首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homeotherms are generally considered to lack classical active dermal pigment cells (chromatophores) in their integument, attributable to the development of an outer covering coat of hair or feathers. However, bright colored dermal pigment cells, comparable to chromatophores of lower vertebrates, are found in the irides of many birds. We propose that, because of its exposed location, the iris is an area in which color from pigment cells has sustained a selective advantage and appears to have evolved independently of the general integument. In birds, the iris appears to have retained the potential for the complete expression of all dermal chromatophore types. Differences in cell morphology and the presence of unusual pigments in birds are suggested to be the result of evolutionary changes that followed the divergence of birds from reptiles. By comparison, mammals appear to have lost the potential for producing iridophores, xanthophores, or erythrophores comparable to those of lower vertebrates, even though some species possess brightly colored irides. It is proposed that at least one species of mammal (the domestic cat) has recruited a novel iridial reflecting pigment organelle originally developed in the choroidal tapetum lucidum. The potential presence of classical chromatophores in mammals remains open, as few species with bright irides have been examined.  相似文献   

2.
The reflective materials in the iris stroma of bright-irised American blackbirds (Icterinae, Emberizidae) and the red-eyed vireo (Vireo olivaceus) (Vireonidae) were characterized using high-performance liquid chromatography (HPLC) and diode-array detection. Two purines, guanine and hypoxanthine, and two pteridines, leucopterin and xanthopterin, were detected in large amounts in all bright irides. The brown iris of the red-winged blackbird (Agelaius phoeniceus) by comparison contained only small amounts of these and additional unidentified compounds. The absolute and relative amounts of light-absorbing compounds in the iris varied somewhat among species of blackbirds with bright irides, and markedly within one species (brewer's blackbird, Euphagus cyanocephalus) between sexes and age classes that vary in eye color. Differences in the types, numbers, and sizes of pigment organelles in the irides appeared to underlie the differences in amounts of light-absorbing compounds. Guanine was the most abundant light-absorbing compound in all bright irides, accounting for about 90% of the total absorption at 250 nm. A wide range of concentrations of guanine, from 96 to 9 μg per iris, produced bright irides. The primary pigment organelles of pigment cells in bright irides were reflecting platelets, which typically appeared as open spaces on electron micrographs. In the red-eyed vireo there were in addition red pterinosome-like pigment organelles in the pigment cells on the anterior surface of the iris stroma. Guanine was present even in irides with no overt reflecting platelets.  相似文献   

3.
Pteridines and purines as major pigments of the avian iris   总被引:1,自引:0,他引:1  
Stromal pigments from the irises of 28 species of birds having brightly colored eyes were extracted and analyzed. Carotenoids were present in six species and they were the sole bright pigment in only two of these. The iris pigments of the majority of the birds examined were soluble in 0.1 M NaOH and chromatographic analysis indicated they were primarily pteridines and purines. The pteridines often occurred in a crystalline state, either alone or, more commonly, in conjunction with purines.  相似文献   

4.
There are three genetically controlled iris types found in the pigeon, two of which contain stromal pigment cells, the third lacks pigment cells. The yellow (gravel) and white (pearl) iris types have pigment cells that contain birefringent pigment granules (crystals) and are ultrastructurally similar to iridophores of poikilothermic vertebrates. Both these iris types contain guanine as a major "pigment" and, in addition, the yellow iris contains at least two yellow fluorescing pigments that are tentatively identified as pteridines. The pigment cells of the yellow and white irises are structurally identical differing only in the presence or absence of these yellow pigments. The stromal pigment cells of the white iris correspond in structure and pigment chemistry to classical iridophores although they lack strong irridescence and are therefore perhaps best considered leucophores. The pigment cells of the yellow iris can be considered "reflecting xanthophores" having the combined properties of both classical xanthophores and iridophore/leucophores.  相似文献   

5.
Irides from adult Ringed Turtle Doves (Streptopelia risoria) were examined using both light and electron microscopy. The anterior surface of the iris stroma contained numerous large venous sinuses overlying bright yellow pigment cells which we classified as "reflecting xanthophores." The pigment cells were filled with irregularly arranged yellow reflecting crystals and occasional pterinosome-like structures. The irides were extracted in NaOH and the extracted pigments analyzed using paper chromatography and spectrophotometry. A unique bright orange fluorescent band was found in the iris extract, but the chemical nature of the band was not determined. Although guanine was expected to be a major component of the reflecting "platelets," based on previous work with other Columbiformes, it could not be demonstrated chromatographically or spectrophotometrically.  相似文献   

6.
The ultrastructure and chemical composition of reflective organelles in the anterior pigment epithelium of the iris of the European starling Sturnus vulgaris were examined. The reflective organelles produced a diffuse white reflectance at the iris mid-section which was visible only when the stroma was removed. The pigment granules were clear, angular, and birefringent under the light microscope. In electron micrographs the granules were irregular in shape and density, sometimes crystalline in appearance, but more often they were lost during sectioning or staining. Guanine was abundant in the modified pigment epithelium of the starling, but not in the pigment epithelia of other birds that lacked birefringent granules. Pteridines, such as xanthopterin and leucopterin, were present in small amounts. Pteridines were also present in the iris stroma which had no reflective organelles. The reflective organelles in the starling pigment epithelium resemble both the reflecting platelets of lower vertebrate chromatophores and the reflective granules in the tapeta of various vertebrates. Possible derivation of the organelles from these sources is discussed.  相似文献   

7.
Although the various vertebrate classes, from fishes to mammals are each distinctive, they possess many common features making it important to understand their comparative biology. One general feature that has long commanded interest is the integumental pigmentary system. Thus, much is known about particular pigment cells; however, the basis for some specific colors, such as blue, has escaped the scrutiny of the comparative approach. Regardless of Class, blue is almost always a structural color based upon incoherent or coherent scatter of blue wavelengths from the animal surface. The source of scatter may be intracellular or extra-cellular. A main intracellular scatterer is the surface of reflecting platelets of iridophores of lower vertebrates. Extra-cellular scatter is widespread and thought to occur from ordered dermal collagen arrays in primitive fishes, birds and mammals including humans. Among birds, feather structures provide major means for extra-cellular light scatter. There is only one known example of blue color deriving from a blue pigment found within a pigment cell. For amphibians, reptiles and birds, the scatter of blue wavelengths, together with the presence of yellow pigmentation, is fundamental for the expression of green coloration.  相似文献   

8.
The morphology and organization of chromatophores in the neotropical glass-frog, Centrolenella fleischmanni (family Centrolenidae), were studied with both light and electron microscopes. Four types of pigment cells are described in the dorsal skin. The fine structure of two chromatophores corresponds to the typical amphibian xanthophore and iridophore; one is similar to the unusual melanophore found in phyllomedusine hylids; the fourth cell type is unlike any chromatophore previously described. Pigment granules in the unusual chromatophore are moderately electron-dense and have an irregular shape, suggesting a fluid composition. This pigment appears to be laid down in organelles similar in appearance to pterinosomes. The organization of pigment cells in this species differs from that of other green, leaf-sitting frogs in that there are few discrete groups resembling “dermal chromatophore units.” It is suggested that the unusual new pigment cell contributes significantly to the overall green color of C. fleischmanni.  相似文献   

9.
Pigment patterns in the integument have long-attracted attention from both scientists and non-scientists alike since their natural attractiveness combines with their excellence as models for the general problem of pattern formation. Pigment cells are formed from the neural crest and must migrate to reach their final locations. In this review, we focus on our current understanding of mechanisms underlying the control of pigment cell migration and patterning in diverse vertebrates. The model systems discussed here - chick, mouse, and zebrafish - each provide unique insights into the major morphogenetic events driving pigment pattern formation. In birds and mammals, melanoblasts must be specified before they can migrate on the dorsolateral pathway. Transmembrane receptors involved in guiding them onto this route include EphB2 and Ednrb2 in chick, and Kit in mouse. Terminal migration depends, in part, upon extracellular matrix reorganization by ADAMTS20. Invasion of the ectoderm, especially into the feather germ and hair follicles, requires specific signals that are beginning to be characterized. We summarize our current understanding of the mechanisms regulating melanoblast number and organization in the epidermis. We note the apparent differences in pigment pattern formation in poikilothermic vertebrates when compared with birds and mammals. With more pigment cell types, migration pathways are more complex and largely unexplored; nevertheless, a role for Kit signaling in melanophore migration is clear and indicates that at least some patterning mechanisms may be highly conserved. We summarize the multiple factors thought to contribute to zebrafish embryonic pigment pattern formation, highlighting a recent study identifying Sdf1a as one factor crucial for regulation of melanophore positioning. Finally, we discuss the mechanisms generating a second, metamorphic pigment pattern in adult fish, emphasizing recent studies strengthening the evidence that undifferentiated progenitor cells play a major role in generating adult pigment cells.  相似文献   

10.
Although the various vertebrate classes, from fishes to mammals are each distinctive, they possess many common features making it important to understand their comparative biology. One general feature that has long commanded interest is the integumental pigmentary system. Thus, much is known about particular pigment cells; however, the basis for some specific colors, such as blue, has escaped the scrutiny of the comparative approach. Regardless of Class, blue is almost always a structural color based upon incoherent or coherent scatter of blue wavelengths from the animal surface. The source of scatter may be intracellular or extra‐cellular. A main intracellular scatterer is the surface of reflecting platelets of iridophores of lower vertebrates. Extra‐cellular scatter is widespread and thought to occur from ordered dermal collagen arrays in primitive fishes, birds and mammals including humans. Among birds, feather structures provide major means for extra‐cellular light scatter. There is only one known example of blue color deriving from a blue pigment found within a pigment cell. For amphibians, reptiles and birds, the scatter of blue wavelengths, together with the presence of yellow pigmentation, is fundamental for the expression of green coloration.  相似文献   

11.
Rate of ageing in tyrannosaurs was calculated from parameters of Weibull functions fitted to survival curves based on the estimated ages at death of fossilized remains. Although tyrannosaurs are more closely related to birds than to mammals, they apparently aged at rates similar to mammals of comparable size. Rate of growth in body mass of tyrannosaurs was similar to that of large mammals, and their rates of ageing were consistent with the estimated extrinsic mortality, which is strongly correlated with the rate of ageing across birds and mammals. Thus, tyrannosaurs appear to have had life histories resembling present-day large terrestrial mammals. Rate of ageing in warm-blooded vertebrates appears to be adjusted in response to extrinsic mortality and potential lifespan, independently of both physiological and developmental rates. However, individuals in species with the slowest rates of ageing suffer the highest proportion of ageing-related mortality, hence potentially strong selection to further postpone senescence. Thus, the longest observed lifespans in birds, tyrannosaurs and mammals might be close to the maximum possible.  相似文献   

12.
Frogs of the Pleurodema thaul species have a pair of prominent elevated cutaneous glands dorsolaterally, just posterior to the sacrum, which are named lumbar glands. We have studied histologically these glands and found that their chromatophores are disposed mainly immediately under the epidermis structuring a dermal chromatophore unit. Similar to the other anuran macroglands, the lumbar glands are constituted basically by granular alveoli filled with secretion. The presence of these granular alveoli and the typical distribution of the dermal chromatophores to suggest a defensive role for the lumbar glands. In most of the amphibians granular alveoli contain secretions with toxicity for several vertebrates. On the other hand, chromatophores in this frog species, probably play an aposematic function, since their disposition on the skin permits that the lumbar glands might be taken for eyes, probably giving to an eventual predator the impression that it may be an animal of higher dimensions.  相似文献   

13.
In the integument of the red-spotted newt there occasionally appear patches of skin which are at the same time melanistic and iridescent. Such hyperpigmented patches have been found on the back, on the tail and on the dorsal surface of both fore and hind limbs. Cytological examination of several such areas revealed the presence of large numbers of chromatophores distributed throughout the dermis. The majority of the chromatophores consisted of atypically large and dendritic melanophores, which contained typical pigment granules. The iridescence resulted from a high incidence of iridophores. Xanthophores also were found in considerable abundance. This extensive and apparently random intermingling of melanophores, iridophores and xanthophores in limited areas constitutes a striking exception to the usual distributional patterns of pigment cells in this animal.  相似文献   

14.
The physiological response and ultrastructure of the pigment cells of Trematomus bernacchii, an Antarctic teleost that lives under the sea ice north of the Ross Ice Shelf, were studied. In the integument, two types of epidermal chromatophores, melanophores and xanthophores, were found; in the dermis, typically three types of chromatophores--melanophores, xanthophores, and iridophores--were observed. The occurrence of epidermal xanthophore is reported for the first time in fish. Dermal melanophores and xanthophores have well-developed arrays of cytoplasmic microtubules. They responded rapidly to epinephrine and teleost melanin-concentrating hormone (MCH) with pigment aggregation and to theophylline with pigment dispersion. Total darkness elicited pigment aggregation in the majority of dermal xanthophores of isolated scales, whereas melanophores remained dispersed under both light and dark conditions. Pigment organelles of epidermal and dermal xanthophores that translocate during the pigmentary responses are carotenoid droplets of relatively large size. Dermal iridophores containing large reflecting platelets appeared to be immobile.  相似文献   

15.
Melanophores, xanthophores, and iridophores are fundamentallydistinct chromatophores in their appearance, composition, andfunction. All migrate from their neural crest site of originto populate the integument. Their respective pigments, melanins,ptendines, and purines are found in organelles designated respectivelyas melanosomes, pterinosomes and reflecting platelets. Theseorganelles are all derived from an endoplasmic reticular vesicle.This is in keeping with a hypothesis about the common originof pigment cells from a stem cell containing a primordial organellewith the potential of becoming any of the circumscribed pigmentaryorganelles. It is believed that chromatoblasts may not be specificallydetermined until they reach a final destination where they willdifferentiate in accordance with a pattern already specifiedin the integument. In leopard frogs, it appears that the initialinduction of pattern in the skin is general, but later it becomeshighly specific.  相似文献   

16.
17.
Genetics and evolution of pigment patterns in fish   总被引:8,自引:0,他引:8  
Vertebrate pigment patterns are both beautiful and fascinating. In mammals and birds, pigment patterns are likely to reflect the spatial regulation of melanocyte physiology, via alteration of the colour-type of the melanin synthesized. In fish, however, pigment patterns predominantly result from positioning of differently coloured chromatophores. Theoretically, pigment cell patterning might result from long-range patterning mechanisms, from local environmental cues, or from interactions between neighbouring chromatophores. Recent studies in two fish genetic model systems have made progress in understanding pigment pattern formation. In embryos, the limited evidence to date implicates local cues and chromatophore interactions in pigment patterning. In adults, de novo generation of chromatophores and cell-cell interactions between chromatophore types play critical roles in generating striped patterns; orientation of the stripes may well depend upon environmental cues mediated by underlying tissues. Further genetic screens, coupled with the routine characterization of critical gene products, promises a quantitative understanding of how striped patterns are generated in the zebrafish system. Initial 'evo-devo' studies indicate how fish pigment patterns may evolve and will become more complete as the developmental genetics is integrated with theoretical modelling.  相似文献   

18.
Direct reception of light by chromatophores of lower vertebrates   总被引:3,自引:0,他引:3  
Rapid color changes of lower vertebrates are caused by the motile activities of pigment cells (chromatophores) present in the skin tissue. Chromatophore motility is generally regulated by neural and/or by endocrine systems. However, in some cases, light also induces pigment aggregation or dispersion directly, which suggests the existence of visual pigments in chromatophores. In fact, some opsins, including melanopsin, have been identified. This article reviews light-sensitive chromatophores of lower vertebrates. Photoreceptive molecules (visual pigments) and signal transduction of light via a GTP-binding protein (G protein) are also discussed.  相似文献   

19.
Accessory organs of the integument are locally modified parts of the potentially feather-bearing skin in birds (e.g., the rhamphotheca, claws, or scales), and of the potentially hairy skin in mammals (e.g., the rhinarium, nails, claws, or hooves). These special parts of the integument are characterised by a modified structure of their epidermal, dermal and subcutaneous layers. The developmental processes of these various integumentary structures in birds and mammals show both similarities and differences. For example, the development of the specialised epidermal structures of both feathers and the hoof capsule is influenced by the local three-dimensional configuration of the dermis. However, in feathers, in contrast to hooves, the arrangement of the corneous cells is only partially a direct result of the particular arrangement and shape of the dermal surface of the papillary body. Whereas the diameter of the feather papilla, as well as the number, length, and width of dermal ridges on the surface of the feather papilla influence the three-dimensional architecture of the feather rami, there is no apparent direct correlation between the dermo-epidermal interface and the development of the highly ordered architecture of the radii and hamuli in the feather vane. In order to elucidate this morphogenic problem and the problem of locally different processes of keratinisation and cornification, the structure and development of feathers in birds are compared to those of the hoof capsule in horses. The equine hoof is the most complex mammalian integumentary structure, which is determined directly by the dermal surface of the papillary body. Perspectives for further research on the development of modified integumentary structures, such as the role of the dermal microangioarchitecture and the selective adhesion and various differentiation pathways of epidermal cells, are discussed.  相似文献   

20.
Pigment migration in the eyes of Austrolestes annulosus and Ischnura heterosticta cause pronounced colour changes which superficially resemble those of Odonata epidermal chromatophores. In both species, the migratory pigment is confined to the distal pigment cells of dorsal ommatidia. When the pigment is concentrated around the base of the crystalline cones, a dense layer of Tyndall blue bodies produce bright ‘blue phase’ colours. Distal migration of the pigment disrupts the Tyndall effect and produces ‘dark phase’ (grey-brown) colours. As in chromatophores, eye pigments consist of a mixture of xanthommatin and dihydroxanthommatin together with an additional pigment, possibly ommin A, not found in chromatophores.As with chromatophores, eye pigments respond to change in temperature only, change in light intensity having no effect. The change from blue to dark phase (at 8°C) occurs at the same rate as in chromatophores, whereas the reverse change (at 20°C) is significantly slower. Equilibrium colours at constant temperature are variable but significantly different from those of chromatophores at 12°C and above. There is no diurnal variation in responsiveness as is found in chromatophores.Isolated dark phase eyes or undamaged pieces of eye are able to change to blue phase after temperature increase. Isolated blue phase eyes show little response to temperature decrease, isolated undamaged pieces show no response. A temperature difference between the eyes of the same intact insect may result in minor colour differences. Ablation of the optic tract or of tissue posterior to the optic tract prevents normal colour change from blue to dark phase. The above results indicate that eye pigment cells are structurally similar to Odonata chromatophores and are under similar environmental and physiological control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号