首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuroligins are post-synaptic cell adhesion molecules that promote synaptic maturation and stabilization upon binding with pre-synaptic partners, the alpha- and beta-neurexins. Using a combination of analytical ultracentrifugation, small angle X-ray, and neutron scattering, we have characterized the low-resolution three-dimensional structure of the extracellular domain of the neuroligins, free in solution, and in complex with beta-neurexin. The globular extracellular domain of the neuroligins forms stable homodimers through a four-helix bundle typical of the cholinesterases and other members of the alpha/beta-hydrolase fold family. The presence of the stalk region adds to the extracellular domain of neuroligin-1 an elongated structure, suggesting a rod-like nature of the stalk domain. Sedimentation equilibrium coupled with solution scattering data of the beta-neurexin/neuroligin-1 complex indicated a 2:2 stoichiometry where two beta-neurexin molecules bind to a neuroligin-1 dimer. Deuteration of neurexin allowed us to collect neutron scattering data that, in combination with other biochemical techniques, provide a basis for optimizing the positioning of each component in a detailed computational model of the neuroligin/neurexin complex. As several mutations of both neurexin and neuroligin genes have been linked to autism spectrum disorders and mental retardation, these new structures provide an important framework for the study of altered structure and function of these synaptic proteins.  相似文献   

2.
Neuroligins are post-synaptic cell adhesion molecules that promote synaptic maturation and stabilization upon binding with pre-synaptic partners, the α- and β-neurexins. Using a combination of analytical ultracentrifugation, small angle X-ray, and neutron scattering, we have characterized the low-resolution three-dimensional structure of the extracellular domain of the neuroligins, free in solution, and in complex with β-neurexin. The globular extracellular domain of the neuroligins forms stable homodimers through a four-helix bundle typical of the cholinesterases and other members of the α/β-hydrolase fold family. The presence of the stalk region adds to the extracellular domain of neuroligin-1 an elongated structure, suggesting a rod-like nature of the stalk domain. Sedimentation equilibrium coupled with solution scattering data of the β-neurexin/neuroligin-1 complex indicated a 2:2 stoichiometry where two β-neurexin molecules bind to a neuroligin-1 dimer. Deuteration of neurexin allowed us to collect neutron scattering data that, in combination with other biochemical techniques, provide a basis for optimizing the positioning of each component in a detailed computational model of the neuroligin/neurexin complex. As several mutations of both neurexin and neuroligin genes have been linked to autism spectrum disorders and mental retardation, these new structures provide an important framework for the study of altered structure and function of these synaptic proteins.  相似文献   

3.
Synaptogenesis requires formation of trans-synaptic complexes between neuronal cell-adhesion receptors. Heterophilic receptor pairs, such as neurexin Iβ and neuroligin, can mediate distinct intracellular signals and form different cytoplasmic scaffolds in the pre- and post-synaptic neuron, and may be particularly important for synaptogenesis. However, the functions of neurexin and neuroligin depend on their distribution in the synapse. Neuroligin has been experimentally assigned to the post-synaptic membrane, while the localization of neurexin remains unclear. To study the subcellular distribution of neurexin Iβ and neuroligin in mature cerebrocortical synapses, we have developed a novel method for the physical separation of junctional membranes and their direct analysis by western blotting. Using urea and dithiothreitol, we disrupted trans-synaptic protein links, without dissolving the lipid phase, and fractionated the pre- and post-synaptic membranes. The purity of these fractions was validated by electron microscopy and western blotting using multiple synaptic markers. A quantitative analysis has confirmed that neuroligin is localized strictly in the post-synaptic membrane. We have also demonstrated that neurexin Iβ is largely (96%) pre-synaptic. Thus, neurexin Iβ and neuroligin normally form trans-synaptic complexes and can transduce bidirectional signals.  相似文献   

4.
Postsynaptic neuroligins are thought to perform essential functions in synapse validation and synaptic transmission by binding to, and dimerizing, presynaptic α‐ and β‐neurexins. To test this hypothesis, we examined the functional effects of neuroligin‐1 mutations that impair only α‐neurexin binding, block both α‐ and β‐neurexin binding, or abolish neuroligin‐1 dimerization. Abolishing α‐neurexin binding abrogated neuroligin‐induced generation of neuronal synapses onto transfected non‐neuronal cells in the so‐called artificial synapse‐formation assay, even though β‐neurexin binding was retained. Thus, in this assay, neuroligin‐1 induces apparent synapse formation by binding to presynaptic α‐neurexins. In transfected neurons, however, neither α‐ nor β‐neurexin binding was essential for the ability of postsynaptic neuroligin‐1 to dramatically increase synapse density, suggesting a neurexin‐independent mechanism of synapse formation. Moreover, neuroligin‐1 dimerization was not required for either the non‐neuronal or the neuronal synapse‐formation assay. Nevertheless, both α‐neurexin binding and neuroligin‐1 dimerization were essential for the increase in apparent synapse size that is induced by neuroligin‐1 in transfected neurons. Thus, neuroligin‐1 performs diverse synaptic functions by mechanisms that include as essential components of α‐neurexin binding and neuroligin dimerization, but extend beyond these activities.  相似文献   

5.
The neuroligins are postsynaptic cell adhesion proteins whose associations with presynaptic neurexins participate in synaptogenesis. Mutations in the neuroligin and neurexin genes appear to be associated with autism and mental retardation. The crystal structure of a neuroligin reveals features not found in its catalytically active relatives, such as the fully hydrophobic interface forming the functional neuroligin dimer; the conformations of surface loops surrounding the vestigial active center; the location of determinants that are critical for folding and processing; and the absence of a macromolecular dipole and presence of an electronegative, hydrophilic surface for neurexin binding. The structure of a beta-neurexin-neuroligin complex reveals the precise orientation of the bound neurexin and, despite a limited resolution, provides substantial information on the Ca2+-dependent interactions network involved in trans-synaptic neurexin-neuroligin association. These structures exemplify how an alpha/beta-hydrolase fold varies in surface topography to confer adhesion properties and provide templates for analyzing abnormal processing or recognition events associated with autism.  相似文献   

6.
To investigate the expression levels of neurexins and neuroligins in the enteric nervous system (ENS) in Hirschsprung Disease (HSCR). Longitudinal muscles with adherent mesenteric plexus were obtained by dissection of the fresh gut wall of mice, guinea pigs, and humans. Double labeling of neurexin I and Hu (a neuron marker), neuroligin 1 and Hu, neurexin I and synaptophysin (a presynaptic marker), and neuroligin 1 and PSD95 (a postsynaptic marker) was performed by immunofluorescence staining. Images were merged to determine the relative localizations of the proteins. Expression levels of neurexin and neuroligin in different segments of the ENS in HSCR were investigated by immunohistochemistry. Neurexin and neuroligin were detected in the mesenteric plexus of mice, guinea pigs, and humans with HSCR. Neurexin was located in the presynapse, whereas neuroligin was located in the postsynapse. Expression levels of neurexin and neuroligin were significant in the ganglionic colonic segment of HSCR, moderate in the transitional segment, and negative in the aganglionic colonic segment. The expressions of neurexin and neuroligin in the transitional segments were significantly down-regulated compared with the levels in the normal segments (P < 0.05). Expression levels of neurexin and neuroligin in ENS are significantly down-regulated in HSCR, which may be involved in the pathogenesis of HSCR.  相似文献   

7.
We report what to our knowledge is a new method to characterize kinetic rates between cell-surface-attached adhesion molecules. Cells expressing specific membrane receptors are surface-labeled with quantum dots coated with their respective ligands. The progressive diminution in the total number of surface-diffusing quantum dots tracked over time collectively reflects intrinsic ligand/receptor interaction kinetics. The probability of quantum dot detachment is modeled using a stochastic analysis of bond formation and dissociation, with a small number of ligand/receptor pairs, resulting in a set of coupled differential equations that are solved numerically. Comparison with the experimental data provides an estimation of the kinetic rates, together with the mean number of ligands per quantum dot, as three adjustable parameters. We validate this approach by studying the calcium-dependent neurexin/neuroligin interaction, which plays an important role in synapse formation. Using primary neurons expressing neuroligin-1 and quantum dots coated with purified neurexin-1β, we determine the kinetic rates between these two binding partners and compare them with data obtained using other techniques. Using specific molecular constructs, we also provide interesting information about the effects of neurexin and neuroligin dimerization on the kinetic rates. As it stands, this simple technique should be applicable to many types of biological ligand/receptor pairs.  相似文献   

8.
Neuroligins, proteins of the alpha/beta-hydrolase fold family, are found as postsynaptic transmembrane proteins whose extracellular domain associates with presynaptic partners, proteins of the neurexin family. To characterize the molecular basis of neuroligin interaction with neurexin-beta, we expressed five soluble and exportable forms of neuroligin-1 from recombinant DNA sources, by truncating the protein before the transmembrane span near its carboxyl terminus. The extracellular domain of functional neuroligin-1 associates as a dimer when analyzed by sedimentation equilibrium. By surface plasmon resonance, we established that soluble neuroligins-1 bind neurexin-1beta, but the homologous alpha/beta-hydrolase fold protein, acetylcholinesterase, failed to associate with the neurexins. Neuroligin-1 has a unique N-linked glycosylation pattern in the neuroligin family, and glycosylation and its processing modify neuroligin activity. Incomplete processing of the protein and enzymatic removal of the oligosaccharides chain or the terminal sialic acids from neuroligin-1 enhance its activity, whereas deglycosylation of neurexin-1beta did not alter its association capacity. In particular, the N-linked glycosylation at position 303 appears to be a major determinant in modifying the association with neurexin-1beta. We show here that glycosylation processing of neuroligin, in addition to mRNA splicing and gene selection, contributes to the specificity of the neurexin-beta/neuroligin-1 association.  相似文献   

9.
10.
The Making of Neurexins   总被引:14,自引:2,他引:12  
  相似文献   

11.
Previous studies suggested that postsynaptic neuroligins form a trans-synaptic complex with presynaptic beta-neurexins, but not with presynaptic alpha-neurexins. Unexpectedly, we now find that neuroligins also bind alpha-neurexins and that alpha- and beta-neurexin binding by neuroligin 1 is regulated by alternative splicing of neuroligin 1 (at splice site B) and of neurexins (at splice site 4). In neuroligin 1, splice site B is a master switch that determines alpha-neurexin binding but leaves beta-neurexin binding largely unaffected, whereas alternative splicing of neurexins modulates neuroligin binding. Moreover, neuroligin 1 splice variants with distinct neurexin binding properties differentially regulate synaptogenesis: neuroligin 1 that binds only beta-neurexins potently stimulates synapse formation, whereas neuroligin 1 that binds to both alpha- and beta-neurexins more effectively promotes synapse expansion. These findings suggest that neuroligin binding to alpha- and beta-neurexins mediates trans-synaptic cell adhesion but has distinct effects on synapse formation, indicating that expression of different neuroligin and neurexin isoforms specifies a trans-synaptic signaling code.  相似文献   

12.
Neurexins are cell adhesion proteins that interact with neuroligin and other ligands at the synapse. In humans, mutations in neurexin or neuroligin genes have been associated with autism and other mental disorders. The human neurexin and neuroligin genes are orthologous to the Caenorhabditis elegans genes nrx‐1 and nlg‐1, respectively. Here we show that nrx‐1‐deficient mutants are defective in exploratory capacity, sinusoidal postural movements and gentle touch response. Interestingly, the exploratory behavioral phenotype observed in nrx‐1 mutants was markedly different to nlg‐1‐deficient mutants; thus, while the former had a ‘hyper‐reversal’ phenotype increasing the number of changes of direction with respect to the wild‐type strain, the nlg‐1 mutants presented a ‘hypo‐reversal’ phenotype. On the other hand, the nrx‐1‐ and nlg‐1‐defective mutants showed similar abnormal sinusoidal postural movement phenotypes. The response of these mutant strains to aldicarb (acetylcholinesterase inhibitor), levamisole (ACh agonist) and pentylenetetrazole [gamma‐aminobutyric (GABA) receptor antagonist], suggested that the varying behavioral phenotypes were caused by defects in ACh and/or GABA inputs. The defective behavioral phenotypes of nrx‐1‐deficient mutants were rescued in transgenic strains expressing either human alpha‐ or beta‐NRXN‐1 isoforms under the worm nrx‐1 promoter. A previous report had shown that human and rat neuroligins were functional in C. elegans. Together, these results suggest that the functional mechanism underpinning both neuroligin and neurexin in the nematode are comparable to human. In this sense the nematode might constitute a simple in vivo model for understanding basic mechanisms involved in neurological diseases for which neuroligin and neurexin are implicated in having a role.  相似文献   

13.
Thyagarajan A  Ting AY 《Cell》2010,143(3):456-469
The functions of trans-synaptic adhesion molecules, such as neurexin and neuroligin, have been difficult to study due to the lack of methods to directly detect their binding in living neurons. Here, we use biotin labeling of intercellular contacts (BLINC), a method for imaging protein interactions based on interaction-dependent biotinylation of a peptide by E. coli biotin ligase, to visualize neurexin-neuroligin trans-interactions at synapses and study their role in synapse development. We found that both developmental maturation and acute synaptic activity stimulate the growth of neurexin-neuroligin adhesion complexes via a combination of neurexin and neuroligin surface insertion and internalization arrest. Both mechanisms require NMDA receptor activity. We also discovered that disruption of activity-induced neurexin-neuroligin complex growth prevents recruitment of the AMPA receptor, a hallmark of mature synapses. Our results provide support for neurexin-neuroligin function in synapse maturation and introduce a general method to study intercellular protein-protein interactions.  相似文献   

14.
GOPC (Golgi-associated PDZ and coiled-coil motif-containing protein) represents a PDZ domain-containing protein associated with the Golgi apparatus, which plays important roles in vesicular trafficking in secretory and endocytic pathways. GOPC interacts with many other proteins, such as the Wnt receptors Frizzled 8 and neuroligin via its PDZ domain. Neuroligin is a neural cell-adhesion molecule of the post-synapse, which binds to the presynapse molecule neurexin to form a heterotypic intercellular junction. Here we report the solution structure of the GOPC PDZ domain by NMR. Our results show that it is a canonical class I PDZ domain, which contains two alpha-helices and six beta-strands. Using chemical shift perturbation experiments, we further studied the binding properties of the GOPC PDZ domain with the C-terminal motif of neuroligin. The observations showed that the ensemble of the interaction belongs to fast exchange with low affinity. The 3D model of the GOPC PDZ domain/neuroligin C-terminal peptide complex was constructed with the aid of the molecular dynamics simulation method. Our discoveries provide insight into the specific interaction of the GOPC PDZ domain with the C-terminal peptide of Nlg and also provide a general insight about the possible binding mode of the interaction of Nlg with other PDZ domain-containing proteins.  相似文献   

15.
To study synapse formation by neuroligins, we co-cultured hippocampal neurons with COS cells expressing wild type and mutant neuroligins. The large size of COS cells makes it possible to test the effect of neuroligins presented over an extended surface area. We found that a uniform lawn of wild type neuroligins displayed on the cell surface triggers the formation of hundreds of uniformly sized, individual synaptic contacts that are labeled with neurexin antibodies. Electron microscopy revealed that these artificial synapses contain a presynaptic active zone with docked vesicles and often feature a postsynaptic density. Neuroligins 1, 2, and 3 were active in this assay. Mutations in two surface loops of neuroligin 1 abolished neuroligin binding to neurexin 1beta, a presumptive presynaptic binding partner for postsynaptic neuroligins, and blocked synapse formation. An analysis of mutant neuroligins with an amino acid substitution that corresponds to a mutation described in patients with an autistic syndrome confirmed previous reports that these mutant neuroligins have a compromised capacity to be transported to the cell surface. Nevertheless, the small percentage of mutant neuroligins that reached the cell surface still induced synapse formation. Viewed together, our data suggest that neuroligins generally promote artificial synapse formation in a manner that is associated with beta-neurexin binding and results in morphologically well differentiated synapses and that a neuroligin mutation found in autism spectrum disorders impairs cell-surface transport but does not completely abolish synapse formation activity.  相似文献   

16.
Lieber T  Kidd S  Struhl G 《Neuron》2011,70(3):468-481
Neurexin and neuroligin, which undergo heterophilic interactions with each other at the synapse, are mutated in some patients with autism spectrum disorder, a set of disorders characterized by deficits in social and emotional learning. We have explored the role of neurexin and neuroligin at sensory-to-motor neuron synapses of the gill-withdrawal reflex in Aplysia, which undergoes sensitization, a simple form of learned fear. We find that depleting neurexin in the presynaptic sensory neuron or neuroligin in the postsynaptic motor neuron abolishes both long-term facilitation and the associated presynaptic growth induced by repeated pulses of serotonin. Moreover, introduction into the motor neuron of the R451C mutation of neuroligin-3 linked to autism spectrum disorder blocks both intermediate-term and long-term facilitation. Our results suggest that activity-dependent regulation of the neurexin-neuroligin interaction may govern transsynaptic signaling required for the storage of long-term memory, including emotional memory that may be impaired in autism spectrum disorder.  相似文献   

17.
18.
Neurexins and neuroligins play an essential role in synapse function, and their alterations are linked to autistic spectrum disorder. Interactions between neurexins and neuroligins regulate inhibitory and excitatory synaptogenesis in vitro through a "splice-insert signaling code." In particular, neurexin 1beta carrying an alternative splice insert at site SS#4 interacts with neuroligin 2 (found predominantly at inhibitory synapses) but much less so with other neuroligins (those carrying an insert at site B and prevalent at excitatory synapses). The structure of neurexin 1beta+SS#4 reveals dramatic rearrangements to the "hypervariable surface," the binding site for neuroligins. The splice insert protrudes as a long helix into space, triggers conversion of loop beta10-beta11 into a helix rearranging the binding site for neuroligins, and rearranges the Ca(2+)-binding site required for ligand binding, increasing its affinity. Our structures reveal the mechanism by which neurexin 1beta isoforms acquire neuroligin splice isoform selectivity.  相似文献   

19.
20.
The vascular and nervous systems are organized with well defined and accurate networks, which represent the anatomical structure enabling their functions. In recent years, it has been clearly demonstrated that these two systems share in common several mechanisms and specificities. For instance, the networking properties of the nervous and vascular systems are governed by common cues that in the brain regulate axon connections and in the vasculature remodel the primitive plexus towards the vascular tree. Here, we summarize the role of semaphorins as a paradigmatic example of the role of axon guidance molecules in physiological and pathological angiogenesis. Finally, we discuss the presence in blood vessels of neurexin and neuroligin, two proteins that finely modulate synaptic activity in the brain. This observation is suggestive of an intriguing new class of molecular and functional parallels between neurons and vascular cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号