avoid phytoseiid mites. Climbing behavior took place just prior to the quiescent period of juveniles. Larvae and nymphs raised the hind part of their stiffening bodies and walked, turning around on their axis. Having found a hair, juveniles attached their anal suckers to its tip, and, pushing back from a leaf surface or the base of the hair, they lifted their bodies up to become motionless. As revealed by the playback experiments with the phytoseiid mite, Typhloctonus tiliarum, predatory females needed much more time to find quiescent nymphs perching on hairs than those placed on a leaf surface. The time of nymph handling was similar in both situations. Also, a similar number of predators gave up feeding on nymphs in both locations. I conclude that climbing leaf trichomes enables the herbivorous mite to hide from predators. After detection, however, placement on trichomes does not give the quiescent juveniles any advantage over those placed on a leaf blade.  相似文献   

17.
Laboratory experiments were performed with adult female Macrolophus caliginosus Wagner (Heteroptera: Miridae) at 22ºC on bean plants to determine the functional response towards whiteflies, as well as the preference and switching capacity between the two prey species: whiteflies and spider mites. Predation of females presented with first instars of Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae) was of a Type III functional response. The observed maximum predation was approximately 75 first instars at high prey densities within a 24-h period. The preference of M. caliginosus females between eggs of T. vaporariorum and Tetranychus urticaeKoch (Acarina: Tetranychidae) changed with the ratio of offered prey. The preference for T. vaporariorum eggs increased non-linearly with increasing proportions of this prey type. The average maximum predation of whitefly and spider mite eggs were approximately 166 and 111 eggs per day, respectively, at the highest ratio of the two preys. The proportion of M. caliginosus females found on the test plants at the end of the experiment increased with prey density suggesting that this mirid spends more time in areas with high prey density. Macrolophus caliginosus females are voracious predators of eggs and first instars of T. vaporariorum as well as of spider mite eggs and may thus be a valuable addition to existing methods of biological control of T. vaporariorum and T. urticae.  相似文献   

18.
Aukema BH  Raffa KF 《Oecologia》2004,138(2):253-258
Bark beetles engage in one of the most pronounced examples of group procurement of defended plants. Their aggregation pheromones attract both sexes and are essential to overcome constitutive and rapidly inducible lethal defenses. The relative benefits to senders versus receivers of these signals are only partly understood. Because the initial stage of host entry can be hazardous, there may be benefit to a cheating strategy, whose practitioners respond to pheromones but do not engage in host searching. Several disadvantages to cheating have been proposed, but the role of predators has not been considered. Predators exploit bark beetle pheromones to locate prey, accumulate at the breeding site, and consume adult bark beetles before they enter the tree. Preliminary experiments quantified arrival patterns in the field. We used a laboratory assay to investigate relative predation on pioneers (those that initially select and enter hosts) and responders (those that arrive at a host in response to pheromones) during host colonization. Our model system utilized the pine engraver, Ips pini, which exhibits male harem polygamy. We allowed male I. pini to colonize host tissue and added females 1 day later. Also 1 day later, we variably added additional males and predacious checkered beetles, Thanasimus dubius. These treatments included two densities of males and three densities of predators that were selected to emulate field conditions. Responding males experienced higher predation than pioneers. T. dubius ate more males than females, independent of the presence or absence of responding males. T. dubius affected the distribution of females per male, although the number of females that survived to construct ovipositional galleries was constant. We discuss the viability of cheating, implications for biological control, and predator-prey coevolution in this cooperative, group-colonizing herbivore.  相似文献   

19.
Whenever diapause induction triggers movement into another microhabitat or the development of protective morphological structures, this may also alter predation risk. If the risk of being eaten is lower in the diapause phase, then there may be selection favouring diapause induction in response to predators or their cues. In this article, we studied the effect of the predatory mite Typhlodromus pyri on diapause induction in the spider mite Tetranychus urticae. We used a Greek strain because under long-night photoperiods and low temperature only part of the population enters diapause, thereby leaving room for the impact of another factor. In spider mite groups under predation, the percentage diapause induction increased whenever night-lengths were such that diapause was induced (13–16 h of night). Given this diapause induction in response to predation risk, the question arises whether entering diapause helps spider mites to escape from predation and contribute more offspring to the spring generation next year.  相似文献   

20.
The deutonymphs of Allothrombium pulvinum Ewing (Acari: Trombidiidae) are among the most important natural enemies of spider mites in North, North East and West Iran. In this study, maximum predation rate and preference experiments were conducted with A. pulvinum deutonymphs on apple leaf discs, to determine their preference for either of two spider mite species: Amphitetranychus viennensis (Zacher) and Tetranychus urticae Koch (Acari: Tetranychidae). Maximum predation rate tests showed that the predatory mite consumed more eggs and females of T. urticae than of A. viennensis. Furthermore, the Manly’s preference index for eggs and females of T. urticae confirmed that T. urticae were the preferred prey. The functional response of A. pulvinum deutonymphs on females of T. urticae was examined over a 24-h period. Predation of A. pulvinum deutonymphs presented with females of T. urticae followed a type III functional response. Estimated handling time for the predatory mites was 4.51 h and attack coefficient b, which describes the changes in attack rate with prey densities in a type III functional response, was 0.021.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号