首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the synthesis of extracellular matrix macromolecules by the differentiated rat thyroid epithelial cell line FRTL-5. As shown by electron microscopy, the extracellular material produced by these cells is deposited at the basolateral surface and focally organized in the form of a basement membrane. Biochemical and biosynthetic studies demonstrated that laminin, type IV collagen, and fibronectin are synthesized and deposited in the culture monolayer. Secretion of fibronectin into the culture medium also occurred. By immunofluorescence we observed some peculiarities in the distribution patterns of the basement membrane glycoproteins; while fibronectin and laminin had an almost superimposable distribution, type IV collagen displayed a rather different pattern. Type IV collagen and laminin localization at sites where extracellular material was detected was confirmed by immuno electronmicroscopy using the protein A-colloidal gold technique. The results indicate that under appropriate culture conditions the differentiated thyroid epithelial cell line FRTL-5 synthesizes, secretes and organizes an extracellular matrix where some basement membrane glycoproteins are present.  相似文献   

2.
Spreading of mouse mammary epithelial cells on collagen gels is closely correlated with the synthesis of a group of putative calcium-binding proteins (CBP) (Braslau et al., Exp cell res 155 (1984) 213). Collagen synthesis was shown to occur during cell spreading, while omission of serum prevented cell spreading and the synthesis of collagen. The proline analogues cis-hydroxyproline and L-azetidine-2-carboxylic acid were shown to inhibit epithelial cell spreading and to suppress the collagen synthesis that occurs during serum-supported cell spreading. Inhibition of collagen synthesis resulted in the inhibition of CBP synthesis associated with cell spreading. In contrast, the collagen cross-linking inhibitor B-aminopropionitrile did not inhibit cell spreading nor did it suppress collagen synthesis; CBP synthesis was also normal during treatment with this inhibitor. Thus, mammary epithelial cell spreading on collagen gels and CBP synthesis can both be suppressed by inhibition of collagen synthesis indicating that they may be integrated in some manner. It is suggested that inhibition of cell spreading during inhibition of collagen synthesis results from failure to assemble a normal basal lamina; this may in turn signal suppression of CBP synthesis.  相似文献   

3.
Mammary epithelial cell spreading on collagen gels has previously been shown to be correlated with the synthesis of a group of calcium-binding proteins (CBPs) which we have identified as the calcium-binding proteins termed calelectrins and calpactin I monomer/p36. To determine whether cell spreading per se is required for CBP synthesis, we examined the effect of cytochalasin D on these two events. Concentrations of cytochalasin D that did not reduce total protein synthesis, caused inhibition of cell spreading in a dose-dependent manner, but did not cause inhibition of CBP synthesis. Synthesis of collagen also continued during cytochalasin inhibition of cell spreading. Removal of the inhibitor from the cultures initiated cell spreading and CBP synthesis continued. Membrane-cytoskeleton complexes from control and CD treated cells were identical in regard to binding CBPs in a calcium-dependent manner. Colchicine, which inhibited cell spreading, was shown to be toxic to general protein synthesis at 75 nM. The data clearly indicate that mere inhibition of epithelial cell spreading does not automatically suppress CBP synthesis.  相似文献   

4.
The corneal stroma of the chick embryo is deposited in two steps. The primary stroma is laid down by the corneal epithelium and it contains type I, type II and type IX collagens. Its formation is subsequent to the presumptive epithelial cells' migration onto the lens capsule (which is rich in type IV collagen). The secondary, ultimate stroma is synthesized by fibroblasts whcih, on day 5 of development, invade the swollen primary stroma. It is composed of a matrix of thin (25 nm), regular fibrils containing type I and type V collagens.We found that a chick corneal epithelium isolated from either a 6-day or a 14-day embryo was able to produce, in vitro, stroma-containing type I collagen fibrils. However, the amount of collagen deposited and its organization were highly dependent on the substratum used. Plastic or purified bovine type I collagen substrata led to the release of very few fibrils. Purified human type IV collagen induced the production of an abundant matrix made of large irregular collagen fibrils.When compared to native corneal stroma, there were two aspects in which this matrix differed: (1) it contained only type I collagen, as shown by indirect immunofluorescence, and (2) there were numerous large, irregular fibrils of about 100 to 130 nm in diameter.In conclusion, it is suggested that purified type IV collagen substitutes, in part, for the basement membrane and allows the production of a corneal stroma-like matrix by an embryonic corneal epithelium in culture. This production is possible even with a 14-day epithelium which, in vivo, is no more involved in the synthesis of the stroma collagens. Moreover, the regulatory effect of type II collagen, previously suggested by in vivo observations, may be confirmed in this in vitro system by the appearance of large fibrils in the newly deposited stroma that are made only by type I collagen.  相似文献   

5.
Extracellular matrix regulation of intestinal epithelial differentiation may affect development, differentiation during migration to villus tips, healing, inflammatory bowel disease, and malignant transformation. Cell culture studies of intestinal epithelial biology may also depend on the matrix substrate used. We evaluated matrix effects on differentiation and proliferation in human intestinal Caco-2 epithelial cells, a model for intestinal epithelial differentiation. Proliferation, brush border enzyme specific activity, and spreading were compared in cells cultured on tissue culture plastic with interstitial collagen I and the basement membrane constituents collagen IV and laminin. Each matrix significantly increased alkaline phosphatase, dipeptidyl peptidase, lactase, sucrase-isomaltase, and cell spreading in comparison to plastic. However, the basement membrane proteins collagen IV and laminin further promoted all four brush border enzymes but inhibited spreading compared to collagen I. Proliferation was most rapid on type I collagen and slowest on laminin and tissue culture plastic. Basement membrane matrix proteins may promote intestinal epithelial differentiation and inhibit proliferation compared with interstitial collagen I.  相似文献   

6.
Fibrin-enhanced endothelial cell organization   总被引:12,自引:0,他引:12  
We examined the synthesis of extracellular matrix macromolecules by human microvascular endothelial cells isolated from the dermis of neonatal (foreskin) and adult (abdominal) skin. Electron microscopy showed that both cell types produced an extracellular matrix that was strictly localized to the subendothelial space. The subendothelial matrices were initially deposited as a single discontinuous layer of filamentous, electron-dense material that progressively became multilayered. Biosynthetic studies indicated that 2-4% of the newly synthesized protein was deposited in the subendothelial matrices by both cell types. Approximately 15-20% of the radiolabeled protein was secreted into the culture medium, and the remainder was confined to the cellular compartment. Biochemical and immunochemical analyses demonstrated the extracellular secretion of type IV collagen, laminin, fibronectin, and thrombospondin by the newborn and adult cells. Whereas type IV collagen was the predominant constituent of the matrix, fibronectin was secreted into the medium, with only small amounts being deposited in the matrix. Thrombospondin was a major constituent of the matrix produced by the newborn foreskin cells but was virtually absent in the matrix elaborated by the adult cells. However, both cell types did release comparable amounts of thrombospondin into their medium. Immunoperoxidase staining for type IV collagen revealed a fibrillar network in the subendothelial matrices produced by both adult and neonatal cells. In contrast, thrombospondin, which was detected only in the matrix of newborn cells, exhibited a spotty and granular staining pattern. The results indicate that the extracellular matrices synthesized by cultured human microvascular endothelial cells isolated from anatomically distinct sites and different stages of development and age are similar in ultrastructure but differ in their macromolecular composition.  相似文献   

7.
Laminin and fibronectin are glycoproteins that influence cell behavior and mediate cell/substratum adhesion. We have examined the interaction of these macromolecules with the serine protease plasminogen activator (PA) in two types of extracellular matrices; one produced by the murine Engelbreth-Holm-Swarm (EHS) tumor (Matrigel), and another by normal kidney epithelial cells in culture. Matrigel was found to contain significant quantities of tissue-type PA (tPA). Two of the major components of Matrigel, laminin and type IV collagen, were also examined. Tissue-type PA was associated with purified preparations of laminin; however, it was not found associated with type IV collagen. Normal kidney epithelial cells in culture secrete large amounts of urokinase (UK) and deposit a subepithelial matrix containing both laminin and fibronectin. These matrix macromolecules were isolated from the deposited matrix by immunoprecipitation, examined by zymography, and found to contain UK. The potential role of this interaction in the mechanisms of cell migration and matrix remodeling is discussed.  相似文献   

8.
The basal lamina components laminin, heparan sulfate proteoglycan (HSPG), and type IV collagen were synthesized and codeposited in the extracellular matrix (ECM) by a cultured human cell line from gestational choriocarcinoma (JAR). Laminin and HSPG formed a noncovalent complex detected by the coimmunoprecipitation of HSPG with laminin from cell lysates and culture media. The complex was stable in the cell lysis buffer that contained detergents (1% Triton X-100, 0.5% deoxycholate, and 0.1% sodium dodecyl sulfate) and sodium chloride (from 0.15 to 1.0 M), but was dissociated by adding 8 M urea to the detergent lysates. Even though JAR cells produced roughly equal amounts of HSPG and chondroitin sulfate proteoglycan, only HSPG complexed with laminin, suggesting a specific interaction between these basal lamina components. The laminin-HSPG complex was deposited and retained in the ECM. This was shown biochemically by isolating an enriched fraction of ECM from JAR cells cultured on native type I collagen gels. At steady state, more than half (52%) of the laminin-HSPG in the culture was recovered in the ECM fraction, in contrast to 16% of the total laminin and 29% of the total type IV collagen, which were secreted to a greater extent than laminin-HSPG into the culture medium. The retention of the laminin-HSPG complex in the ECM suggests that it may participate in the assembly of the basal lamina-like extracellular matrix deposited by JAR cultures. Omission of ascorbate from the culture medium abolished the ECM deposition of type IV collagen but had little effect on the deposition of laminin or laminin-HSPG. This demonstrates that the stable deposition of laminin-HSPG and laminin in the collagen-based choriocarcinoma cultures is not dependent on an assembled network of type IV collagen.  相似文献   

9.
The immunohistochemical detection of elements of the human thymic extracellular matrix in situ and in vitro is described. In the normal thymus, the intracapsular and intraseptal fibers were strongly labeled by anti-type I collagen antiserum. Basement membranes bordering the capsule, septae, and perivascular spaces were intensely stained by anti-type IV collagen, anti-fibronectin, and anti-laminin sera. In hyperplastic myasthenia gravis thymuses, the major changes consisted of discontinuities of the basement membrane adjacent to clusters of epithelial (keratin-containing) cells, among which an unusual connective framework (densely labeled by all the antisera) was observed. In vitro, most epithelial cells were strongly labeled by antifibronectin serum and to a lesser extent by the anti-type IV collagen and anti-laminin sera. In addition, fibronectin, laminin, and type IV collagen were detected in the intercellular spaces bordering the epithelial cells in culture. Results show that thymic epithelial cells participate in the synthesis of extracellular matrix elements, which as a result of their localization and influence on epithelial cell growth, should be regarded as constitutive components of the thymic microenvironment.  相似文献   

10.
A rat mammary myoepithelial-like cell line (Rama 401) produces 3.5 times more type IV collagen than a mammary epithelial cell line (Rama 25), as measured by the formation of protein hydroxyproline. However, using quantitative "dot" hybridization techniques, the level of poly (A)-containing mRNA hybridizing to a type IV collagen cDNA probe is only 50% higher in Rama 401 cells than in Rama 25 cells. The total amount of hydroxyproline synthesized per cell by the two cell lines is similar. However, in the Rama 25 cells approximately 70% of the hydroxyproline is found as free hydroxyproline against 13% for Rama 401 cells. When Rama 25 cells are grown on collagen gels, they accumulate 2.5-fold more type IV collagen. However, type IV collagen mRNA levels are only 30% higher in Rama 25 cells grown on collagen. The total amount of hydroxyproline synthesized is the same as cells grown on plastic, whereas the extent of collagen degradation is reduced from 71% to 30% in cells grown on collagen gels. No degradation of type IV collagen can be detected in the culture medium of Rama 25 cells. These results indicate that the increased accumulation of type IV collagen in Rama 401 cells is not due to increased synthesis but to a decreased rate of intracellular degradation, and that for Rama 25 cells, the extracellular matrix modulates type IV collagen production by regulating the rate of intracellular collagen degradation.  相似文献   

11.
Summary A primary culture of serous cystadenocarcinoma of the ovary was used to study the expression of intermediate filament proteins and the deposition of basal lamina proteins. It was found that cells grown on type I and IV collagens or in collagen gels failed to express vimentin, which was readily demonstrable in cultures of the same cells grown on plastic or glass. Furthermore cells grown in collagen gels formed colonies demonstrating a cystic architecture Unlike what is commonly observed on glass or plastic where laminin and fibronectin are deposited as disorganized fibrils in the extracellular space, in or on collagen these proteins appear solely at the interface between the epithelial cells and matrix. The results suggest that the extracellular matrix influences the cytoskeletal organization of the intermediate filaments and determines cell polarity. They confirm that collagen substrates permit epithelial cell cultures to progress toward a more differentiated state. Supported by grants from the Italian Assciation for Cancer Research (AIRC).  相似文献   

12.
Reconstituted basement membranes and extracellular matrices have been demonstrated to affect, positively and dramatically, the production of milk proteins in cultured mammary epithelial cells. Here we show that both the expression and the deposition of extracellular matrix components themselves are regulated by substratum. The steady-state levels of the laminin, type IV collagen, and fibronectin mRNAs in mammary epithelial cells cultured on plastic dishes and on type I collagen gels have been examined, as has the ability of these cells to synthesize, secrete, and deposit laminin and other, extracellular matrix proteins. We demonstrate de novo synthesis of a basement membrane by cells cultured on type I collagen gels which have been floated into the medium. Expression of the mRNA and proteins of basement membranes, however, are quite low in these cultures. In contrast, the levels of laminin, type IV collagen, and fibronectin mRNAs are highest in cells cultured on plastic surfaces, where no basement membrane is deposited. It is suggested that the interaction between epithelial cells and both basement membrane and stromally derived matrices exerts a negative influence on the expression of mRNA for extracellular matrix components. In addition, we show that the capacity for lactational differentiation correlates with conditions that favor the deposition of a continuous basement membrane, and argue that the interaction between specialized epithelial cells and stroma enables them to create their own microenvironment for accurate signal transduction and phenotypic function.  相似文献   

13.
Summary The distribution and organization of the extracellular matrix (ECM) proteins laminin, fibronectin, entactin, and type IV collagen were investigated in primary colonies and secondary cultures of bovine lens epithelial cells using species-specific antisera and indirect immunofluorescence microscopy. Primary cell colonies fixed in formaldehyde and permeabilized with Triton X-100 displayed diffuse clonies. In contrast, thick bundles of laminin and fibronectin were located on the basal cellsurfaces and in between cells in the densely packed center of the colonies, and as “adhesive plaques” and fine extracellular matrix cords in the sparsely populated (migratory) outer edge of the colonies. The distribution of ECM proteins observed in secondary lens epithelial cell cultures was similar to that observed at the periphery of the primary colony. Extraction of the secondary cell cultures with sodium deoxycholate confirmed that laminin and fibronectin were deposited on the basal cell surface. Indeed, the patterns of laminin and fibronectin deposition suggested that these proteins codistribute. These results establish that lens epithelial cells in culture can be used as a model system to study the synthesis and extracellular deposition of the basement membrane proteins, laminin and fibronectin. Supported by Public Health Service grant EY05570 from the National Eye Institute Bethesda, MD.  相似文献   

14.
Cell spreading and migration associated with the expression of the 92-kD gelatinase (matrix metalloproteinase 9 or MMP-9) are important mechanisms involved in the repair of the respiratory epithelium. We investigated the location of MMP-9 and its potential role in migrating human bronchial epithelial cells (HBEC). In vivo and in vitro, MMP-9 accumulated in migrating HBEC located at the leading edge of a wound and MMP-9 expression paralleled cell migration speed. MMP-9 accumulated through an actin-dependent pathway in the advancing lamellipodia of migrating cells and was subsequently found active in the extracellular matrix (ECM). Lamellipodia became anchored through primordial contacts established with type IV collagen. MMP-9 became amassed behind collagen IV where there were fewer cell-ECM contacts. Both collagen IV and MMP-9 were involved in cell migration because when cell-collagen IV interaction was blocked, cells spread slightly but did not migrate; and when MMP-9 activation was prevented, cells remained fixed on primordial contacts and did not advance at all. These observations suggest that MMP-9 controls the migration of repairing HBEC by remodeling the provisional ECM implicated in primordial contacts.  相似文献   

15.
Proximal tubular epithelial cells from mice which develop autoimmune interstitial nephritis were found to express the nephritogenic target antigen, 3M-1. Anti-3M-1 mAbs (alpha 3M-1-Ab) were used to positively select for 3M-1-secreting tubular epithelium and, after stabilization in culture, this new cell line (MCT) was examined for the production of several moieties important to either immune interactions or to the development of extracellular matrix. Alkaline phosphatase-staining MCT cells also express epithelial growth factor receptors with a Kd of 0.87 nM and an epithelial growth factor receptor constant (Ro) of 2.1 X 10(4) receptors/cell. MCT culture supernatants contain greater amounts of laminin, and types IV and V procollagens compared to types I and III procollagens, and growing MCT cells on type I collagen matrix causes them to preferentially secrete even more type IV and V procollagen. The 30,000-Mr 3M-1 antigen could be immunoprecipitated from biosynthetically labeled MCT cell supernatants with alpha 3M-1-Ab. An identical-sized moiety was isolated by immunoaffinity chromatography from collagenase-solubilized mouse kidney tubular basement membranes. The 3M-1 antigen can be found on the MCT cell surface by radioimmunoassay, or deposited in a linear array in the extracellular matrix surrounding the MCT cells in culture by immunofluorescence. Mature messenger RNA species for both class I and class II major histocompatibility complex (MHC) molecules were detected by Northern hybridization, and their corresponding cell surface gene products were detected by cytofluorography of MCT cells stained with haplotype-specific antibodies. Both the cell surface 3M-1 and the small amounts of detected class II MHC molecules appear to be biologically functional, as MCT cells can support the proliferation of 3M-1-specific, class II MHC-restricted helper T cells in culture. These findings suggest that MCT cells provide all the necessary biological parameters for interfacing both as the target of a nephritogenic immune response, and as a potential source for new extracellular matrix which develops as a fibrogenic response to interstitial nephritis.  相似文献   

16.
The hepatic vitamin A-storing Ito cell has been implicated as a causative cell in hepatic fibrogenesis. Using a modification of a recent method (Friedman, S. L., Roll, F. J., Boyles, J., and Bissell, D. M. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 8681-8685), rat Ito cells were isolated and passaged in vitro on collagen-coated plastic dishes through cell generation 40-50. The collagen synthetic phenotype for Ito cells grown on various extracellular matrices was demonstrated by immunofluorescence and quantitated by competition enzyme-linked immunosorbent assays. When grown on a type I collagen matrix, Ito cells produced type IV greater than type III greater than type I collagen. When grown on a type IV collagen matrix, the cells produced relatively equal amounts of types I and III collagen. The absolute amounts of type I collagen produced were greater when cells were grown on type IV versus type I matrix. When 10(-5) M retinol was added to cell cultures, there was a uniform increase in type III collagen regardless of matrix type but a decrease in type I collagen when cells were grown on a type IV matrix and a large increase in type I collagen when cells were grown on a type I collagen matrix. The levels of cellular retinol binding protein, a key cytosolic retinol transport protein, were quantitated by high performance liquid chromatography and compared for cells grown on type I versus type IV collagen matrices. It was found that cells on a type I matrix contain 4.96 +/- 2.8 times more cellular retinol binding protein than do cells grown on a type IV matrix. In conclusion, Ito cell collagen synthesis may be altered by underlying extracellular matrix and exogenous retinol. This in vitro culture system should allow the study of regulatory factors and possible therapeutic anti-fibrogenic mediators.  相似文献   

17.
The process of mammary epithelial morphogenesis is influenced by hormones. The study of hormone action on the breast epithelium using 2D cultures is limited to cell proliferation and gene expression endpoints. However, in the organism, mammary morphogenesis occurs in a 3D environment. 3D culture systems help bridge the gap between monolayer cell culture (2D) and the complexity of the organism. Herein, we describe a 3D culture model of the human breast epithelium that is suitable to study hormone action. It uses the commercially available hormone-responsive human breast epithelial cell line, T47D, and rat tail collagen type 1 as a matrix. This 3D culture model responds to the main mammotropic hormones: estradiol, progestins and prolactin. The influence of these hormones on epithelial morphogenesis can be observed after 1- or 2-week treatment according to the endpoint. The 3D cultures can be harvested for analysis of epithelial morphogenesis, cell proliferation and gene expression.  相似文献   

18.
Formation of extracellular matrix structures in cultures of rat liver epithelial nontransformed cell line IAR2 was studied with antisera to fibronectin, laminin and type IV collagen by immunofluorescence and immunoelectron microscopy of platinum replicas. Fibronectin formed peripheral spots of variable size some of which outlined free cell edges, as well as fibrils located towards the center of single cells or of cellular islands. Similarly distributed structures were seen in isolated matrices. Codistribution of fibronectin and actin was observed only for the peripheral line of fibronectin spots and marginal circular actin bundle. Basement membrane components. laminin and type IV collagen, formed mainly spots of variable size predominantly beneath the cell or each cell in an island. Occasional fibrils were seen also. Essentially the same results were obtained by immunofluorescence and immunogold electron microscopy. Cytochalasin D treated cells displayed spots of both fibronectin and laminin. The relevance of previously postulated receptor-mediated assembly of extracellular matrix structures to the epithelial cells is discussed.  相似文献   

19.
To learn more about the relationship between extracellular matrix organization, cell shape, and cell growth control, we studied DNA synthesis by fibroblasts in collagen gels that were either attached to culture dishes or floating in culture medium during gel contraction. After 4 days of contraction, the collagen density (initially 1.5 mg/ml) reached 22 mg/ml in attached gels and 55 mg/ml in floating gels. After contraction, attached collagen gels were well organized; collagen fibrils were aligned in the plane of cell spreading; and fibroblasts had an elongated, bipolar morphology. Floating collagen gels, however, were unorganized; collagen fibrils were arranged randomly; and fibroblasts had a stellate morphology. DNA synthesis by fibroblasts in contracted collagen gels was suppressed if the gels were floating in medium but not if the gels were attached, and inhibition was independent of the extent of gel contraction. Therefore, growth of fibroblasts in contracted collagen gels could be regulated by differences in extracellular matrix organization and cell shape independently of extracellular matrix density. We also compared the responses of fibroblasts in contracted collagen gels and monolayer culture to peptide growth factors including fibroblast growth factor, platelet-derived growth factor, transforming growth factor-beta, and interleukin 1. Cells in floating collagen gels were generally unresponsive to any of the growth factors. Cells in attached collagen gels and monolayer culture were affected similarly by fibroblast growth factor but not by the others. Our results indicate that extracellular matrix organization influenced not only cell growth, but also fibroblast responsiveness to peptide growth factors.  相似文献   

20.
The synthesis, distribution and types of collagen produced by somatic testicular cells in culture was studied. To investigate whether changes in collagen synthesis correlate with the age of the animal, cultures derived from immature and pubertal rats were established. Immature rats synthesize 40 per cent more collagen than pubertal rats. Both groups of animals synthesize procollagen types I and III. Pro-collagen type I is present in the culture medium as well as in the cell fraction, while type III is only detected in the culture medium. In the transition from immature to pubertal rat, the ratio of procollagen type III to procollagen type I diminishes from 5.7 to 1.7. These results indicate that the synthesis, distribution and molecular characteristics of interstitial collagens changes with the age of the animal. Since, the content of other extracellular matrix components such as proteoglycans and collagen type IV also varies with age, we postulate that the composition of the extracellular matrix in the testes is not constant but changes with sexual development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号