首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The mammalian tachykinin system consists of three distinct peptides, substance P, substance K, and neuromedin K, and possesses three corresponding receptors. In this investigation we examined intracellular signal transduction of the individual tachykinin receptors by transfection and stable expression of these receptor cDNAs in Chinese hamster ovary cells. The three receptors commonly showed a rapid and marked stimulation in both phosphatidylinositol (PI) hydrolysis and cyclic AMP formation in response to tachykinin interaction. Direct linkage of the three receptors to both phospholipase C and adenylate cyclase was evidenced by the finding that tachykinin, added together with GTP, activated these enzyme activities in membrane preparations derived from tachykinin receptor-expressing cells. The stimulation of cyclic AMP formation was less efficient than that of PI hydrolysis in receptor-expressing cells as well as their membrane preparations (about 1 order of magnitude difference in the effective peptide concentrations). However, the stimulatory responses of the PI hydrolysis and cyclic AMP formation in both receptor-expressing cells and their membrane preparations were induced in complete agreement with the tachykinin binding selectivity of each subtype of the receptors. This investigation demonstrated unequivocally that the tachykinin receptors have the potential to couple directly to both phospholipase C and adenylate cyclase and to stimulate PI hydrolysis and cyclic AMP formation.  相似文献   

2.
The nonspecific lipid transfer protein from beef liver was used to modify the phospholipid composition of intact turkey erythrocytes in order to study the dependence of isoproterenol-stimulated adenylate cyclase activity on membrane phospholipid composition. Incorporation of phosphatidylinositol into turkey erythrocytes inhibited isoproterenol-stimulated cyclic AMP accumulation in a linear, concentration-dependent manner. Inhibition was relatively specific for phosphatidylinositol; phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol and phosphatidic acid were from 3 to 7 times less effective as inhibitors of hormone-stimulated cyclase activity. Inhibition by phosphatidylinositol was not reversible when up to 90% of the incorporated phosphatidylinositol was removed, either by incubation with phosphatidylinositol-specific phospholipase C or a second incubation with transfer protein; possibly adenylate cyclase activity depends on a small pool of phosphatidylinositol that is inaccessible to either phospholipase C hydrolysis or removal by lipid transfer protein. Phosphatidylinositol incorporation inhibits adenylate cyclase activity by uncoupling beta-adrenergic receptors from the remainder of the cyclase complex. Phosphatidylinositol incorporation had no effect on stimulation of cAMP accumulation by either cholera toxin or forskolin, indicating that inhibition occurs only at the level of receptor. Phosphodiesterase activity was not altered in phosphatidylinositol-modified cells. Inhibition of cAMP accumulation was not the result of changes in either membrane fluidity or in cAMP transport out of modified turkey erythrocytes. Phosphatidylinositol inhibition of isoproterenol-stimulated cyclase activity may serve as a useful model system for hormone-induced desensitization.  相似文献   

3.
The involvement of G regulatory proteins in muscarinic receptor signal transduction was examined in electrically permeabilized rat submandibular acinar cells. The guanine nucleotide analog, GTP gamma S, caused the dose dependent hydrolysis of membrane phosphatidylinositol 4,5-bisphosphate to release IP3. This response was insensitive to pertussis toxin treatment and was duplicated by NaF but not by GDP beta S. Enhanced IP3 synthesis was observed with a combination of GTP gamma S and carbachol. Exogenous IP3, as well as carbachol and GTP gamma S, provoked the release of sequestered 45Ca2+ from non-mitochondrial stores. In intact cells, carbachol significantly reduced the level of cyclic AMP induced by the beta-adrenergic agonist, isoproterenol, to 69% of its normal value. Pertussis toxin abolished this inhibitory action of carbachol on cyclic nucleotide levels. These results suggest that muscarinic receptors are coupled to two separate G regulatory proteins in submandibular mucous acini-the pertussis toxin-insensitive Gp of the phosphoinositide transduction pathway associated with elevated cytosolic calcium levels, and the pertussis toxin-sensitive Gi inhibitory protein of the adenylate cyclase complex.  相似文献   

4.
Muscarinic receptor stimulation elicits two distinct biochemical responses in embryonic chick heart cells: inhibition of catecholamine-stimulated cyclic AMP formation and stimulation of phosphoinositide (PhI) hydrolysis. We observe two major differences in the effects of agonists on these responses. First, carbachol and oxotremorine both inhibit cyclic AMP formation, but only carbachol stimulates PhI hydrolysis. Second, the dose-response relationships for the cyclic AMP and PhI responses differ; the half-maximal concentrations of carbachol needed to inhibit cAMP accumulation and stimulate PhI hydrolysis are 2 X 10(-7) and 2 X 10(-5) M, respectively. We carried out radioligand binding studies on intact chick heart cells to determine whether these data could be explained in terms of different agonist binding states of the muscarinic receptor. In intact cells, carbachol competes for [3H]quinuclidinyl benzilate-binding sites with high and low affinity, while oxotremorine shows only high affinity binding. We suggest that the receptor state common to both agonists is the state associated with inhibition of adenylate cyclase, while the very low affinity binding site seen only with carbachol is associated with the PhI response. We also consider the possibility that both responses are caused by a single receptor state that is efficiently coupled to adenylate cyclase inhibition and inefficiently coupled to PhI hydrolysis. Whichever mechanism is correct, our findings demonstrate that muscarinic receptors coupled to adenylate cyclase and the PhI response can be differentiated by virtue of their sensitivity to agonist and the efficiency with which some agonists induce receptor change and elicit receptor-mediated biochemical responses.  相似文献   

5.
Johnston CA  Watts VJ 《Life sciences》2003,73(23):2913-2925
Acute activation of Galphas-coupled receptors stimulates cyclic AMP accumulation leading to the activation of downstream signaling cascades. These Galphas-mediated events can be countered by acute activation of inhibitory G proteins (Galpha(i/o)), which inhibit the activity of adenylate cyclase, thereby attenuating cyclic AMP accumulation. Furthermore, an additional, less direct mechanism for Galpha(i/o) proteins modulation of cyclic AMP signaling also has been described. Persistent activation of several Galpha(i/o)-coupled receptors has been shown to result in a subsequent paradoxical enhancement of adenylate cyclase activity in response to drug-stimulated cyclic AMP accumulation. This sensitization of adenylate cyclase likely represents a cellular adaptive response following prolonged activation of inhibitory receptors. Recent advances in our knowledge of G protein signaling, adenylate cyclase regulation, and other cellular signaling mechanisms have extensively increased our insight into this phenomenon. It is now thought that sensitization occurs as part of a compensatory mechanism by which the cell adapts to chronic inhibitory input. Such a mechanism may be involved in modulating Galphas-coupled receptor signaling following neurotransmitter elevations that occur in psychiatric disease states or following the administration of many drugs of abuse. This review will focus on recent advances in the understanding of molecular signaling pathways that are involved in sensitization and describe the potential role of sensitization in neuronal cell function.  相似文献   

6.
We have investigated the role of NAADP-mediated Ca(2+) mobilization in endothelin (ET) signaling via endothelin receptor subtype A (ETA) and endothelin receptor subtype B (ETB) in rat peritubular smooth muscle cells. Microinjection and extracellular application of NAADP were both able to elicit Ca(2+) release which was blocked by inhibitory concentrations of NAADP, by impairing Ca(2+) uptake in acidic stores with bafilomycin, and by thapsigargin. Ca(2+) release in response to selective ETB stimulation was abolished by inhibition of NAADP signaling through the same strategies, while these treatments only partially impaired ETA-dependent Ca(2+) signaling, showing that transduction of the ETB signal is dependent on NAADP. In addition, we show that lipid rafts/caveolae contain ETA, ETB, and NAADP/cADPR generating enzyme CD38 and that stimulation of ETB receptors results in increased CD38 activity; interestingly, ETB- (but not ETA-) mediated Ca(2+) responses were antagonized by disruption of lipid rafts/caveolae with methyl-beta-cyclodextrin. These data demonstrate a primary role of NAADP in ETB-mediated Ca(2+) signaling and strongly suggest a novel role of lipid rafts/caveolae in triggering ET-induced NAADP signaling.  相似文献   

7.
Venous smooth muscle contains vasoconstrictor ETB-like receptors.   总被引:30,自引:0,他引:30  
Two endothelin (ET) receptor subtypes have been identified to date: the ETA receptor which preferentially binds ET-1 over ET-3, and the ETB receptor which is non-selective. This study characterized the ET receptor subtypes present in several vascular smooth muscle preparations using standard in vitro techniques. In all but one of the arteries tested, ET-3 was significantly less potent than ET-1. In contrast, the potency of ET-3 was very similar to that of ET-1 in all of the veins. The selective ETA receptor antagonist BQ-123 blunted the ET-1 contractions in rabbit carotid artery, but not in saphenous vein. The selective ETB receptor ligand sarafotoxin S6c contracted the rabbit saphenous vein, but not the carotid artery. These data suggest that vascular smooth muscle cells express ETA and ETB receptors. Stimulation of either receptor subtype can result in force development.  相似文献   

8.
We have examined several features of the regulation of cyclic AMP accumulation in lymphoid cells isolated from peripheral blood of human subjects and in the murine T-lymphoma cell line, S49, S49 cells are unique because of the availability of variant clones with lesions in the pathway of cyclic AMP generation and response. We found that human lymphoid cells prepared at 4 degrees C showed substantially greater cyclic AMP accumulation in response to histamine and the beta-adrenergic agonist isoproterenol than did cells prepared at ambient temperature. The muscarinic cholinergic agonist carbamylcholine and peptide hormone somatostatin failed to inhibit cyclic AMP accumulation in human lymphoid cells and treatment with pertussis toxin (which blocks function of Gi, the guanine nucleotide binding protein that mediates inhibition of adenylate cyclase) only minimally increased cyclic AMP levels in these cells. Thus the Gi component of adenylate cyclase appears to play only a small role in modulating cyclic AMP levels in this mixed population of lymphoid cells. Incubation of whole blood with isoproterenol desensitized human lymphocytes to subsequent stimulation with beta agonist. This desensitization was associated with a redistribution of beta-adrenergic receptors such that a substantial portion of the receptors in intact cells could no longer bind a hydrophilic antagonist. Wild-type S49 lymphoma cells showed a similar redistribution of beta-adrenergic receptors after a few minutes' incubation with agonist. Based on studies in S49 variants, this redistribution is independent of components distal to receptors in the adenylate cyclase/cyclic AMP pathway. By contrast, a more slowly developing, agonist-mediated down-regulation of beta-adrenergic receptors was blunted in variants with defective interaction between receptors and Gs, the guanine nucleotide binding protein that mediates stimulation of adenylate cyclase. Unlike results in human lymphoid cells, S49 cells show a prominent inhibition of cyclic AMP accumulation mediated by Gi; this inhibition is promoted by somatostatin and blocked by pertussis toxin. Inhibition by Gi is unable to account for the marked decrease in ability of the diterpene forskolin to maximally stimulate adenylate cyclase in S49 variants having defective Gs. These results emphasize that both Gs and Gi component are important in modulating cyclic AMP accumulation and receptors linked to adenylate cyclase in S49 lymphoma cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
"Spare" beta-adrenergic receptors of rat white adipocyte membranes   总被引:1,自引:0,他引:1  
The apparent equilibrium dissociation constants for the interaction of isoproterenol with beta-receptors and adenylate cyclase were determined under the same conditions in rat adipocyte membranes and were compared with the apparent dissociation constant for the interaction of isoproterenol with cyclic AMP accumulation in the adipocyte. From these determinations, it was calculated that the occupancy of less than 4% of the receptor population is required for half-maximal stimulation of adenylate cyclase in membranes and cyclic AMP accumulation in intact cells, provided that receptor-binding and adenylate cyclase assays are performed in the presence of guanine nucleotides. Since guanine nucleotides are also required for adenylate cyclase activation in intact cells, it is concluded that the beta-receptors of rat adipocytes are "spare" receptors.  相似文献   

10.
Melatonin receptors interact with pertussis toxin-sensitive G proteins to inhibit adenylate cyclase. However, the G protein coupling profiles of melatonin receptor subtypes have not been fully characterised and alternative G protein coupling is evident. The five C-terminal residues of Galpha subunits confer coupling specificity to G protein-coupled receptors. This report outlines the use of Galphas chimaeras to alter the signal output of human melatonin receptors and investigate their interaction with the C-termini of Galpha subunits. The Galphas portion of the chimaeras confers the ability to activate adenylate cyclase leading to cyclic AMP production. Co-transfection of HEK293 cells expressing MT(1) or MT(2) melatonin receptors with Galphas chimaeras and a cyclic AMP activated luciferase construct provided a convenient and sensitive assay system for identification of receptor recognition of Galpha C-termini. Luciferase assay sensitivity was compared with measurement of cyclic AMP elevations by radioimmunoassay. Differential interactions of the melatonin receptor subtypes with Galpha chimaeras were observed. Temporal and kinetic parameters of cyclic AMP responses measured by cyclic AMP radioimmunoassay varied depending on the Galphas chimaeras coupled. Recognition of the C-terminal five amino acids of the Galpha subunit is a requisite for coupling to a receptor, but it is not the sole determinant.  相似文献   

11.
Adenylate cyclase activity in NS20Y cells expressing D2L dopamine receptors was examined following chronic treatment with norepinephrine and epinephrine. Initial acute experiments revealed that both norepinephrine and epinephrine inhibited forskolin-stimulated cyclic AMP accumulation via D2 receptors. Furthermore, chronic 18 h activation of D2 dopamine receptors by norepinephrine or epinephrine induced a marked increase (>10-fold) in subsequent forskolin-stimulated cyclic AMP accumulation. This heterologous sensitization of adenylate cyclase activity was blocked by D2 dopamine receptor antagonists and by pertussis toxin pretreatment. In contrast, concurrent activation of Galpha(s) or adenylate cyclase did not appear to alter noradrenergic agonist-induced sensitization.  相似文献   

12.
Several reports have shown the participation of vasoactive endothelins (ETs) in the regulation of vertebrate pigment cells. In the present study, we identified ET receptors in pigment cells of vertebrate species by RT-PCR assays, and compared the differential expression of the various subtypes in each species by quantitative PCR. RT-PCR was performed with specific primers for ETC, ETA(X) or ETA in Xenopus laevis melanophores, ETA or ETB(2) in chicken melanocytes, ETA or ETB in murine (B-16, S-91 or Melan-A) or human (SK-Mel 23 or SK-Mel 28) melanoma cells, and the products obtained were confirmed by cloning and sequencing. The results showed the presence of ETA(X), but not ETA mRNA, and confirmed the expression of ETC in X. laevis melanophores. ETA and ETB(2) mRNAs were also demonstrated in chicken melanocytes. ETA and ETB receptor were identified in S-91, B16 and Melan-A murine cells. In human melanoma cells, SK-Mel 23 and SK-Mel 28, we confirmed the presence of ETB mRNA, and also found ETA mRNA. The comparison between the two subtypes present in the pigment cell of each species and among species demonstrated that the expression of ETAs in chicken, mouse, and human melanocytes is negligible, as is the expression of ETA(X) in Xenopus melanophores. The relative expression, as determined by quantitative PCR, was as follows: chicken ETB>SK-Mel 23 ETB>S91 ETB>Xenopus ETC, suggesting that the endothelin system plays a major role in avian and mammalian pigment cell regulation, as compared to lower vertebrates. The phylogenetic analysis revealed that subtype A receptors were probably the most primitive ET receptors, directly deriving from the ancestral type; all the other receptors, B subtypes and C, originated from diverse derivative molecules.  相似文献   

13.
Pertussis toxin was used to examine the role of the inhibitory guanine nucleotide regulatory protein, Ni, in muscarinic-receptor-mediated stimulation of phosphoinositide turnover and calcium mobilization. In cultured chick heart cells, pertussis-toxin treatment inhibited muscarinic-receptor-mediated attenuation of isoprenaline-stimulated cyclic AMP accumulation. This finding is consistent with the proposal that pertussis toxin blocks the capacity of Ni to couple muscarinic receptors to adenylate cyclase. In contrast, treatment of chick heart cells or 1321N1 human astrocytoma cells with pertussis toxin did not block muscarinic-receptor-mediated stimulation of phosphoinositide hydrolysis, as measured by [3H]inositol phosphate accumulation in the presence of Li+. Pertussis-toxin treatment also had little effect on basal and muscarinic-receptor-stimulated phosphatidylinositol synthesis, as measured by the incorporation of [3H]inositol into phosphatidylinositol. Activation of muscarinic receptors also enhances the rate of unidirectional 45Ca2+ efflux in 1321N1 cells; this response, like phosphoinositide hydrolysis, was not prevented by pertussis-toxin treatment. Our data suggest that muscarinic receptors are not coupled to phosphoinositide hydrolysis or calcium mobilization through Ni.  相似文献   

14.
We identified receptors for neuropeptide Y (NPY) on an established human neuroblastoma cell line, SK-N-MC, which are functionally coupled to adenylate cyclase through the inhibitory guanine nucleotide-binding protein of adenylate cyclase, Gi. Intact SK-N-MC cells bound radiolabeled NPY with a KD of 2 nM and contained approximately 83,000 receptors/cell. Unlabeled porcine and human NPY and structurally related porcine peptide YY (PYY) competed with labeled NPY for binding to the receptors. NPY inhibited cyclic AMP accumulation in SK-N-MC cells stimulated by isoproterenol, dopamine, vasoactive intestinal peptide, cholera toxin, and forskolin. NPY inhibited isoproterenol-stimulated cyclic AMP production in a dose-dependent manner, with half-maximal inhibition at 0.5 nM NPY. Porcine and human NPY and porcine PYY gave similar dose-response curves. NPY also inhibited basal and isoproterenol-stimulated adenylate cyclase activity in disrupted cells. Pertussis toxin treatment of the cells completely blocked the ability of NPY to inhibit cyclic AMP production and adenylate cyclase activity. The toxin catalyzed the ADP-ribosylation of a 41-kDa protein in SK-N-MC cells that corresponds to Gi. The receptors on SK-N-MC cells appeared to be specific for NPY, as other neurotransmitter drugs, such as alpha-adrenergic, dopaminergic, muscarinic, and serotonergic antagonists, did not compete for either NPY binding or NPY inhibition of adenylate cyclase. Thus, SK-N-MC cells may be a useful model for investigating NPY receptors and NPY-mediated signal transduction.  相似文献   

15.
Cholinergic muscarinic receptors were identified in AtT-20/D16-16 (AtT-20) cell membranes by receptor binding techniques and the effect of carbachol on basal and stimulated cyclic AMP formation and ACTH release was investigated. Carbachol markedly decreased the stimulatory effect of the adenylate cyclase activator, forskolin, on both cyclic AMP formation and ACTH secretion. Carbachol also reduced forskolin-stimulated adenylate cyclase activity. The stimulatory effects of (-) isoproterenol on cyclic nucleotide formation and ACTH secretion were also blocked by carbachol. The inhibitory effects of carbachol on (-) isoproterenol-stimulated cyclic AMP synthesis and ACTH secretion were reversed by the muscarinic antagonist, atropine, and not by the nicotinic antagonist, gallamine. These data suggest that in AtT-20 cells, inhibition of ACTH secretion may be regulated by activation of muscarinic receptors coupled negatively to adenylate cyclase.  相似文献   

16.
Discrepancies exist between extent of guanylate cyclase activation by atrial natriuretic peptide (ANP) in cell-free systems and ANP-stimulated levels of cyclic GMP in whole cells, and also between receptor affinity and dose effectiveness of ANP. Therefore, we have investigated whether, in addition to receptor-coupled guanylate cyclase activation, other second-messenger cascade systems may be involved in mediating both an increase in cyclic GMP and the physiological response to ANP. Equilibrium 125I-ANP binding studies on cultured thoracic aorta smooth muscle cells revealed the existence of low-affinity (approximately 10(-8) M, 84.5 fmol/10(5) cells) and high-affinity (approximately 10(-10) M, 12.5 fmol/10(5) cells) binding sites. We confirm that ANP elevates intracellular cyclic GMP (EC50 approximately 10(-8) M) and inhibits agonist-(isoproterenol and forskolin)-induced increases in intracellular cyclic AMP (IC50 approximately 10(-9) M). ANP also stimulated breakdown of phosphatidylinositol phosphates and generation of inositol phosphates with a half-maximally effective concentration of approximately 10(-10) M. The extent of phosphatidylinositol polyphosphate hydrolysis was small (120%) in comparison to that of phosphatidylinositol (Ptd-Ins) (200%). Ptd-Ins hydrolysis was paralleled by the appearance of glycerophosphoinositol, and there was also a close temporal relationship between these processes and the accumulation of intracellular cyclic GMP. Smooth muscle cells released [3H]arachidonic acid label in response to ANP (EC50 approximately 10(-10) M). Taken together, the data suggest that the vasorelaxant hormone ANP has stimulatory effects on phosphoinositol lipid metabolism via both phospholipase C (generation of inositol phosphates) and phospholipase A2 (generation of releasable [3H]arachidonic acid and indirectly glycerophosphoinositol). In contrast, stimulation of phosphatidylinositol phosphate breakdown by the vasoconstrictive hormone angiotensin II is not associated with glycerophosphoinositol formation, and neither cyclic GMP nor cyclic AMP levels were influenced by this hormone.  相似文献   

17.
Desensitization of corticotropin-releasing factor receptors   总被引:4,自引:0,他引:4  
Pretreatment of rat anterior pituitary cells with corticotropin releasing factor (CRF) rapidly and markedly reduced the ability of CRF to restimulate cyclic AMP formation and adrenocorticotropic hormone (ACTH) release. The effect was dependent on the length of time of pretreatment as well as the concentration of CRF. Neither basal nor intracellular immunoreactive ACTH levels nor basal cyclic AMP content were affected. CRF's stimulatory action on cyclic AMP formation and ACTH release recovered within one hour following CRF pretreatment. Forskolin, a compound that directly activates adenylate cyclase also releases ACTH from these cells. Pretreatment with CRF did not alter forskolin-stimulated cyclic AMP accumulation or ACTH secretion. Furthermore, CRF pretreatment did not change epinephrine's ability to increase the release of ACTH. These results indicate that CRF can regulate the responsiveness of its own receptor.  相似文献   

18.
alpha 2-adrenergic receptor-mediated signal transduction in rat adrenocortical carcinoma cells occurs through the opposing regulation of two second messengers, cyclic GMP and cyclic AMP, in which guanylate cyclase is coupled positively and adenylate cyclase negatively to the receptor signal. We now show that in these cells phorbol 12-myristate 13-acetate (PMA), a known activator of protein kinase C, inhibits the alpha 2-agonist (p-aminoclodine)-dependent production of cyclic GMP in a dose-dependent and time-dependent fashion. The half-maximal inhibitory concentration of PMA was 10(-10) M. A protein kinase C inhibitor, 1-(5-isoquinolinyl-sulfonyl)-2-methyl piperazine (H-7), caused the release of the PMA-dependent attenuation of p-aminoclodine-stimulated cyclic GMP formation. These results suggest that protein kinase C negatively regulates the alpha 2-receptor coupled cyclic GMP system in these cells, a feature apparently shared with the other cyclic GMP-coupled receptors such as those of muscarine, histamine, and atrial natriuretic factor.  相似文献   

19.
Endothelin-1 (ET-1) is a vasoactive peptide which signals through two G-protein coupled receptors, endothelin receptor A (ETA) and B (ETB). We determined that ET-1 activation of its ETB receptor in stably cDNA transfected CHO cells leads to a 55% reduction in cell number by end-point cell counting and a 35% decrease in cell growth by a real-time cell-substrate impedance-based assay after 24h of cell growth. When CHO ETB cells were synchronized in the late G1 cell cycle phase, ET-1 delayed their S phase progression compared to control by 30% as determined by [(3)H]-thymidine incorporation. On the other hand, no such delay was observed during late G2/M to G1 transit when cells were treated with ET-1 after release from mitotic arrest. Using the cell-substrate impedance-based assay, we observed that ET-1 induces opposing morphological changes in CHO ETA and CHO ETB cells with ETB causing an increase in the cell footprint and ETA a decrease. Likewise, in pulmonary artery smooth muscle cells, which express both ETA and ETB receptors, ET-1 induces an ETA-dependent contraction and an ETB dependent dilation. These results are shedding light on a possible beneficial role for ETB in diseases involving ET-1 dysfunction such as pulmonary hypertension.  相似文献   

20.
Human synovial fibroblasts in culture respond to bradykinin with a 20-fold increment in intracellular cyclic AMP concentrations, however bradykinin does not directly activate adenylate cyclase activity in a particulate fraction derived from these cells. Bradykinin evokes a release of labeled arachidonic acid and prostaglandins E and F from synovial fibroblasts pre-labeled with 3H-arachidonic acid. Hydrocortisone inhibits the bradykinin induced increment in cyclic AMP and the release of arachidonic acid and prostaglandins E and F from synovial fibroblasts. Indomethacin, which also inhibits the cyclic AMP response to bradykinin, has no effect on the release of arachidonic acid from synovial fibroblasts. Indomethacin does, however, inhibit the quantity of prostaglandins released into the medium. These studies support the hypothesis that bradykinin does not activate human synovial fibroblast adenylate cyclase, but presumably activates a phospholipase whose products in turn result in the synthesis of prostaglandins. These and other investigations also suggest that a product(s) of the prostaglandin pathway causes the increment in cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号