首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of 17 strains of genus Epidermophyton (15 strains belonging to Epidermophyton floccosum, one to E. floccosum var. nigricans and one to E. stockdaleae) to grow at different temperatures (4 °C, 25 °C, 28 °C, 31 °C, 34 °C, 37 °C and 40 °C) was stated.The strains were inoculated on Sabouraud Dextrose Agar and regularly controled over a period of 14 days when the plates were incubated at 25 °C, 28 °C, 31 °C, 34 °C, 37 °C and 40 °C, and over a period of 70 days when the temperature was 4 °C. The optimal growth of E. floccosum was observed at 28 °C and 31 °C, and no signs of growth were recorded neither at 4 °C nor at 40 °C. The optimal development of E. stockdaleae was observed at 25 °C and 28 °C. This species grew from 4 °C to 31 °C.  相似文献   

2.
Peng L  Hocart CH  Redmond JW  Williamson RE 《Planta》2000,211(3):406-414
 Three non-allelic radial swelling mutants (rsw1, rsw2 and rsw3) of Arabidopsisthaliana L. Heynh. were shown to be specifically impaired in cellulose production. Fractionation methods that identify, characterise and quantify some of the major cell wall polysaccharides in small quantities of seedlings demonstrated that changes in the production of cellulose are much more pronounced than changes in the production of non-cellulosic polysaccharides. A crude cell wall pellet was sequentially extracted with chloroform methanol (to recover lipids), dimethyl sulphoxide (starch), ammonium oxalate (pectins) and alkali (hemicelluloses). Crystalline cellulose remained insoluble through subsequent treatments with an acetic/nitric acid mixture and with trifluoroacetic acid. Cetyltrimethylammonium bromide precipitation resolved neutral and acidic polymers in the fractions, and precipitation behaviour, monosaccharide composition and glycosidic linkage patterns identified the major polysaccharides. The deduced composition of the walls of wild-type seedlings and the structure and solubility properties of the major polymers were broadly typical of other dicots. The three temperature-sensitive, radial swelling mutants produced less cellulose in their roots than the wild type when grown at their restrictive temperature (31 °C). There were no significant differences at 21 °C where no radial swelling occurs. The limited changes seen in the monosaccharide compositions, glycosidic linkage patterns and quantities of non-cellulosic polysaccharides support the view that the RSW1, RSW2 and RSW3 genes are specifically involved in cellulose synthesis. Reduced deposition of cellulose was accompanied by increased accumulation of starch. Received: 15 December 1999 / Accepted: 18 January 2000  相似文献   

3.
Development rates were determined for three pteromalid parasitoids of houseflies under constant and varying temperatures from 15 to 35°C.Muscidifurax raptorGirault and Sanders was the fastest developing species, with females completing development in 13.8 days at 32.5°C and 66.5 days at 15°C.Spalangia geminaBoucek females completed development in 20.8 days at 30.0°C and 161 days at 15.0°C, whereasS. cameroniPerkins females completed development in 20.6 days at 30.0°C and 155.5 days at 15.0°C. Male development times were 90.3% of those for femaleS. geminaand 92.7 and 88.6% of those for femaleS. cameroniandM. raptor,respectively. Parasitoid survival was very low at 35°C for all species and noSpalangiasurvived constant exposure to 15.0°C. Exposure to these lethal temperatures for shorter periods indicated that the parasitoids can tolerate them well under conditions more typical of the field. Development rates were modeled using biophysical and degree-day models and the models were tested for their ability to predict development under fluctuating conditions (24–36°C). Neither model was superior for all three species because of interspecific differences in the parasitoids' responses to high temperatures. Agreement between predicted and observed development times for all three species was achieved by small empirical adjustments of a key parameter in the biophysical model.  相似文献   

4.
One-year-old tree seedlings were incubated in a greenhouse from April to July, under natural daylight conditions, with their root systems at constant temperatures of 5, 10, 15, 20, 25, 30 and 35 °C and with the above ground parts kept at a constant air temperature of 18–20 °C. The course of height growth, total mass increment, root, shoot and leaf weight as well as leaf areas were measured. The results indicate that clear differences exist in the optimal root zone temperatures for various growth parameters in different tree species. Pinus sylvestris had a maximal height increment at about 5–10 °C and maximal total mass increment at 15 °C root temperature. In contrast, the optimum for Quercus robur was at 25 °C. Tilia cordata and Fagus sylvatica had their optima for most growth parameters at 20 °C. The root temperature apparently indirectly influenced photosynthesis (dry weight accumulation) and respiration loss. From the observed symptoms and indications in the literature it seems probable that a change in hormone levels is involved as the main factor in the described effects. Variation of root temperature had only an insignificant effect on bud burst and the time at which the shoots sprouted. Apparently species of northern origin seem to have lower root temperature optima than those of more southern origin. This is to be verified by investigation of other tree species.  相似文献   

5.
Phenol degradation efficiency of cold-tolerant Arthrobacter sp. AG31 and mesophilic Pseudomonas putida DSM6414 was compared. The cold-tolerant strain was cultivated at 10°C, while the mesophile was grown at 25°C. Both strains degraded 200 mg and 400 mg phenol/l within 48–72 h of cultivation, but the cold-tolerant strain produced more biomass than the mesophile. Both strains oxidized catechol by the ortho type of ring fission. Catechol 1,2 dioxygenase (C1,2D) activity was found intra- and extracellularly in the absence and in the presence of phenol. In the presence of 200 mg phenol/l, C1,2D activity of the mesophile was about 1.5- to 2-fold higher than that of the cold-tolerant strain. However, an initial phenol concentration of 400 mg/l resulted in a comparable enzyme activity of the cold-tolerant and the mesophilic strain. The two strains differed significantly in their toxicity pattern towards 12 aromatic (mostly phenolic) compounds at different growth temperatures, which was determined via growth inhibition in the presence of nutrients and toxicants. For the cold-tolerant strain, toxicity was significantly lower at 10°C than at 25°C. The mesophile showed a significantly lower susceptibility to high hydrocarbon concentrations when grown at 25°C compared to 10°C.Communicated by K. Horikoshi  相似文献   

6.
Summary Thersw1 mutant ofArabidopsis thaliana has a single amino acid substitution in a putative glycosyl transferase that causes a temperature-dependent reduction in cellulose production. We used recently described methods to examine root growth by surface marker particles, cell wall structure by field emission scanning electron microscopy and microtubule alignment by immunofluorescence after the mutant is transferred to its restrictive temperature. We find that raising the temperature quickly accelerates root elongation in both wild type and mutant, presumably as a result of general metabolic stimulation, but that in the mutant, the rate declines within 7–8 h and elongation almost ceases after 24 h. Radial swelling begins at about 6 h in the mutant and root diameter continues to increase until about 24 h. The normal transverse alignment of microfibrils is severely impaired in the mutant after 8 h, and chemical inhibition of cellulose synthesis by 2,6-dichlorobenzonitrile causes a similar loss of orientation. After 24 h, microfibrils are not clearly visible in the walls of cells that would have been in the mitotic and early-elongation zone of wild-type roots. Changes in older cells are less marked; loss of transverse microfibril orientation occurs without disruption to the transverse orientation of cortical microtubules. The wild type shows none of the changes except for acceleration of elongation, which in its case is sustained. We conclude that microfibril alignment requires the normal functioning of RSW1 and that, in view of the effects of dichlorobenzonitrile, there may be a more general linkage between the rate of cellulose production and its proper alignment.Abbreviations DCB 2,6-dichlorobenzonitrile - REGR relative elemental growth rate Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

7.
Two strains of obligately anaerobic, thermophilic spirochetes were isolated from cyanobacterial mat samples collected at freshwater hot springs in Oregon and Utah, USA. The isolates grew optimally between 48° and 52°C, and did not grow at 25° or 60°C. Both strains fermented various pentoses, hexoses, and disaccharides. Amino acids or cellulose did not serve as fermentable substrates for growth. H2, CO2, acetate, and lactate were end products of d-glucose fermentation. On the basis of physiological characteristics, guanine + cytosine content of DNA, and comparisons of 16S ribosomal RNA sequences, it was concluded that the two isolates were representatives of a novel species of Spirochaeta for which the name Spirochaeta caldaria is proposed. One of the two strains was grown in coculture with a thermophilic cellulolytic bacterium (Clostridium thermocellum) in a medium containing cellulose as the only fermentable substrate. In the coculture cellulose was broken down at a faster rate than in the clostridial monoculture. The results are consistent with the suggestion that interactions between cellulolytic bacteria and non-cellulolytic spirochetes enhance cellulose breakdown in natural environments in which cellulose-containing plant material is biodegraded.  相似文献   

8.
Eight different strains ofBacillus were isolated from fermented fish (Budu) and their proteolytic enzyme activities were determined after 18 h cultivation at room temperature (35° C). Four isolates possessed high protease activities. Optimum pH for these enzymes was between 7.0 and 8.0 and the optimal temperature was 55° C. The proteases retained 40% of their original activity after 20 min at 55° C but lost all activity at 65° C. Three of the four isolates were identified asBacillus subtilis, the fourth asBacillus licheniformis.  相似文献   

9.
Growth of a temperature sensitive colonial mutant (cot 1) of Neurospora crassa was compared with a wild type strain. The hyphal growth unit (the ratio between mycelial length and number of branches) of the wild type was not appreciably altered by temperature and there was a direct relationship between the specific growth rate () of these mycelia and their mean hyphal extension rate (E). The specific growth rate of cot 1 increased by about the same relative amount as the wild type between 15° and 30°C. Cot 1 grew and branched normally at 15° and 25°C but at 30°C the hyphal growth unit and mean hyphal extension rate of the mutant mycelia were reduced. Thus, between 15–30°C the ratio, E/ was constant for the wild type but not for cot 1.The effect of temperature and temperature shifts on extension zone length (Z), extension zone expansion time (Z i ) and branching of leading hyphae of mature colonies were also studies.It is suggested that branching is governed by a mechanism which regulates the linear growth rate of hyphae; the cot 1 mutation may have a direct effect on wall extension or affect linear growth rate indirectly due to an influence on the transport of precursors to the tip.  相似文献   

10.
Chaetomium thermophile var.dissitum, isolated from an experimental urban refuse compost, had the following growth characteristics: Minimum temperature, 27±1°C; optimum, 45–50°C; maximum, 57±1°C; pH optimum 5.5–6.0.A number of carbohydrates could be used for growth, but cellulase formation measured with carboxymethylcellulose as substrate was initiated only on cellulose or xylan. With cellulose as the carbon source, cellulase accumulation in the culture filtrate followed closely that of growth, when the temperature was varied. pH optimum for the cellulase system was 5.0.The optimum temperature for cellulase activity with carboxymethylcellulose as substrate varied between 77°C with 1/2 h incubation time and 58°C with 10 h incubation time.With cotton as substrate, the optimum temperature was 58°C regardless of incubation time. Carboxymethylcellulose had a higher stabilizing effect on the enzyme than cotton. The temperature stability of the cellulase was highest at pH 6.0.  相似文献   

11.
Heat shock (HS) reduced total lipid and phospholipid contents and their synthesis in germinating seeds of pigeonpea [Cajanus cajan (L.) Millspaugh]. Lipid peroxidation was also enhanced with increasing temperature and HS duration. HS influenced lipid metabolism to a higher extent at 45°C than at 40°C. This altered lipid metabolism and lipid peroxidation was associated with the loss of various solutes from the germinating seeds, and modification of growth and development. Pretreatment of germinating seeds at 40°C for 1 h or at 45°C for 10 min followed by incubation at 28°C for 3 h prior to 45°C for 2 h ameliorated solute leakage due to reduced lipid peroxidation and improvement in lipid content and membrane function.  相似文献   

12.
Photosynthetic activity, in leaf slices and isolated thylakoids, was examined at 25° C after preincubation of the slices at either 25° C or 4° C at a moderate photon flux density (PFD) of 450 mol·m–2·s–1, or at 4° C in the dark. The plants used wereSpinacia oleracea L.,Cucumis sativus L. andNerium oleander L. which was acclimated to growth at 20° C or 45° C. The plants were grown at a PFD of 550 mol·m–2·s–1. Photosynthesis, measured as CO2-dependent O2 evolution, was not inhibited in leaf slices from any plant after preincubation at 25° C at a moderate PFD or at 4° C in the dark. However, exposure to 4° C at a moderate PFD induced an inhibition of CO2-dependent O2 evolution within 1 h inC. sativus, a chilling-sensitive plant, and in 45° C-grownN. oleander. The inhibition in these plants after 5 h reached 80% and 40%, respectively, and was independent of the CO2 concentration but was reduced at O2 concentrations of less than 3%. Methyl-viologen-dependent O2 exchange in leaf slices from these plants was not inhibited. There was no photoxidation of chlorophyll, in isolated thylakoids, or any inhibition of electron transport at photosystem (PS)II, PSI or through both photosystems which would account for the inhibition of photosynthesis. The conditions which inhibit photosynthesis in chilling-sensitive plants do not cause inhibition inS. oleracea, a chilling-insensitive plant, or in 20° C-grownN. oleander. The CO2-dependent photosynthesis, measured at 5° C, was reduced to about 3% of that recorded at 25° C in chilling-sensitive plants but only to about 30% in the chilling-insensitive plants. Methyl-viologen-dependent O2 exchange, measured at 5° C, was greater than 25% of the activity at 25° C in all the plants. The results indicate that the mechanism of the chilling-induced inhibition of photosynthesis does not involve damage to PSII. That inhibition of photosynthesis is observed only in the chilling-sensitive plants indicates it is related, in some way, to the disproportionate decrease in photosynthetic activity in these plants at chilling temperatures.Abbreviations Chl chlorophyll - DPIPH reduced form of 2,6-dichlorophenol-indophenol - DMQ 2,5-dimethyl-p-benzoquinone - MV methyl viologen - 20°-oleander Nerium oleander grown at 20° C - 45°-oleander N. oleander grown at 45° C - PFD photon flux density (photon fluence rate) - PSI and PSII photosystem I and II, respectively  相似文献   

13.
Temperature dependency of sexual agglutination in Saccharomyces cerevisiae was found. Of 31 strains tested, which showed normal agglutination when cultured at 25°C, 29 strains lost their sexual agglutinability when they were grown at 37°C.  相似文献   

14.
The yeast Cryptococcus albidus, originally isolated from mature strawberry fruits, was tested for antagonistic activity against Botrytis cinerea, the causal agent of grey mould in strawberries. Conidial germination and germ tube growth of conidia of B. cinerea were inhibited by a cell suspension of the antagonist in aqueous strawberry fruit pulp suspension (1%) after 6 and 24 hours of incubation. Application of a cell suspension (1 × 106 cells/ml) on detached strawberry leaf disks incubated at 10°C reduced incidence and conidiophore density of B. cinerea by 86 and 99%, respectively, but effectiveness was reduced at higher temperatures. Treatments with C. albidus during bloom of strawberries reduced incidence of grey mould on ripe strawberry fruits after harvest by 33, 28 and 21% in three years of field trials. The effectiveness of the yeast was increased when formulation substances (alginate, xanthan and cellulose) were added to the cell suspension.  相似文献   

15.
Paul B. Green  Jeanne M. Lang 《Planta》1981,151(5):413-426
Polarity shifts occur during organogenesis. The histological criterion for polarity is the direction of cell division. The biophysical criterion is the orientation of reinforcing cellulose microfibrils which lie normal to the organ axis and which determine the preferred growth direction. Using cell pattern to deduce cell lineage, and polarized light to study cellulose alignment, both aspects of polarity were examined in the epidermis of regenerating G. paraguayense. In this system new leaves and a stem arise from parallel cell files on a mature leaf. Large (90°) shifts in polarity occur in regions of the epidermis to give the new organs radial symmetry in the surface plane (files radiating from a pole). Study of the shifts in the epidermis showed that, during certain stages, shifts in the division direction are accompanied by shifts in the cellulose deposition direction, as expected. The new cellulose orientation is parallel to the new cross wall. During normal organ extension, however, shifts in division direction do not bring on changes in cellulose pattern. Thus the coupling between the two kinds of polarity is facultative. This variable relation is used in a biophysical model which can account for the reorganization of cell file pattern and cellulose reinforcement pattern into the radial symmetry of the new organ.  相似文献   

16.
Glenda R. Orr  John K. Raison 《Planta》1990,181(1):137-143
The composition and phase behavior of some lipid classes and mixtures of thylakoid polar lipids were measured to investigate their role as determinants of the temperature of the transition associated with chilling injury. For Nerium oleander L., a plant which acclimates to growth temperature, a mixture of the phosphatidylglycerol (PG) and sulfoquinovosyldiacylglycerol (SQDG) showed transition temperatures of 22° and 10° C for plants grown at 45° and 20° C, respectively. This difference was similar to the 9 Celsius degrees differential in the transition of the polar lipids and indicated that the PG and-or the PG-SQDG mixture could be the major determinants of the transition temperature. Reconstitution of the PG-SQDG mixture from 20°-grown oleander with the galactolipids from 45°-grown plants, however, reduced the transition temperature by only 4 Celsius degrees. This indicates that some, low-melting-point lipids, which are structurally capable of forming a co-gel with the high-melting-point lipids, also play a role in determining the temperature of the transition and that the composition of these low-melting-point lipids also changes with growth temperature. More specific information on the role of PG was obtained using polar lipids from Cucumis sativus L., a chilling-sensitive plant. For this material the transition in the polar lipids was reduced from 9° to 5° and 4° C when the transition of the PG was reduced from 32° to 25° and 22° C. This was accomplished by reducing the proportion of disaturated molecular species in PG from 78 to 56 and 44 mol% by the addition of a fraction of the PG enriched in unsaturated molecular species. The data indicate that the transition temperature of the polar lipids of cucumber would be reduced to below 0° C, typical of a chillinginsensitive plant, when the transition temperature of PG was reduced to 15° C and this would occur at 21 mol% of disaturated molecular species. It is concluded that the transition in the thylakoid polar lipids, associated with chilling injury, involves both high- and low-meltingpoint lipids but can be reduced when the transition temperature of the high-melting-point component is reduced.Abbreviations DGDG digalactosyldiacylglycerol - MGDG monogalactosyldiacylglycerol - PG phosphatidylglycerol - SQDG sulfoquinovosyldiacylglycerol  相似文献   

17.
Mutant spores of Dictyostelium discoideum, strain SG-10, differ from wild type spores in their ability to spontaneously germinate, to be activated with 5% dimethyl Sulfoxide (DMSO), and to be deactivated with 0.2 M sucrose. Both heat-activated wild type and mutant spores began to swell after a lag of 60–75 min at ambient temperature. Suspension of heat activated spores in 5% DMSO resulted in blockage of spore swelling and a concomitant severe inhibition of respiration; removal of 5% DMSO allowed resumption of respiration and the spores began to swell after a lag of only 15 min. It was concluded that 5% DMSO allowed the early reactions (M) to proceed but blocked the later reactions (R) of post-activation lag.Treatment of one day old spores with 20% DMSO solution for 30–120 min quantitatively activated the population. The post-activation lag time was directly dependent on the time of 20% DMSO treatment. Spores activated with 20% DMSO treatment could be deactivated by incubation at 0°C; the spores most quickly deactivated at 0°C were those within 10 min of swelling. Mitochondrial transport inhibitors such as azide and cyanide caused deactivation in an analogous manner. It is hypothesized that spores proceed to the second portion of the lag phase called (R) before the environment determines if dormancy is reimposed or if germination will proceed. The sensitive strain (SG-10) showed a greater degree of damage than the wild type after supraoptimal treatment with 40% DMSO. The spores became more resistant with age to the damaging action of 40% DMSO. All the observed effects of DMSO treatment were compatible with our multistate model of activation which suggests that the early portion of the lag phase (M) may involve a relative uncoupling of oxidative phosphorylation while the later portion (R) may require tight coupling.  相似文献   

18.
Effects of temperature on the activity of flucycloxuron on larval stages of Panonychus ulmi (Koch), based on LC50 values, were highly significant (P < 0.001) with temperature coefficients of-1.7 in both the ranges of 15° to 25°C and 20° to 30°C. The slopes of probit regression lines at 15° and 20°C were significantly steeper than those at 25° and 30°C. As a consequence the temperature coefficients based on LC90 values were-4.4 and-2.2, for the 2 temperature ranges. The ovicidal activity of flucycloxuron on P. ulmi was low and was only statistically detectable at 20°C (LC90 of 84 mg a.i./l). In studies with larvae of Aedes aegypti (Linnaeus), Leptinotarsa decemlineata (Say), Plutella xylostella (Linnaeus), Spodeptera exigua (Hübner) and Spodoptera littoralis (Boisduval) probit regression lines were parallel over temperature. The activity of flucycloxuron on these five insect species was not affected by temperature. Based on LC50 values, diflubenzuron showed positive temperature coefficients on P. xylostella of + 2.1 at 15° to 25°C and + 2.5 at 20° to 30°C. For S. littoralis the temperature coefficient was positive (+ 2.4) at 15° to 25°C but negative (-1.9) at the 20° to 30°C range. Temperature coefficients of diflubenzuron were neutral for A. aegypti, L. decemlineata and S. exigua. In the design and analysis of these studies special allowance was made for date effects and variation in natural mortality over temperature.  相似文献   

19.
Three strains of Bradyrhizobium, 280A, 2209A and 32H1, that nodulated peanuts (Arachis hypogaea L.), were tested for their ability to grow and survive at elevated temperatures of up to 42°C in laboratory culture. Strain 32H1 was unable to grow at 37°C and was more sensitive to elevated temperatures than the other two strains. All three produced heat-shock proteins of molecular weights 17 kDa and 18 kDa. Two greenhouse experiments were conducted to determine the effect of high root temperature on nodulation, growth and nitrogen fixation of peanut. Two peanut varieties (Virginia cv NC7 and Spanish cv Pronto) were inoculated and exposed to root temperatures of 30°, 37° and 40°C. Nodulation and nitrogen fixation were strongly affected by root temperature but there was no variety × temperature interaction. At a constant 40°C root temperature no nodules were formed. Nodules were formed when roots were exposed to this temperature with diurnal cycling but no nitrogen fixation occurred. Highest plant dry weight, shoot nitrogen content and total nitrogen were observed at a constant root temperature of 30°C. Increasing root temperature to 37°C reduced average nitrogen content by 37% and total nitrogen by 49% but did not reduce nodulation. The symbiotic performance of the strains corresponded to their abilities to grow and survive at high temperature in culture.  相似文献   

20.
A thermotolerant fungal strainAspergillus terreus produced high activities of cellulolytic enzymes when grown in shake flasks for 8 days at 40°C or 14 days at 28°C in medium containing 2.5% (w/v) cellulose powder and 1% (w/v) wheat bran. There was little difference between the final activities of endo-(1,4)--glucanase (ca. 14.4 U/ml); filter paper activity (ca. 1.3 U/ml) and -glucosidase (ca. 10 U/ml). Endoglucanase had maximum activity at 60°C and pH 3.8; the other two enzymes were optimal at 60°C and pH 4.8. The maximum hydrolysis of different cellulosic substrates (about 50%) was obtained within 48 h when 1.1 U/ml of filter paper cellulase activity were employed to saccharify 100 mg alkali-treated cotton, filter paper, bagasse, and rice straw at 50°C and pH 4.8. The major end-product, glucose, was produced from all substrates, with traces of cellobiose and other larger oligosaccharides being present in rice straw hydrolysates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号