首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Horseradish peroxidase conjugated to wheatgerm agglutinin (HRP:WGA) was injected into the proximal cut ends of three branches of the mylohyoid nerve in rats: the branch to the mylohyoid muscle (BrMh), the branch to the anterior belly of the digastricus muscle (BrDg), and the cutaneous branch (BrCu). HRP-labeled cells were detected in the ipsilateral caudal portion of the trigeminal mesencephalic nucleus (Vmes) and the ipsilateral ventromedial division of the trigeminal motor nucleus, except when HRP:WGA was applied to the BrCu. Morphologically, all labeled Vmes cells were of the pseudounipolar type.

Projections of the primary afferents of the BrMh were observed in the ipsilateral trigeminal nucleus caudalis, the upper cervical dorsal horns of laminae I -III, and the dorsolateral recticular formation (Rf), whereas the primary afferents of the BrDg terminated in the ipsilateral trigeminal nucleus principalis and Rf. These observations suggest that the role of the afferent inputs of the mylohyoid muscle differs from that of those of the anterior belly of the digastricus muscle in terms of several functions associated with jaw-closing and infrahyoid muscles.  相似文献   

2.
Unlike all other primates, the digastric muscle of the orangutan lacks an anterior belly; the posterior belly, while present, inserts directly onto the mandible. To understand the functional consequences of this morphologic novelty, the EMG activity patterns of the digastric muscle and other potential mandibular depressors were studied in a gibbon and an orangutan. The results suggest a significant degree of functional differentiation between the two digastric bellies. In the gibbon, the recruitment pattern of the posterior digastric during mastication is typically biphasic. It is an important mandibular depressor, active in this role during mastication and wide opening. It also acts with the anterior suprahyoid muscles to move the hyoid prior to jaw opening during mastication. The recruitment patterns of the anterior digastric suggest that it is functionally allied to the geniohyoid and mylohyoid. For example, although it transmits the force of the posterior digastric during mandibular depression, it functions independent of the posterior digastric during swallowing. Of the muscles studied, the posterior digastric was the only muscle to exhibit major differences in recruitment pattern between the two species. The posterior digastric retains its function as a mandibular depressor in orangutans, but is never recruited biphasically, and is not active prior to opening. The unique anatomy of the digastric muscle in orangutans results in decoupling of the mechanisms for hyoid movement and mandibular depression, and during unilateral activity it potentially contributes to substantial transverse movements of the mandible. Hypotheses to explain the loss of the anterior digastric should incorporate these functional conclusions. © 1994 Wiley-Liss, Inc.  相似文献   

3.
The purpose is to assess the importance of medullary mechanisms for the neurogenesis of eupnea. Cats that were used were decerebrate, cerebellectomized, vagotomized, paralyzed, and ventilated. Activities of the phrenic, facial, and mylohyoid nerves were monitored. Progressive caudal-to-rostral transections of the spinal cord and medulla were performed. Phrenic activity was eliminated by C1 spinal transections. Only modest changes in facial and mylohyoid activities resulted from transections as far rostral as the level of the dorsal respiratory nucleus. Rhythmic discharges ceased on transections at the pontomedullary junction. However, rhythmic mylohyoid discharges were maintained if protriptyline and strychnine were administered before and during the transection. In other studies rhythmic phrenic, facial, and mylohyoid discharges continued, albeit with an altered rhythm, after destruction of neurons in the dorsal respiratory nucleus by kainic acid. We conclude that caudal medullary mechanisms do not play an essential role in the neurogenesis of breathing movements. Rather, structures in rostral medulla and pons appear necessary for sustaining eupneic neural activities. The concept of multiple brain stem sites for ventilatory neurogenesis is discussed.  相似文献   

4.
5.
There is evidence that increasing carbohydrate (CHO) availability during exercise by raising preexercise muscle glycogen levels attenuates the activation of AMPKalpha2 during exercise in humans. Similarly, increasing glucose levels decreases AMPKalpha2 activity in rat skeletal muscle in vitro. We examined the effect of CHO ingestion on skeletal muscle AMPK signaling during exercise in nine active male subjects who completed two 120-min bouts of cycling exercise at 65 +/- 1% V(O2 peak). In a randomized, counterbalanced order, subjects ingested either an 8% CHO solution or a placebo solution during exercise. Compared with the placebo trial, CHO ingestion significantly (P < 0.05) increased plasma glucose levels and tracer-determined glucose disappearance. Exercise-induced increases in muscle-calculated free AMP (17.7- vs. 11.8-fold), muscle lactate (3.3- vs. 1.8-fold), and plasma epinephrine were reduced by CHO ingestion. However, the exercise-induced increases in skeletal muscle AMPKalpha2 activity, AMPKalpha2 Thr(172) phosphorylation and acetyl-CoA Ser(222) phosphorylation, were essentially identical in the two trials. These findings indicate that AMPK activation in skeletal muscle during exercise in humans is not sensitive to changes in plasma glucose levels in the normal range. Furthermore, the rise in plasma epinephrine levels in response to exercise was greatly suppressed by CHO ingestion without altering AMPK signaling, raising the possibility that epinephrine does not directly control AMPK activity during muscle contraction under these conditions in vivo.  相似文献   

6.
Unlike other hamster phagocytes, hamster pulmonary macrophages (PM) avidly ingest albumin-coated latex particles in the absence of serum. They also possess a highly specific cell surface antigen. To evaluate the relationship between these two characteristics, PM were incubated with mouse monoclonal antibody directed against the PM antigen. After unbound antibody was removed, the amount of bound antibody and the phagocytic capability of PM were measured by flow cytometry and fluorescence microscopy. Maximum antibody binding produced a 25% inhibition of ingestion. Particle attachment was not affected. This effect was antigen specific, since neither a nonspecific mouse myeloma protein of the same subclass nor a mouse antibody that bound to another hamster surface antigen had any effect on binding or ingestion. If antigen-specific F(ab')2 fragments were introduced both before and during the period of phagocytosis, the inhibition of particle ingestion approached 100%. Particle binding increased at low F(ab')2 concentrations but declined at higher concentrations. Because calcium may play a role in the ingestion process, the effect of antibody on 45Ca uptake was evaluated. It was observed that antigen-specific F(ab')2 fragments stimulated 45Ca uptake, whereas control antibodies did not. These results suggest that the antigen reacting with our anti-hamster PM monoclonal antibody is involved in immune opsonin-independent phagocytosis and that calcium participates in this phagocytic process.  相似文献   

7.
We recently identified a new Z-disc protein, CHAP (Cytoskeletal Heart-enriched Actin-associated Protein), which is expressed in striated muscle and plays an important role during embryonic muscle development in mouse and zebrafish. Here, we confirm and further extend these findings by (i) the identification and characterization of the CHAP orthologue in chick and (ii) providing a detailed analysis of CHAP expression in mouse during embryonic and adult stages. Chick CHAP contains a PDZ domain and a nuclear localization signal, resembling the human and mouse CHAPa. CHAP is expressed in the developing heart and somites, as well as muscle precursors of the limb buds in mouse and chick embryos. CHAP expression in heart and skeletal muscle is maintained in adult mice, both in slow and fast muscle fibers. Moreover, besides expression in striated muscle, we demonstrate that CHAP is expressed in smooth muscle cells of aorta, carotid and coronary arteries in adult mice, but not during embryonic development.  相似文献   

8.
Laryngeal elevation achieved by neuromuscular stimulation at rest.   总被引:5,自引:0,他引:5  
During swallowing, airway protection is achieved in part by laryngeal elevation. Although multiple muscles are normally active during laryngeal elevation, neuromuscular stimulation of select muscles was evaluated to determine which single muscle or muscle pair best elevates the larynx and should be considered during future studies of neuromuscular stimulation in dysphagic patients. Hooked-wire monopolar electrodes were inserted into mylohyoid, thyrohyoid, and geniohyoid muscle regions in 15 healthy men selected for having a highly visible thyroid prominence for videotaping. During trials of single, bilateral, and combined muscle stimulations, thyroid prominence movements were video recorded, digitized, and normalized relative to elevation during a 2-ml water swallow. Individual muscle stimulation induced approximately 30% of the elevation observed during a swallow and approximately 50% of swallow velocity, whereas paired muscle stimulation resulted in approximately 50% of the elevation and approximately 80% of the velocity produced during a swallow. Paired muscle stimulation produced significantly greater elevation than single muscle stimulation and could assist with laryngeal elevation in dysphagic patients with reduced or delayed laryngeal elevation.  相似文献   

9.
The Western chestnut mouse (Pseudomys nanus ferculinus) is one of several native rodent species adapted to the arid environments of Australia. Since these environments are often associated with a paucity in dietary carbohydrate, the problem arises as to the mechanism whereby these rodents replete their stores of muscle glycogen when recovering from high intensity physical activity. This is an important issue since the maintenance of adequate stores of muscle glycogen is crucial to support the energy demands associated with 'flight or fight' responses. Whilst it is known that food ingestion post-exercise is required for the total repletion of muscle glycogen in rats and humans, our findings indicate that the Western chestnut mouse has the impressive capacity to replete completely its stores of muscle glycogen, even in the absence of food intake. Indeed during recovery from burst activity which results in the massive breakdown of the stores of muscle glycogen, the levels of glycogen return back to pre-exercise levels within only 50 minutes despite the absence of food intake. This capacity is important in the broader context of nutritional adaptation to arid/seasonally-arid regions since it allows muscles to replete their fuel stores even when food is not available. How common is this strategy among desert-adapted mammal species is a question yet to be answered.  相似文献   

10.
To investigate the role of heparin-binding EGF-like growth factor (HB-EGF) in skeletal muscle, we studied its function in skeletal myotubes in vitro using mouse C2C12 cells. Expression levels of membrane-anchored HB-EGF (proHB-EGF) protein were increased specifically during their differentiation among epidermal growth factor receptor (EGFR) ligands. Production levels of EGFR on the cell surface were constant. Tyrosine phosphorylation of EGFR, however, was constitutively increased during differentiation. Quenching of endogenous HB-EGF significantly rendered myotubes sensitive to apoptotic cell death induced by hypoxic stress, suggesting that proHB-EGF in the skeletal muscle is specifically upregulated to function as a survival factor.  相似文献   

11.
Xiao F  Wang H  Fu X  Li Y  Wu Z 《PloS one》2012,7(4):e34081
p38 mitogen-activated protein kinase (MAPK) is an essential kinase involved in myogenic differentiation. Although many substrates of p38 MAPK have been identified, little is known about its upstream activators during myogenic differentiation. TRAF6 is known to function in cytokine signaling during inflammatory responses. However, not much is known about its role in myogenic differentiation and muscle regeneration. We showed here that TRAF6 and its intrinsic ubiquitin E3 ligase activity are required for myogenic differentiation. In mouse myoblasts, knockdown of TRAF6 compromised the p38 MAPK and Akt pathways, while deliberate activation of either pathway rescued the differentiation defect caused by TRAF6 knockdown. TAK1 acted as a key signal transducer downstream of TRAF6 in myogenic differentiation. In vivo, knockdown of TRAF6 in mouse muscles compromised the injury-induced muscle regeneration without impairing macrophage infiltration and myoblast proliferation. Collectively, we demonstrated that TRAF6 promotes myogenic differentiation and muscle regeneration via the TAK1/p38 MAPK and Akt pathways.  相似文献   

12.
The mandibular symphysis of rorqual whales, whales of the genera Megaptera and Balaenoptera, is characterized by a Y-shaped fibrocartilage structure that lies in the substance of the muscular ventral pouch of these animals. The stem of the structure joins with the symphysis and is usually indicated externally by an unfurrowed median strip of blubber that has been called the “cutwater” by earlier writers. The arms of the Y pass back and are superficially indicated in all rorqual whales as a ridge running parallel to the rami of the mandibles. This fibrocartilage skeleton of the pouch is most closely related to the mylohyoid muscle. The function of the fibrocartilage Y is probably linked with the jaw mechanics of these whales, but its precise function is otherwise not known.  相似文献   

13.
14.
Although weight loss ameliorates many of the metabolic abnormalities associated with obesity, there has been reluctance to prescribe weight loss in obese, older individuals because of the fear that it will cause debilitating loss of muscle mass and impair physical function. To gain insight into the mechanisms responsible for the weight loss-induced changes in muscle mass, we measured the rate of muscle protein synthesis (by using stable isotope labeled tracer methodology) during basal, postabsorptive conditions and during mixed meal ingestion in eight obese, older adults: (i) before weight loss therapy, (ii) ~3 months after starting the weight loss intervention (i.e., during the active weight loss phase), when subjects had lost ~7% of their initial body weight, and (iii) after they had lost ~10% of their body weight and maintained this new body weight for ~6 months (~12 months after starting the weight loss intervention). The basal muscle protein fractional synthesis rate (FSR) was not affected by weight loss. Mixed meal ingestion stimulated the rate of muscle protein synthesis, and the anabolic response (i.e., increase in the protein synthesis rate above basal values) was greater (P < 0.05) during negative energy balance and active weight loss at 3 months (0.033 ± 0.012%·per hour, mean ± s.e.m.) than during weight maintenance before and at 12 months of weight loss therapy (0.003 ± 0.003 and 0.008 ± 0.012%·per hour, respectively). We conclude that during dietary calorie restriction and weight loss in older adults, the rate of muscle protein synthesis is not impaired. Thus, the loss of muscle mass must be mediated predominately by adverse effects of dietary calorie restriction on muscle proteolysis.  相似文献   

15.
Electromyographies of the mylohyoid muscle (MH) during the execution of the goal-oriented action “grasping to eat” have been used to determine the time relationship between the opening of the mouth and the beginning of the movement. This has been used to distinguish the behaviour of typical developing (TD) children from that of highly functioning autistic (ASD) individuals. The results of previous studies appeared to provide evidence of a deficit in action chain organization in ASD subjects and prompted the hypothesis of a “broken” mirror neuron system (MNS) for these individuals. Our results show the MH activation timing is not reliable in discriminating between TD and ASD children and the distance between the food and the subject plays a key role on the MH activation timing and cannot be neglected when analysing these type of data. The preliminary investigation on the effects of external perturbations also shows that these might have an effect on the results and further investigations are warranted. It appears that there is not enough evidence to support a link between ASD and a broken mirror network system (MNS), and the experimental results must be carefully interpreted before developing therapeutic or rehabilitative protocols.  相似文献   

16.
17.
Naked mole-rats (Heterocephalus glaber) are fossorial, eusocial rodents that exhibit the unusual capability of moving their lower incisors independently in lateral and rostroventral directions. The evolution of this trait would presumably also involve concurrent alterations in neck musculature to support and control movements of the lower incisors. In order to assess morphological adaptations that might facilitate these movements, we performed detailed dissections of the neck musculature of adult naked mole-rats. In addition to characterizing attachment sites of superficial, suprahyoid, and infrahyoid musculature, we also quantified muscle mass and mandibular features thought to be associated with gape (condyle height, condyle length, and jaw length). Based on muscle attachment sites, the platysma myoides may contribute to lateral movement of the lower incisor and hemi-mandible in naked mole-rats. The large digastric muscle is likely to be a main contributor to rostroventral movement of each lower incisor. The geniohyoid and mylohyoid muscles also likely contribute to rostroventral movements of the lower incisors, and the mylohyoid may also produce lateral spreading of the hemi-mandibles. The transverse mandibular (intermandibularis) muscle likely serves to reposition the lower incisors back to a midline orientation following a movement.  相似文献   

18.
We cloned and functionally characterized the murine Bin1 gene as a first step to investigate its physiological roles in differentiation, apoptosis, and tumorigenesis. The exon-intron organization of the >/=55-kb gene is similar to that of the human gene. Consistent with a role for Bin1 in apoptosis, the promoter included a functional consensus motif for activation by NF-kappaB, an important regulator of cell death. A muscle regulatory module defined in the human promoter that includes a consensus recognition site for myoD family proteins was not conserved in the mouse promoter. However, Bin1 is upregulated in embryonic development by E10.5 in myotomes, the progenitors of skeletal muscle, supporting a role in myogenesis and suggesting that the mouse and human genes may be controlled somewhat differently during development. In C2C12 myoblasts antisense Bin1 prevents induction of the cell cycle kinase inhibitor p21WAF1, suggesting that it acts at an early time during the muscle differentiation program. Interspecific mouse backcross mapping located the Bin1 locus between Mep1b and Apc on chromosome 18. Since the human gene was mapped previously to chromosome 2q14, the location of Bin1 defines a previously unrecognized region of synteny between human chromosome 2 and mouse chromosome 18.  相似文献   

19.
The role of extracellular elements on the mechanical properties of skeletal muscles is unknown. Merosin is an essential extracellular matrix protein that forms a mechanical junction between the sarcolemma and collagen. Therefore, it is possible that merosin plays a role in force transmission between muscle fibers and collagen. We hypothesized that deficiency in merosin may alter passive muscle stiffness, viscoelastic properties, and contractile muscle force in skeletal muscles. We used the dy/dy mouse, a merosin-deficient mouse model, to examine changes in passive and active muscle mechanics. After mice were anesthetized and the diaphragm or the biceps femoris hindlimb muscle was excised, passive length-tension relationships, stress-relaxation curves, or isometric contractile properties were determined with an in vitro biaxial mechanical testing apparatus. Compared with controls, extensibility was smaller in the muscle fiber direction and the transverse fiber direction of the mutant mice. The relaxed elastic modulus was smaller in merosin-deficient diaphragms compared with controls. Interestingly, maximal muscle tetanic stress was depressed in muscles from the mutant mice during uniaxial loading but not during biaxial loading. However, presence of transverse passive stretch increases maximal contractile stress in both the mutant and normal mice. Our data suggest that merosin contributes to muscle passive stiffness, viscoelasticity, and contractility and that the mechanism by which force is transmitted between adjacent myofibers via merosin possibly in shear.  相似文献   

20.
We measured glutamine kinetics using L-[5-15N]glutamine and L-[ring-2H5]phenylalanine infusions in healthy subjects in the postabsorptive state and during ingestion of an amino acid mixture that included glutamine, alone or with additional glucose. Ingestion of the amino acid mixture increased arterial glutamine concentrations by approximately 20% (not by 30%; P < 0.05), irrespective of the presence or absence of glucose. Muscle free glutamine concentrations remained unchanged during ingestion of amino acids alone but decreased from 21.0 +/- 1.0 to 16.4 +/- 1.6 mmol/l (P < 0.05) during simultaneous ingestion of glucose due to a decrease in intramuscular release from protein breakdown and glutamine synthesis (0.82 +/- 0.10 vs. 0.59 +/- 0.06 micromol x 100 ml leg(-1) x min(-1); P < 0.05). In both protocols, muscle glutamine inward and outward transport and muscle glutamine utilization for protein synthesis increased during amino acid ingestion; leg glutamine net balance remained unchanged. In summary, ingestion of an amino acid mixture that includes glutamine increases glutamine availability and uptake by skeletal muscle in healthy subjects without causing an increase in the intramuscular free glutamine pool. Simultaneous ingestion of glucose diminishes the intramuscular glutamine concentration despite increased glutamine availability in the blood due to decreased glutamine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号