首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two mucoid Pseudomonas aeruginosa strains and their non-mucoid revertants isolated from two different clinical origins (cystic fibrosis and bronchiectasis) were grown in various chemically defined media. The extracted exopolysaccharide was characterized by gas-liquid chromatography and 1H-NMR spectroscopy. The exopolysaccharide was always heterogeneous, with an alginate fraction and a neutral fraction essentially composed of glucose, galactose, rhamnose and hexosamines. The alginate composition (mannuronate/guluronate ratio and O-acetylation degree) changed according to the carbon source in nutrient media and whether the strains tested were responding differently to these environmental stimuli. In all cases, the best carbon source for the alginate production was glycerol: the two cystic fibrosis strains produced a predominantly O-acetylated alginate whereas only the mucoid bronchiectasis strain produced a polymannuronate exopolysaccharide.  相似文献   

2.
Mucoid strains of Pseudomonas aeruginosa isolated from the sputum of cystic fibrosis patients produce copious quantities of an exopolysaccharide known as alginic acid. Since clinical isolates of the mucoid variants are unstable with respect to alginate synthesis and revert spontaneously to the more typical nonmucoid phenotype, it has been difficult to isolate individual structural gene mutants defective in alginate synthesis. The cloning of the genes controlling alginate synthesis has been facilitated by the isolation of a stable alginate-producing strain, 8830. The stable mucoid strain was mutagenized with ethyl methanesulfonate to obtain various mutants defective in alginate biosynthesis. Several nonmucoid (Alg-) mutants were isolated. A mucoid P. aeruginosa gene library was then constructed, using a cosmid cloning vector. DNA isolated from the stable mucoid strain 8830 was partially digested with the restriction endonuclease HindIII and ligated to the HindIII site of the broad host range cosmid vector, pCP13. After packaging in lambda particles, the recombinant DNA was introduced via transfection into Escherichia coli AC80. The clone bank was mated (en masse) from E. coli into various P. aeruginosa 8830 nonmucoid mutants with the help of pRK2013, which provided donor functions in trans, and tetracycline-resistant exconjugants were screened for the ability to form mucoid colonies. Three recombinant plasmids, pAD1, pAD2, and pAD3, containing DNA inserts of 20, 9.5, and 6.2 kilobases, respectively, were isolated based on their ability to restore alginate synthesis in various strain 8830 nonmucoid (Alg-) mutants. Mutants have been assigned to at least four complementation groups, based on complementation by pAD1, pAD2, or pAD3 or by none of them. Introduction of pAD1 into the spontaneous nonmucoid strain 8822, as well as into other nonmucoid laboratory strains of P. aeruginosa such as PAO and SB1, was found to slowly induce alginate synthesis. This alginate-inducing ability was found to reside on a 7.5-kilobase EcoRI fragment that complemented the alg-22 mutation of strain 8852. The pAD1 chromosomal insert which complements the alg-22 mutation was subsequently mapped at ca. 19 min of the P. aeruginosa PAO chromosome.  相似文献   

3.
Alginate biosynthesis in Pseudomonas aeruginosa is a highly regulated process in which algU and mucA genes are key elements. Mutations in mucA gene determine alginate operon overexpression and exopolysaccharide overproduction. In our study, 119 strains of P. aeruginosa were isolated from sputa of 96 cystic fibrosis patients and 84/119 showed nonmucoid phenotype, while 35/119 showed mucoid phenotypes. mucA gene was amplified and sequenced in all strains revealing mutations in 29/35 mucoid strains (82%) and in one non-mucoid strain. 4/29 strains showed mutations never described that generated premature stop and much shorter MucA proteins. In all mutated strains, algU gene expression was analyzed to determine if mutations in mucA, resulting in a strong loss of its protein, could significantly influence its function and subsequently the biosynthetic pathways under algU control. Analysis of algU expression disclosed that the length significantly affects the expression of genes involved in the production of alginate and in the motility and hence survival of P. aeruginosa strains in cystic fibrosis lungs.  相似文献   

4.
5.
Pseudomonas aeruginosa strains, isolated from chronically infected patients with cystic fibrosis, produce the O-acetylated extracellular polysaccharide, alginate, giving these strains a mucoid phenotype. O acetylation of alginate plays an important role in the ability of mucoid P. aeruginosa to form biofilms and to resist complement-mediated phagocytosis. The O-acetylation process is complex, requiring a protein with seven transmembrane domains (AlgI), a type II membrane protein (AlgJ), and a periplasmic protein (AlgF). The cellular localization of these proteins suggests a model wherein alginate is modified at the polymer level after the transport of O-acetyl groups to the periplasm. Here, we demonstrate that this mechanism for polysaccharide esterification may be common among bacteria, since AlgI homologs linked to type II membrane proteins are found in a variety of gram-positive and gram-negative bacteria. In some cases, genes for these homologs have been incorporated into polysaccharide biosynthetic operons other than for alginate biosynthesis. The phylogenies of AlgI do not correlate with the phylogeny of the host bacteria, based on 16S rRNA analysis. The algI homologs and the gene for their adjacent type II membrane protein present a mosaic pattern of gene arrangement, suggesting that individual components of the multigene cassette, as well as the entire cassette, evolved by lateral gene transfer. AlgJ and the other type II membrane proteins, although more diverged than AlgI, contain conserved motifs, including a motif surrounding a highly conserved histidine residue, which is required for alginate O-acetylation activity by AlgJ. The AlgI homologs also contain an ordered series of motifs that included conserved amino acid residues in the cytoplasmic domain CD-4; the transmembrane domains TM-C, TM-D, and TM-E; and the periplasmic domain PD-3. Site-directed mutagenesis studies were used to identify amino acids important for alginate O-acetylation activity, including those likely required for (i) the interaction of AlgI with the O-acetyl precursor in the cytoplasm, (ii) the export of the O-acetyl group across the cytoplasmic membrane, and (iii) the transfer of the O-acetyl group to a periplasmic protein or to alginate. These results indicate that AlgI belongs to a family of membrane proteins required for modification of polysaccharides and that a mechanism requiring an AlgI homolog and a type II membrane protein has evolved by lateral gene transfer for the esterification of many bacterial extracellular polysaccharides.  相似文献   

6.
Mucoid strains of Pseudomonas aeruginosa overproduce the exopolysaccharide alginate, which is substituted with O-acetyl groups. Under non-growing conditions in phosphate buffer, a mucoid clinical strain formed microcolonies on steel surfaces, while an acetylation-defective mutant was unable to form cell clusters. Enzymatic degradation of alginate by alginate lyase prevented microcolony formation of the mucoid parent strain. In a continuous-culture flow-cell system, using gluconate minimal medium, the mucoid strain with acetylated alginate formed microcolonies and grew into heterogenous biofilms, whereas the acetylation-defective mutant produced a thinner and more homogeneous biofilm. A lowered viscosity of extracellular material from the acetylation-defective mutant indicated a weakening of exopolymer interactions by loss of acetyl groups. These results suggest that acetyl substituents are necessary for the function of high-molecular-mass alginate to mediate cell aggregation into microcolonies in the early stages of biofilm development by mucoid P. aeruginosa, thereby determining the architecture of the mature biofilm.  相似文献   

7.
Conversion of the mucoid phenotype, which results from the production of the exopolysaccharide alginate, is a feature typical of Pseudomonas aeruginosa strains causing chronic pulmonary infections in patients with cystic fibrosis. In this study, we further characterized a recombinant plasmid, called pJF15, that contains DNA from the 65- to 70-min region of the chromosome of mucoid P. aeruginosa FRD1 and has loci involved in alginate conversion. Plasmid pJF15 complements algT mutations in trans and confers the mucoid phenotype in cis following gene replacement. However, the phenotype of nonmucoid P. aeruginosa carrying pJF15 is unchanged. Here we report the identification of a locus immediately downstream of algT, called algN, that may be a negative regulator that blocks algT from activating alginate production. Inactivation of algN by transposon Tn501 insertion allowed algT to stimulate alginate production in trans. The DNA sequence of this region identified an open reading frame that predicts an algN gene product of 33 kDa, but no homology was found to other proteins in a sequence data base. Clones of algT in which algN was deleted caused the activation of alginate biosynthesis in transconjugants of several P. aeruginosa strains. DNA containing algT was shown to hybridize to the genomes of several Pseudomonas species, including P. putida, P. stutzeri, and P. fluorescens. Transconjugants of these species carrying algT DNA (with a deletion of algN) from pJF15 showed a mucoid phenotype and increased production of uronic acid-containing polymers that resembled alginate.  相似文献   

8.
9.
10.
Pseudomonas aeruginosa can convert to a mucoid colony morphology by a genetic mechanism called alginate conversion; this results in the production of copious amounts of the exopolysaccharide alginate. The mucoid phenotype of P. aeruginosa is commonly associated with its ability to cause chronic pulmonary tract infections in patients with cystic fibrosis. In this study we isolated the cis-acting locus involved in alginate conversion, called algS, from both mucoid and nonmucoid isogenic strains. We then examined the role of algS in the control of algT, a trans-active gene required for alginate production in P. aeruginosa. We used a new cosmid cloning vector, called pEMR2, that permitted both the cloning of large DNA fragments and their subsequent gene replacement in P. aeruginosa. To verify the predicted properties of this vector, we isolated and tested a pEMR2 hisI+ clone. Using cloned algS-containing DNA and a method for gene replacement, we constructed isogenic strains of P. aeruginosa that had Tn501 adjacent to algS on the chromosome. Two pEMR2 clone banks containing genomic fragments from isogenic algS(On) (exhibiting the alginate production phenotype) and algS(Off) (exhibiting the non-alginate production phenotype) strains were constructed, and Tn501 served as an adjacent marker to select for clones containing the respective algS allele. The pEMR2 algS(On) and pEMR2 algS(Off) clones were shown to contain the indicated algS allele by gene replacement with the chromosome of strains that carried the opposite allele. To test whether algS controls the expression of the adjacent algT gene, we constructed a pLAFR1 algS(Off)T clone and showed it to be unable to complement an algT::Tn501 mutation in trans. In contrast, a pLAFR1 algS(On)T clone did complement algT::Tn501 in trans. Thus, algS appears to control the activation of algT expression, bringing about alginate conversion.  相似文献   

11.
12.
Nonmucoid Pseudomonas aeruginosa responds to iron deprivation by synthesizing the siderophores pyochelin and pyoverdine. When grown in iron-deficient medium, six mucoid P. aeruginosa strains isolated from cystic fibrosis patients synthesized copious amounts of the exopolysaccharide alginate. A procedure that eliminated the interference of alginate was developed so that siderophores could be extracted from the growth medium. All six isolates were then noted to produce both pyoverdine and pyochelin. This report thus confirms that mucoid P. aeruginosa, like its nonmucoid counterparts, elicits the siderophores commonly cited as those of the microbe.  相似文献   

13.
14.
The acidic exopolysaccharides (EPSs) from 63 strains of mushroom production-associated fluorescent pseudomonads which were mucoid on Pseudomonas agar F medium (PAF) were isolated, partially purified, and characterized. The strains were originally isolated from discolored lesion which developed postharvest on mushroom (Agaricus bisporus) caps or from commercial lots of mushroom casing medium. An acidic galactoglucan, previously named marginalan, was produced by mucoid strains of the saprophyte Pseudomonas putida and the majority of mucoid strains of saprophytic P. fluorescens (biovars III and V) isolated from casing medium. One biovar II strain (J1) of P. fluorescens produced alginate, a copolymer of mannuronic and guluronic acids, and one strain (H13) produced an apparently unique EPS containing neutral and amino sugars. Of 10 strains of the pathogen "P. gingeri," the causal agent of mushroom ginger blotch, 8 gave mucoid growth on PAF. The "P. gingeri" EPS also was unique in containing both neutral sugar and glucuronic acid. Mucoid, weakly virulent strains of "P. reactans" produced either alginate or marginalan. All 10 strains of the pathogen P. tolaasii, the causal agent of brown blotch of mushrooms were nonnmucoid on PAF. Production of EPS by these 10 strains plus the 2 nonmucoid strains of "P. gingeri" also was negative on several additional solid media as well as in two broth media tested. The results support our previous studies indicating that fluorescent pseudomonads are a rich source of novel EPSs.  相似文献   

15.
Cystic fibrosis (CF) patients are highly susceptible to chronic pulmonary disease caused by mucoid Pseudomonas aeruginosa strains that overproduce the exopolysaccharide alginate. We showed here that a mutation in zwf, encoding glucose-6-phosphate dehydrogenase (G6PDH), leads to a approximately 90% reduction in alginate production in the mucoid, CF isolate, P. aeruginosa FRD1. The main regulator of alginate, sigma-22 encoded by algT (algU), plays a small but demonstrable role in the induction of zwf expression in P. aeruginosa. However, G6PDH activity and zwf expression were higher in FRD1 strains than in PAO1 strains. In PAO1, zwf expression and G6PDH activity are known to be subject to catabolite repression by succinate. In contrast, FRD1 zwf expression and G6PDH activity were shown to be refractory to such catabolite repression. This was apparently not due to a defect in the catabolite repression control (Crc) protein. Such relaxed control of zwf was found to be common among several examined CF isolates but was not seen in other strains of clinical and environmental origin. Two sets of clonal isolates from individual CF patient indicated that the resident P. aeruginosa strain underwent an adaptive change that deregulated zwf expression. We hypothesized that high-level, unregulated G6PDH activity provided a survival advantage to P. aeruginosa within the lung environment. Interestingly, zwf expression in P. aeruginosa was shown to be required for its resistance to human sputum. This study illustrates that adaptation to the CF pulmonary environment by P. aeruginosa can include altered regulation of basic metabolic activities, including carbon catabolism.  相似文献   

16.
Role of alginate lyase in cell detachment of Pseudomonas aeruginosa.   总被引:15,自引:0,他引:15       下载免费PDF全文
The exopolysaccharide alginate of Pseudomonas aeruginosa was shown to be important in determining the degree of cell detachment from an agar surface. Nonmucoid strain 8822 gave rise to 50-fold more sloughed cells than mucoid strains 8821 and 8830. Alginate anchors the bacteria to the agar surface, thereby influencing the extent of detachment. The role of the P. aeruginosa alginate lyase in the process of cell sloughing was investigated. Increased expression of the alginate lyase in mucoid strain 8830 led to alginate degradation and increased cell detachment. Similar effects were seen both when the alginate lyase was induced at the initial stage of cell inoculation and when it was induced at a later stage of growth. It appears that high-molecular-weight alginate polymers are required to efficiently retain the bacteria within the growth film. When expressed from a regulated promoter, the alginate lyase can induce enhanced sloughing of cells because of degradation of the alginate. This suggests a possible role for the lyase in the development of bacterial growth films.  相似文献   

17.
18.
Strains of Pseudomonas aeruginosa causing chronic pulmonary infections in patients with cystic fibrosis are known to convert to a mucoid form in vivo characterized by the production of the exopolysaccharide alginate. The alginate production trait is not stable, and mucoid strains frequently convert back to the nonmucoid form in vitro. The DNA involved in these spontaneous alginate conversions, referred to as algS, was shown here to map near hisI and pru markers on the chromosome of strain FRD, an isolate from a cystic fibrosis patient. Although cloning algS+ by trans-complementation was not possible, a clone (pJF5) was isolated that caused algS mutants to convert to the Alg+ phenotype at detectable frequencies (approximately 0.1%) in vitro. Gene replacement with transposon-marked pJF5 followed by mapping studies showed that pJF5 contained DNA transducibly close to algS in the chromosome. Another clone was identified called pJF15 which did contain algS+ from mucoid P. aeruginosa. The plasmid-borne algS+ locus could not complement spontaneous algS mutations in trans, but its cis-acting activity was readily observed after gene replacement with the algS mutant chromosome by using an adjacent transposon as the selectable marker. pJF15 also contained a trans-active gene called algT+ in addition to the cis-active gene algS+. The algT gene was localized on pJF15 by using deletion mapping and transposon mutagenesis. By using gene replacement, algT::Tn501 mutants of P. aeruginosa were constructed which were shown to be complemented in trans by pJF15. Both algS and algT were located on a DNA fragment approximately 3 kilobases in size. The algS gene may be a genetic switch which regulates the process of alginate conversion.  相似文献   

19.
20.
Spontaneous alginate-producing (muc) variants were isolated from strains of Pseudomonas fluorescens, P. putida and P. mendocina at a frequency of 1 in 10(8) by selecting for carbenicillin resistance. The infrared spectrum of the bacterial exopolysaccharide was typical of an acetylated alginate similar to that previously described in Azotobacter vinelandii and in mucoid variants of P. aeruginosa. Mucoid variants were not isolated from P. stutzeri, P. pseudoalcaligenes, P. testosteroni, P. diminuta, P. acidovorans, P. cepacia or P. maltophilia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号