首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We recently characterized the interaction between poly(ADP-ribose) polymerase-1 (PARP-1) and the product of the tumor suppressor gene p53. We investigated which domains of human PARP-1 and of human wild-type (wt) p53 were involved in this protein-protein interaction. We generated baculoviral constructs encoding full length or distinct functional domains of both proteins. Full length PARP-1 was simultaneously coexpressed in insect cells with full length wt p53 protein or its distinct truncated fragments and vice versa. Reciprocal immunoprecipitation of Sf9 cell lysates revealed that the central and carboxy-terminal fragments of p53 were sufficient to confer binding to PARP-1, whereas the amino-terminal part harboring the transactivation functional domain was dispensable. On the other hand, the amino-terminal and central fragments of PARP-1 were necessary for complex formation with p53 protein. As the most important features of p53 protein are regulated by phosphorylation, we addressed the question of whether its phosphorylation is essential for binding between the two proteins. Baculovirally expressed wt p53 was post-translationally modified. At least six distinct p53 isomeres were resolved by immunoblotting following two-dimensional separation of baculovirally expressed wt p53 protein. Using specific phospho-serine antibodies, we identified phosphorylation of baculovirally expressed p53 protein at five distinct sites. To define the role of p53 phosphorylation, pull-down assays using untreated and dephosphorylated p53 protein were performed. Dephosphorylated p53 failed to bind PARP-1 indicating that complex formation between both proteins is regulated by phosphorylation of p53. The marked phosphorylation of p53 at Ser392 observed in unstressed cells suggests that the phosphorylated carboxy-terminal part of p53 undergoes complex formation with PARP-1 resulting in masking of the NES and thereby preventing its export. The functional significance of the interaction between both proteins was investigated at two different conditions: inactivation of PARP-1 and overexpression of PARP-1. Our results unequivocally show that the presence of PARP-1 regulates the basal expression of wt p53 in unstressed cells.  相似文献   

2.
Nup1p is a yeast nuclear pore complex protein (nucleoporin) required for nuclear protein import, mRNA export and maintenance of normal nuclear architecture. We have used a genetic approach to identify other proteins that interact functionally with Nup1p. Here we describe the isolation of seventeen mutants that confer a requirement for Nup1p in a background in which this protein is normally not essential. Some of the mutants require wild-type Nup1p, while others are viable in combination with specific nup1 alleles. Several of the mutants show nonallelic noncomplementation, suggesting that the products may be part of a hetero-oligomeric complex. One is allelic to srp1 which, although it was identified in an unrelated screen, was shown to encode a protein that is localized to the nuclear envelope (Yano, R., M. Oakes, M. Yamaghishi, J. A. Dodd, and M. Nomura. 1992. Mol. Cell. Biol. 12:5640- 5651). We have used immunoprecipitation and fusion protein precipitation to show that Srp1p forms distinct complexes with both Nup1p and the related nucleoporin Nup2p, indicating that Srp1p is a component of the nuclear pore complex. The distant sequence similarity between Srp1p and the beta-catenin/desmoplakin family, coupled with the altered structure of the nuclear envelope in nup1 mutants, suggests that Srp1p may function in attachment of the nuclear pore complex to an underlying nuclear skeleton.  相似文献   

3.
4.
5.
6.
RanBP1 stabilizes the interaction of Ran with p97 nuclear protein import   总被引:7,自引:3,他引:7  
In this study we tested the hypothesis that fusion mediated by the influenza virus hemagglutinin (HA) is a cooperative event. To so this we characterized 3T3 cell lines that express HA at nine different defined surface densities. HA densities ranged from 1.0 to 12.6 x 10(3) HA trimers/microns2 as determined by quantitative fluorescent antibody binding. The lateral mobility and percent mobile fraction of HA did not vary significantly among these cells, nor did the contact area between HA-expressing cells and target RBCs. The fusion reaction of each HA- expressing cell line was analyzed using a fluorescence dequenching assay that uses octadecylrhodamine (R18)-labeled RBCs. For each cell line we measured the lag time preceding the onset of fusion, the initial rate of fusion, and final extent of fusion. The final extent of fusion was similar for all cell lines, and the initial rate of fusion as a function of HA surface density displayed a Michaelis-Menten-type dependence. However, the dependence of the lag time preceding the onset of fusion on HA surface density was clearly sigmoidal. Kinetic analysis of the data for the reciprocal lag time vs HA surface density, by both a log/log plot and a Hill plot, suggested that the observed sigmoidicity does not reflect cooperativity at the level of formation of HA aggregates as a prerequisite to fusion. Rather, the cooperativity of the process(es) that occur(s) during the lag time arises at a later step and involves a minimum of three, and most likely four, HA trimers. A model is proposed to explain HA cooperativity during fusion.  相似文献   

7.
Ferritin is an iron‐sequestering protein that is generally cytoplasmic; however, our previous studies have shown that in avian corneal epithelial (CE) cells ferritin is nuclear. We have also observed that this nuclear localization involves a tissue‐specific nuclear transporter that we have termed ferritoid, and that nuclear ferritin protects DNA from oxidative damage. Recently we have determined that ferritoid functions not only as a nuclear transporter, but also, within the nucleus, it remains associated with ferritin as a heteropolymeric complex. This ferritoid–ferritin complex has unique properties such as being half the size of a typical ferritin molecule and showing preferential binding to DNA. It is likely that the association between ferritoid and ferritin is involved both in the nuclear transport of ferritin and in determining certain of the properties of the complex; therefore, we have been examining the mechanisms involved in regulating the association of these two components. As the ferritoid sequence contains six putative phosphorylation sites, we have examined here whether phosphorylation is one such mechanism. We have determined that ferritoid in the nuclear ferritoid–ferritin complexes is phosphorylated, and that inhibition of this phosphorylation, using inhibitors of PKC, prevents its interaction with ferritin. Furthermore, in an experimental model system in which the nuclear transport of ferritin normally occurs (i.e., the co‐transfection of COS‐1 cells with full length constructs for ferritin and ferritoid), when phosphorylation sites in ferritoid are mutated, the interaction between ferritoid and ferritin is inhibited, as is the nuclear transport of ferritin. J. Cell. Biochem. 107: 528–536, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
9.
Transport of the viral genome into the nucleus required phosphorylation of components in the preintegration complex by virion-associated host cellular kinases. In this study, we showed that ERK-2/MAPK is associated with simian immunodeficiency virus (SIV) virions and regulated the nuclear transport of Vpx and virus replication in non-proliferating target cells by phosphorylating Vpx. Suppression of the virion-associated ERK-2 activity by MAPK pathway inhibitors impaired both Vpx nuclear import and viral infectivity without affecting virus particle maturation and release. In addition, mutation analysis indicated that the inactivation of Vpx phosphorylation precluded nuclear import and reduced virus replication in macrophage cultures, even when functional integrase and Gag matrix proteins implicated in viral preintegration complex nuclear import are present. In this study, we also showed that co-localization of Vpx with Gag precursor in the cytoplasm is a prerequisite for Vpx incorporation into virus particles. Substitution of hydrophobic Leu-74 and Ile-75 with serines in the helical domain abrogated Vpx nuclear import, and its incorporation into virus particles, despite its localization in the cytoplasm, suggested that the structural integrity of helical domains is critical for Vpx functions. Taken together, these studies demonstrated that the host cell MAPK signal transduction pathway regulated an early step in SIV infection.  相似文献   

10.
Chloroplast function depends on the translocation of cytosolically synthesized precursor proteins into the organelle. The recognition and transfer of most precursor proteins across the outer membrane depend on a membrane inserted complex. Two receptor components of this complex, Toc34 and Toc159, are GTPases, which can be phosphorylated by kinases present in the hosting membrane. However, the physiological function of phosphorylation is not yet understood in detail. It is demonstrated that both receptors are phosphorylated within their G-domains. In vitro, the phosphorylation of Toc34 disrupts both homo- and heterodimerization of the G-domains as determined using a phospho-mimicking mutant. In endogenous membranes this mutation or phosphorylation of the wild-type receptor disturbs the association of Toc34, but not of Toc159 with the translocation pore. Therefore, phosphorylation serves as an inhibitor for the association of Toc34 with other components of the complex and phosphorylation can now be discussed as a mechanism to exchange different isoforms of Toc34 within this ensemble.  相似文献   

11.
The yeast Srp1p protein functions as an import receptor for proteins bearing basic nuclear localization signals. Cse1p, the yeast homolog of mammalian CAS, recycles Srp1p back to the cytoplasm after import substrates have been released into the nucleoplasm. In this report we describe genetic interactions between SRP1 and CSE1. Results from genetic suppression and synthetic lethality studies demonstrate that these gene products interact to ensure accurate chromosome segregation. We also describe new mutant alleles of CSE1 and analyze a new temperature-sensitive allele of CSE1, cse1-2. This allele causes high levels of chromosome missegregation and cell cycle arrest during mitosis at the nonpermissive temperature.  相似文献   

12.
The present study characterizes the interaction between the Raf-1 kinase domain and MEK1 and examines whether the magnitude of their interaction correlates to the ability of Raf to phosphorylate MEK1. Here we show that the minimal domain required for the Raf kinase activity starts from tryptophan 342. Maximal binding of the Raf kinase domain to MEK1 and its kinase activity are achieved upon phosphorylation of the region (338)SSYY(341) in response to 4beta-12-O-tetradecanoylphorbol-13-acetate (TPA), or mutation of Y340Y341 to aspartic acids. Conversely, the TPA-stimulated MEK binding and kinase activity are diminished when this region is deleted or Ser(338) and Ser(339) are mutated to alanines. We also show that the integrity of the Raf ATP-binding site is necessary for the interaction between Raf-1 and MEK1. Furthermore, two MEK-binding sites are identified; the first is localized between amino acids 325 and 349, and the second is within the region between amino acids 350 and 648. Separately, the binding of each site to MEK1 is weak, but in a cis context, they give rise to a much stronger association, which can be further stimulated by TPA. Finally, we find that tryptophan 342, which is conserved among the Raf family and other protein kinases, is essential for the Ser(338) phosphorylation of the full-length Raf and its binding to MEK1. Taken together, our results indicate that the phosphorylation of Ser(338) and Tyr(341) on Raf exerts an important effect on reconfiguring the two MEK-binding sites. As a result, these two sites coordinate to form a high affinity MEK-binding epitope, leading to a marked increase in Raf kinase activity.  相似文献   

13.
The yeast Srp1p protein functions as an import receptor for proteins bearing basic nuclear localization signals. Cse1p, the yeast homolog of mammalian CAS, recycles Srp1p back to the cytoplasm after import substrates have been released into the nucleoplasm. In this report we describe genetic interactions between SRP1 and CSE1. Results from genetic suppression and synthetic lethality studies demonstrate that these gene products interact to ensure accurate chromosome segregation. We also describe new mutant alleles of CSE1 and analyze a new temperature-sensitive allele of CSE1, cse1-2. This allele causes high levels of chromosome missegregation and cell cycle arrest during mitosis at the nonpermissive temperature. Received: 18 November 1998 / Accepted: 17 March 1999  相似文献   

14.
Nuclear location sequence-mediated binding of karyophilic proteins to the nuclear pore complexes is one of the earliest steps in nuclear protein import. We previously identified two cytosolic proteins that reconstitute this step in a permeabilized cell assay: the 54/56-kD NLS receptor and p97. A monoclonal antibody to p97 localizes the protein to the cytoplasm and the nuclear envelope. p97 is extracted from nuclear envelopes under the same conditions as the O-glycosylated nucleoporins indicating a tight association with the pore complex. The antibody inhibits import in a permeabilized cell assay but does not affect binding of karyophiles to the nuclear pore complex. Immunodepletion of p97 renders the cytosol inactive for import and identifies at least three other cytosolic proteins that interact with p97. cDNA cloning of p97 shows that it is a unique protein containing 23 cysteine residues. Recombinant p97 binds zinc and a bound metal ion is required for the nuclear envelope binding activity of the protein.  相似文献   

15.
Klug W  Dietl A  Simon B  Sinning I  Wild K 《FEBS letters》2011,585(20):3229-3235
Neuronal Fe65 is a central adapter for the intracellular protein network of Alzheimer's disease related amyloid precursor protein (APP). It contains a unique tandem array of phosphotyrosine-binding (PTB) domains that recognize NPXY internalization motifs present in the intracellular domains of APP (AICD) and the low-density lipoprotein receptor-related protein LRP1 (LICD). The ternary APP/Fe65/LRP1 complex is an important mediator of APP processing and affects β-amyloid peptide production. Here we dissect by biochemical and biophysical methods the direct interactions within the ternary complex and reveal a phosphorylation-dependent insulin receptor substrate (IRS-) like interaction of the distal NPVY(4507) motif of LICD with Fe65-PTB1.  相似文献   

16.
17.
We have examined whether signal-mediated nucleocytoplasmic transport can be regulated by phosphorylation of the nuclear transport machinery. Using digitonin-permeabilized cell assays to measure nuclear import and export, we found that the phosphatase inhibitors okadaic acid and microcystin inhibit transport mediated by the import receptors importin beta and transportin, but not by the export receptor CRM1. Several lines of evidence, including the finding that transport inhibition is partially reversed by the broad specificity protein kinase inhibitor staurosporine, indicate that transport inhibition is due to elevated phosphorylation of a component of the nuclear transport machinery. The kinases and phosphatases involved in this regulation are present in the permeabilized cells. A phosphorylation-sensitive component of the nuclear transport machinery also is present in permeabilized cells and is most likely a component of the nuclear pore complex. Substrate binding by the importin alpha.beta complex and the association of the complex with the nucleoporins Nup358/RanBP2 and Nup153 are not affected by phosphatase inhibitors, suggesting that transport inhibition by protein phosphorylation does not involve these steps. These results suggest that cells have mechanisms to negatively regulate entire nuclear transport pathways, thus providing a means to globally control cellular activity through effects on nucleocytoplasmic trafficking.  相似文献   

18.
19.
20.
Samp1, spindle associated membrane protein 1, is a type II integral membrane protein localized in the inner nuclear membrane. Recent studies have shown that the inner nuclear membrane protein, Emerin and the small monomeric GTPase, Ran are direct binding partners of Samp1. Here we addressed the question whether Ran could regulate the interaction between Samp1 and Emerin in the inner nuclear membrane. To investigate the interaction between Samp1 and Emerin in live cells, we performed FRAP experiments in cells overexpressing YFP-Emerin. We compared the mobility of YFP-Emerin in Samp1 knock out cells and cells overexpressing Samp1. The results showed that the mobility of YFP-Emerin was higher in Samp1 knock out cells and lower in cells overexpressing Samp1, suggesting that Samp1 significantly attenuates the mobility of Emerin in the nuclear envelope. FRAP experiments using tsBN2 cells showed that the mobility of Emerin depends on RanGTP. Consistently, in vitro binding experiments showed that the affinity between Samp1 and Emerin is decreased in the presence of Ran, suggesting that Ran attenuates the interaction between Samp1 and Emerin. This is the first demonstration that Ran can regulate the interaction between two proteins in the nuclear envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号