首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intrastriatal infusion of N-methyl-D-aspartate (NMDA; 250-1,000 microM) via a dialysis cannula in anesthetized rats resulted in a marked and rapid increase in the concentrations of spermine and spermidine recovered in the dialysate. Extracellular concentrations of NMDA-released spermine and spermidine were calculated to be in the low micromolar range. Putrescine levels were not significantly affected by NMDA. The effects of NMDA (500 microM) were blocked by the previous systemic injection of MK-801 (3 mg/kg, i.p.) but were insensitive to the intrastriatal infusion of tetrodotoxin (1 microM). Intrastriatally infused kainate or quisqualate (1,000 microM) did not increase polyamine levels in the dialysate. Spermine and spermidine dialysate levels were also significantly increased by the infusion of high concentrations of K+ (greater than 100 mM), although the effects of K+ were considerably less marked than those of NMDA. Striatal polyamines are released into the extracellular space specifically by NMDA receptor activation. Because of their multiple effects on receptor- and voltage-operated cation channels, polyamines that are released by NMDA receptor activation may play an important role in phenomena already attributed to NMDA receptor stimulation, such as long-term potentiation, synaptic plasticity, and neurotoxicity.  相似文献   

2.
Abstract: The effect of various doses of the serotonin (5-HT) release-inducing agent d -fenfluramine ( d -fenf) on extracellular dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) was studied in vivo in the striatum of halothane-anesthetized rats, following systemic and local administration. At 5 and 10 but not 2.5 mg/kg, d -fenf administered intraperitoneally significantly increased DA extracellular concentration and reduced DOPAC outflow. A concentration-dependent enhancement of DA dialysate content was also found following intrastriatal application (5, 10, 25, and 50 µ M ). The bilateral administration of 5,7-dihydroxytryptamine into the dorsal raphe nucleus, which markedly depleted 5-HT in the striatum, did not modify the effect on extracellular DA concentration of 25 µ M d -fenf locally applied into the striatum. The enhancement of extracellular DA level induced by 25 µ M d -fenf was slightly but significantly reduced by the local application of 25 µ M citalopgram. The blockade of DA uptake sites by nomifensine (0.1, 0.3, and 1 µ M ) did not modify significantly the effect of d -fenf. The rise of DA outflow induced by 25 µ M d -fenf was strongly reduced in the presence of 1 µ M tetrodotoxin (TTX) or by the removal of Ca2+ from the perfusion medium. The results obtained show that d -fenf increases the striatal extracellular DA concentration by a Ca2+-dependent and TTX-sensitive mechanism that is independent of striatal 5-HT itself or DA uptake sites.  相似文献   

3.
Using the technique of trans-striatal dialysis in halothane-anesthetized rats, we have studied the effects of intrastriatally infused N-methyl-D-aspartate (NMDA), kainate, and quisqualate on the liberation of endogenous striatal dopamine. The striatal infusion of NMDA (10(-3)-10(-2) M) or kainate (10(-4)-10(-2) M) but not of quisqualate (up to 10(-2) M) for one 20-min fraction provoked a dramatic increase in striatal dopamine efflux up to a maximum of 1,200 and 3,400% of basal levels for NMDA and kainate, respectively. NMDA (10(-3) M) evoked liberation of striatal dopamine was totally blocked by coinfusion of 2-amino-5-phosphonovalerate (2-APV; 5 X 10(-4) M) and by the systemic injection of phencyclidine (3 mg/kg i.p.). The effects of NMDA (10(-3) M) were also totally antagonized in a dose-dependent manner by the striatal coinfusion of atropine (10(-7)-10(-4) M), and abolished in rats that had received bilateral striatal ibotenate lesions (10 micrograms/1 microliter) 1 week prior to implantation of the dialysis fiber. The striatal infusion of tetrodotoxin (10(-6) M) reduced basal dopamine efflux by 60-70% and abolished the NMDA (10(-3) M)-evoked liberation of striatal dopamine. The effects of kainate (10(-3) M) on striatal dopamine efflux were only partially reduced by doses of 2-APV or atropine that totally blocked the NMDA response, and were also partially resistant to tetrodotoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Abstract: In vivo microdialysis was used in conjunction with a novel dual-label preloading method to monitor changes in extracellular levels of γ-aminobutyric acid (GABA) and glutamate due to N -methyl- d -aspartate (NMDA) infusion in the striatum of conscious, unrestrained rats. [14C]GABA and [3H]glutamate were applied in the dialysis stream for a preloading period of 30 min, after which dialysis perfusion was continued for up to 6 h and dialysate samples were collected for analysis by liquid scintillation spectrometry. NMDA (300 μ M in the dialysate) caused significant rises in both 14C and 3H content measured in the dialysates, the majority of which remained associated with the preloaded GABA and glutamate, respectively. The NMDA-evoked release of both GABA and glutamate was blocked by the specific NMDA receptor antagonist 3-[(±)-2-carboxypiperazin-4-yl]propyl-1-phosphonic acid (CPP), indicating that the response was receptor mediated. The NMDA-stimulated release of glutamate was also totally abolished by concomitant application of the adenosine agonist 2-chloroadenosine or by prior frontal decortication. However, these two treatments caused little change in NMDA-evoked GABA release. These results show that NMDA causes release of GABA from the striatum in vivo by an NMDA receptor-mediated mechanism and that the majority of this release is not secondary to glutamate release from terminals of the corticostriate pathway. In addition, they confirm the results of previous studies investigating the effect of NMDA on endogenous glutamate release.  相似文献   

5.
Abstract: Malonate is a reversible inhibitor of succinate dehydrogenase (SDH) that produces neurotoxicity by an N -methyl- d -aspartate (NMDA) receptor-dependent mechanism. We have examined the influence of pharmacological manipulation of membrane potential on striatal malonate toxicity in rats in vivo by analysis of lesion volume. Depolarization caused by coinjection of the Na+,K+-ATPase inhibitor ouabain or a high concentration of potassium greatly exacerbated malonate toxicity; this combined toxicity was blocked by the noncompetitive NMDA antagonist MK-801. The toxicity of NMDA was also exacerbated by ouabain. The overt toxicity of a high dose of ouabain (1 nmol) was largely prevented by MK-801. Coinjection of the K+ channel activator minoxidil (4 nmol) to reduce depolarization attenuated the toxicity of 1 µmol of malonate by ∼60% without affecting malonate-induced ATP depletion. These results indicate that membrane depolarization exacerbates malonate neurotoxicity and that membrane hyperpolarization protects against malonate-induced neuronal damage. We hypothesize that the effects of membrane potential on malonate toxicity are mediated through the NMDA receptor as a result of its combined agonist- and voltage-dependent properties.  相似文献   

6.
There is a considerable amount of conflicting evidence from several studies as to the action of applied N-methyl-D-aspartate (NMDA) on the release of glutamate and aspartate in the brain. In the present study the effect of NMDA on extracellular levels of endogenous amino acids was investigated in conscious, unrestrained rats using intracerebral microdialysis. NMDA caused dose-related increases in extracellular levels of glutamate and aspartate; threonine and glutamine were unaffected. The NMDA-evoked release of glutamate and aspartate was significantly decreased by the specific NMDA receptor antagonist 3-[(+-)-2-carboxypiperazin-4-yl]-propyl-l-phosphonic acid. In addition, increasing the perfusate concentration (and therefore the extracellular concentration) of Ca2+ significantly enhanced the NMDA-evoked release of glutamate and aspartate, whereas removal of Ca2+ and addition of a high Mg2+ concentration to the perfusate caused a significant reduction in their NMDA-evoked release. Moreover, the NMDA-evoked release of glutamate and aspartate was reduced in decorticate animals. These results demonstrate that, in the striatum in vivo, NMDA causes selective release of endogenous glutamate and aspartate from neurone terminals and that this action occurs through an NMDA receptor-mediated mechanism. The ability of NMDA receptor activation to induce release of glutamate and aspartate, perhaps by a positive feedback mechanism, may be relevant to the pathologies underlying epilepsy and ischaemic and hypoglycaemic brain damage.  相似文献   

7.
Abstract: The goal of this study was to evaluate the effects of a novel competitive N -methyl- d -aspartate (NMDA) receptor antagonist, d -( E )-2-amino-4-methyl-5-phosphono-3-pentoic acid (CGP 40116), on neuronal damage in vivo and in vitro. We studied 20 rabbits that underwent a 2-h occlusion of the left internal carotid, anterior cerebral, and middle cerebral arteries followed by 4 h of reperfusion. Ten minutes after occlusion the animals were treated with either normal saline (n = 7) or CGP 40116 at two different doses (20 mg/kg, n = 6; 40 mg/kg, n = 7) administered over a 5-min period. Somatosensory evoked potentials were used to confirm adequate ischemia and neuronal injury was assessed by histopathology and magnetic resonance imaging. CGP 40116 decreased cortical ischemic neuronal damage by 74 and 77% (control, 37.8%± 13.1%; CGP 20 mg/kg, 9.9 ± 3.6%; CGP 40 mg/kg, 8.7 ± 3.7%; p < 0.01) and reduced cortical ischemic edema by 52 and 35% (control, 42.3 ± 10.4%; CGP 20 mg/kg, 20.1 ± 6.7%; CGP 40 mg/kg, 27.5 ± 13.3%; p < 0.05) but did not protect against striatal injury. We performed a second study using primary cell cultures from mouse neocortex to determine the effects of CGP 40116 on neuronal death induced by a 10-min exposure to 500 µ M NMDA or by 45 min of oxygen-glucose deprivation (OGD). Our results demonstrate that CGP 40116 was effective at attenuating neuronal death in a concentration-dependent manner (ED50 of 3.2 µ M against NMDA toxicity and 23.1 µ M against OGD) as measured by lactate dehydrogenase levels 24 h after the insult. The neuroprotective effects of CGP 40116 in vivo and in vitro suggest it may be of potential clinical therapeutic value.  相似文献   

8.
Abstract: Serotonin (5-HT) administered at 1, 3, and 10 µ M into the striatum of halothane-anesthetized rats by in vivo microdialysis increased extracellular dopamine (DA) in a concentration-dependent manner (approximately 65, 190, and 440%, respectively). These effects were reduced by 50% in the presence of 1 µ M tetrodotoxin (TTX) or in the absence of Ca2+ ions. The DA uptake blocker nomifensine (0.1 µ M ) significantly lowered (by 50%) the enhancement of DA outflow induced by 3 µ M 5-HT. Nomifensine (1 µ M ) coperfused with 1 µ M TTX abolished the 1 and 3 µ M 5-HT-induced DA outflow, whereas the effect of 10 µ M 5-HT was significantly reduced by 1 (−55%) and 10 µ M (−70%) nomifensine. These data demonstrate that, in vivo, striatal DA uptake sites are partially involved in the DA-releasing action of 5-HT.  相似文献   

9.
The in vivo mechanisms underlying the dopamine (DA)-releasing actions of veratrine and ouabain in the striatum of halothane-anaesthetised rats have been investigated using brain microdialysis. Relevant catecholamines and indoleamines were separated and quantified using HPLC combined with an electrochemical detection system. Veratrine (10 micrograms/ml-1 mg/ml) and ouabain (10 microM-1 mM) were added to the medium perfusing the dialysis probes. Both compounds increased dialysate DA content in a dose-related manner. Dialysate levels of the DA metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid and the serotonin metabolite 5-hydroxyindoleacetic acid were reduced by both veratrine and ouabain. Veratrine-induced DA efflux was maximal in the first 20-min sample collected after drug infusion began, whereas the maximal effect of ouabain was not observed until 20-40 min after administration began. Veratrine-induced DA efflux was unaffected by systemic injection of the DA uptake inhibitor nomifensine but was inhibited by either coperfusion of tetrodotoxin (TTX) or removal of calcium from the perfusing buffer. These data suggest that veratrine induces release of DA via a carrier-independent mechanism, perhaps involving an exocytotic release process. In contrast, ouabain-induced DA release was reduced by nomifensine but was inhibited to a lesser degree by calcium depletion and TTX. Detailed analyses of these data suggest that although ouabain initially induces release of DA via a carrier-dependent mechanism, an exocytotic process may also be involved. The finding that ouabain-induced DA efflux exhibits a degree of TTX and calcium sensitivity suggests that membrane depolarisation caused by Na+,K(+)-ATPase blockade opens voltage-gated sodium channels and initiates an exocytotic release of DA. The intracellular pools of DA involved in the release of DA induced by veratrine and ouabain were also examined. Depletion of vesicular pools of DA by pretreatment with reserpine reduced the amount of DA release induced by both agents, although this effect was only significant in the case of veratrine. However, in reserpinised animals the residual amount of DA release induced by veratrine was inhibited by nomifensine, a result suggesting that DA may be released via a carrier-dependent process in the absence of vesicular DA. Newly synthesised pools of DA were also depleted by pretreatment with the DA synthesis inhibitor alpha-methyl-p-tyrosine. Under these conditions, both veratrine- and ouabain-induced DA efflux was reduced.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Abstract: Several amphetamine analogues are reported to increase striatal glutamate efflux in vivo, whereas other data indicate that glutamate is capable of stimulating the efflux of dopamine (DA) in the striatum via a glutamate receptor-dependent mechanism. Based on these findings, it has been proposed that the ability of glutamate receptor-blocking drugs to antagonize the effects of amphetamine may be explained by their capacity to inhibit DA release induced by glutamate. To examine this possibility further, we investigated in vivo the ability of glutamate antagonists to inhibit DA release induced by either methamphetamine (METH) or 3,4-methylenedioxymethamphetamine (MDMA). Both METH and MDMA increased DA efflux in the rat striatum and, in animals killed 1 week later, induced persistent depletions of DA and serotonin in tissue. Pretreatment with MK-801 or CGS 19755 blocked the neurotoxic effects of METH and MDMA but, did not significantly alter striatal DA efflux induced by either stimulant. Infusion of 6-cyano-7-nitroquinoxaline-2,3-dione into the striatum likewise did not alter METH-induced DA overflow, and none of the glutamatergic antagonists affected the basal release of DA when given alone. The findings suggest that the neuroprotective effects of NMDA antagonists do not involve an inhibition of DA release, nor do the data support the proposal that glutamate tonically stimulates striatal DA efflux in vivo. Whether phasic increases in glutamate content might stimulate DA release, however, remains to be determined.  相似文献   

11.
Abstract: Striatal cholinergic interneurons have been shown to receive input from Striatal γ-aminobutyric acid (GABA)-containing cell elements. GABA is known to act on two different types of receptors, the GABAA and the GABA6 receptor. Using in vivo microdialysis, we have studied the effect of intrastriatal application of the GABAA-selective compounds muscimol and bicuculline and the GA- BAB-selective compounds baclofen and 2-hydroxysaclofen, agonists and antagonists, respectively, at GABA receptors, on the output of Striatal acetylcholine (ACh). Intrastriatal infusion of 1 and 10 μmol/L concentrations of the GABAA antagonist bicuculline resulted in a significant increase in Striatal ACh output, whereas infusion of 1 and 10 /μmol/L concentrations of the GABAA agonist muscimol significantly decreased the output of Striatal ACh. Both compounds were ineffective in changing the output of Striatal ACh at lower concentrations. Infusion of concentrations up to 100 μmol/L of the GABAB-selective antagonist 2-hydroxy-saclofen failed to affect Striatal ACh output, whereas infusion of 10 and 100 μmol/L baclofen, but not 0.1 and 1 μmol/L baclofen, significantly decreased the output of Striatal ACh. Thus, agonist-stimulation of GABAA and GABAB receptors decreases the output of striatal ACh in a dose-dependent fashion, whereas the GABAergic system appears to inhibit tonically the output of striatal ACh via GABAA receptors, but not via GABAB receptors. We hypothesize that although GABAA mediated regulation of striatal ACh occurs via GABA receptors on the cholinergic neuron, the GABAB mediated effects may be explained by presynaptic inhibition of the glutamatergic input of the striatal cholinergic neuron.  相似文献   

12.
Microdialysis probes were inserted bilaterally into the striatum of 7-day-old rat pups (n = 30) to examine extracellular fluid levels of dopamine, its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA). The dialysis samples were assayed by HPLC with electrochemical detection. Baseline levels, measured after a 2-h stabilization period, were as follows: dopamine, not detected; DOPAC, 617 +/- 33 fmol/min; HVA, 974 +/- 42 fmol/min; and 5-HIAA, 276 +/- 15 fmol/min. After a 40-min baseline sampling period, 12 animals were exposed to 8% oxygen for 120 min. Hypoxia produced marked reductions in the striatal extracellular fluid levels of both dopamine metabolites (p less than 0.001 by analysis of variance) and a more gradual and less prominent reduction in 5-HIAA levels (p less than 0.02 by analysis of variance), compared with controls (n = 12) sampled in room air. In the first hour after hypoxia, DOPAC and HVA levels rose quickly, whereas 5-HIAA levels remained suppressed. The magnitude of depolarization-evoked release of dopamine (elicited by infusion of potassium or veratrine through the microdialysis probes for 20 min) was evaluated in control and hypoxic animals. Depolarization-evoked dopamine efflux was considerably higher in hypoxic pups than in controls: hypoxic (n = 7), 257 +/- 32 fmol/min; control (n = 12), 75 +/- 14 fmol/min (p less than 0.001 by analysis of variance). These data demonstrate that a brief exposure to moderate hypoxia markedly disrupts striatal catecholamine metabolism in the immature rodent brain.  相似文献   

13.
Destruction of nigrostriatal dopamine (DA) neurons with 6-hydroxydopamine (6-OHDA) early in development results in hyperinnervation of striatum by the serotonergic afferents deriving from the dorsal raphe nucleus. We have used in vivo microdialysis to investigate the degree to which serotonergic neurotransmission in striatum is altered by this increase in the density of serotonin (5-HT) terminals. The effects of several manipulations known to influence 5-HT function on extracellular 5-HT and 5-hydroxyindoleacetic acid in striatum were compared in adult rats treated neonatally with 6-OHDA and in intact adult rats. Basal levels of 5-HT in extracellular fluid (ECF) of striatum were similar in neonatally DA-depleted rats and in intact rats. Perfusion with the 5-HT reuptake blocker, fluoxetine (100 microM), increased 5-HT in striatal ECF of neonatally DA-depleted rats to levels that were threefold greater than those achieved in intact rats. Likewise, K(+)-depolarization of the 5-HT terminals (100 mM in perfusate) or systemic administration of the 5-HT releaser, (+/-)-fenfluramine (10 mg/kg i.p.), increased the concentration of 5-HT in striatal ECF of neonatally DA-depleted rats to levels approximately threefold greater than those observed in striatum of intact rats. These findings indicate that the 5-HT hyperinnervation of striatum that takes place in rats depleted of DA at infancy is associated with an increased capacity for neurotransmitter release in this system. Concomitant increased in high-affinity 5-HT uptake may prevent the occurrence of any measurable changes in the resting concentration of 5-HT in striatal ECF.  相似文献   

14.
Abstract: The effects of nitric oxide (NO) and cyclic GMP on in vivo transmitter release in the rat striatum were investigated using microdialysis sampling in urethane-anaesthetised animals. The NO release-inducing substances S -nitrosoacetylpenicillamine (SNAP), S -nitrosoglutathione (SNOG), and sodium nitroprusside (SNP) increased extracellular concentrations of aspartate (Asp), glutamate (Glu), γ-aminobutyric acid (GABA), taurine (Tau), acetylcholine (ACh), and serotonin (5-HT). Dopamine (DA) concentrations were decreased by SNAP but were increased by SNOG and SNP. An NO scavenger, haemoglobin, blocked or reduced the effects of SNAP on transmitter release. However, the control carrier compounds for SNAP, SNOG, and SNP (penicillamine, glutathione, and potassium ferricyanide, respectively, which do not induce release of NO) also increased GABA, Tau, DA, and 5-HT concentrations. When NO gas was given directly by dissolving it in degassed Ringer's solution, DA concentrations decreased significantly, and those of Asp, Glu, GABA, Tau, ACh, and 5-HT increased. These effects of NO gas were all inhibited by coadministration of haemoglobin and for GABA, Tau, ACh, and DA showed some calcium dependency. The cyclic GMP agonists 8-bromo-cyclic GMP and dibutryl-cyclic GMP stimulated dose-dependent increases in Asp, Glu, GABA, Tau, ACh, DA, and 5-HT concentrations. Increased striatal transmitter release in response to NO may therefore be mediated by its stimulatory action on cyclic GMP formation. NO inhibition of DA release may be mediated indirectly through its stimulation of local cholinergic and GABAergic neurones.  相似文献   

15.
Abstract: L-DOPA is a large neutral amino acid subject to transport out of, as well as into, brain tissue. Competition between dopamine synthesis and L-DOPA egress from striatum must favor L-DOPA egress if decarboxylation declines relatively more than transport in Parkinson's disease. To test this hypothesis, we injected patients with Parkinson's disease with a radidabeled analogue of L-DOPA and recorded regional brain radioactivity as a function of time by means of positron emission tomography. We simultaneously estimated the activity of the decarboxylating enzyme and the amino acid transport. In the striatum of patients, we found the L-DOPA decarboxylase activity to be reduced in the head of the caudate nucleus and the putamen. However, the rate of egress of the DOPA analogue was unaffected by the disease and thus inhibited dopamine synthesis more than predicted in the absence of L-DOPA egress.  相似文献   

16.
Extracellular levels of amino acids were estimated in dialysates of the rat striatum that were collected 1, 2, and/or more than 5 days after surgery, before (resting release) and during exposure to high K concentrations (50 mM) or electroconvulsive shocks. The resting release of several amino acids (Glu, Asn, Thr, Tau, Tyr, Gly, and Ala) was higher 9 days as compared to 1 day after surgery. In the 1-day preparation the resting release correlated highly with that observed with push-pull cannulas. The correlation with the tissue content of the amino acids was high only when they were divided into two groups (putative transmitters and metabolic intermediates). High K exposure produced increased output of Ala, ethanolamine (Eam), Asp, Glu, Tau, and Gly and a decrease in the egress of Gln 1 or 2 days after surgery. The effects on Asp and Glu had disappeared, and that on Gln reversed after 4-9 days. Electrically induced convulsions produced increased output of Ala, Gln, and Eam 1 or 2 days and 2 weeks after implantation of the probe. Changes were seen not only during but also (and some cases even more prominent) after the seizure. This study shows the usefulness of dialysis to monitor extracellular transmitter amino acids in the striatum of conscious rats (also bilateral dialysis was possible) for only a limited time after implantation of the probe. The dialysis method is suitable for longer time, when metabolic changes in amino acids are to be followed. In addition to transmitter release, glycolysis can be monitored by the measurement of Ala in the dialysate.  相似文献   

17.
A new technology called in vivo spectrophotometry was applied to the quantitative determination of the variations in local acetylcholinesterase (AChE) activities. Repeated measurements of the enzyme activities in the same live animal allowed the study of the in vivo inhibition of AChE by amitriptyline. Interactions between AChE and this tricyclic antidepressant were investigated at the striatal level in anesthetized rats. In this anesthetized model, AChE assays were shown to be stable for approximately 8 h. The dose-effect relationship was explored in the 2.5- to 50-mg/kg amitriptyline range. A reversible inhibition was observed after acute amitriptyline administration. The maximum of inhibition appeared between 90 and 210 min after the intoxication and reached up to 22% for the 50-mg/kg dose. The threshold dose was established as 8 mg/kg. Evidence for an indirect interaction between tricyclic antidepressant and AChE was demonstrated when the total integrity of the biological system was preserved.  相似文献   

18.
Abstract: The somatodendritic release of dopamine in substantia nigra previously has been suggested to be nonvesicular in nature and thus to differ from the classical, exocytotic release of dopamine described for the dopaminergic nerve terminal in striatum. We have compared the effects of reserpine, a compound that disrupts vesicular sequestration of monoamines, on the storage and release of dopamine in substantia nigra and striatum of rats. Reserpine administration (5 mg/kg, i.p.) significantly decreased the tissue level of dopamine in substantia nigra pars reticulata, substantia nigra pars compacta, and striatum. In these brain areas, reserpine-induced reductions in tissue dopamine level occurred within 2 h and persisted at 24 h postdrug. In vivo measurements using microdialysis revealed that reserpine administration rapidly decreased the extracellular dopamine concentration to nondetectable levels in substantia nigra as well as in striatum. In both structures, it was observed that reserpine treatment significantly attenuated the release of dopamine evoked by a high dose of amphetamine (10 mg/kg, i.p.) given 2 h later. In contrast, dopamine efflux in response to a low dose of amphetamine (2 mg/kg, i.p.) was not altered by reserpine pretreatment either in substantia nigra or in striatum. The present data suggest the existence, both at the somatodendritic and at the nerve terminal level, of a vesicular pool of dopamine that is the primary site of transmitter storage and that can be displaced by high but not low doses of amphetamine. The physiological release of dopamine in substantia nigra and in striatum is dependent on the integrity of this vesicular store.  相似文献   

19.
Abstract: To determine the functions of striatal adenosine A2a receptors in vivo, the effects of a selective agonist, 2-[4-(2-carboxyethyl)phenethylamino]-5'- N -ethylcarboxamidoadenosine hydrochloride (CGS 21680), and an antagonist, ( E )-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine (KF17837), on acetylcholine release were investigated in the striatum of awake freely moving rats using microdialysis. Intracerebroventricular injection of CGS 21680 (10 µg) increased acetylcholine release in striatum and KF17837 (30 mg/kg p.o.) antagonized the CGS 21680-induced acetylcholine elevation. To investigate the contribution of dopaminergic and GABAergic neurons on A2a receptor-mediated acetylcholine release, the effects of CGS 21680 were studied by using dopamine-depleted rats in the presence or absence of GABA antagonists. In the dopamine-depleted striatum, the intrastriatal application of CGS 21680 (0.3–30 µ M ) increased extracellular acetylcholine, which was significantly greater than that in normal striatum. The CGS 21680-induced elevation of acetylcholine release was still observed in the presence of GABA antagonists bicuculline (30 µ M ) and 2-hydroxysaclofen (100 µ M ) and was similar in both normal and dopamine-depleted striatum. These results suggest that A2a agonist stimulates acetylcholine release in vivo, and this effect of A2a agonist is modulated by dopaminergic and GABAergic neurotransmission.  相似文献   

20.
Abstract: Polyamines positively modulate the activity of the N -methyl- d -aspartate (NMDA)-sensitive glutamate receptors. The concentration of polyamines in the brain increases in certain pathological conditions, such as ischemia and brain trauma, and these compounds have been postulated to play a role in excitotoxic neuronal death. In primary cultures of rat cerebellar granule neurons, exogenous application of the polyamines spermidine and spermine (but not putrescine) potentiated the delayed neurotoxicity elicited by NMDA receptor stimulation with glutamate. Furthermore, both toxic and nontoxic concentrations of glutamate stimulated the activity of ornithine decarboxylase (ODC)—the key regulatory enzyme in polyamine synthesis—and increased the concentration of ODC mRNA in cerebellar granule neurons but not in glial cells. Glutamate-induced ODC activation but not neurotoxicity was blocked by the ODC inhibitor difluoromethylornithine. Thus, high extracellular polyamine concentrations potentiate glutamate-triggered neuronal death, but the glutamate-induced increase in neuronal ODC activity may not play a determinant role in the cascade of intracellular events responsible for delayed excitotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号