首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
Sensory adaptation in bacterial chemotaxis is mediated by covalent modifications of specific glutamate and glutamine residues within the cytoplasmic domains of methyl-accepting chemotaxis proteins (MCPs). In Escherichia coli and Salmonella enterica, efficient methylation of MCPs depends on the localization of methyltransferase CheR to MCP clusters through an interaction between the CheR beta-subdomain and a pentapeptide sequence (NWETF or NWESF) at the C-terminus of the MCP. In vitro methylation analyses utilizing S. enterica and Thermotoga maritima CheR proteins and MCPs indicate that MCP methylation in T. maritima occurs independently of a pentapeptide-binding motif. Kinetic and binding measurements demonstrate that despite efficient methylation, the interaction between T. maritima CheR and T. maritima MCPs is of relatively low affinity. Comparative protein sequence analyses of CheR beta-subdomains from organisms having MCPs that contain and/or lack pentapeptide-binding motifs identified key similarities and differences in residue conservation, suggesting the existence of two distinct classes of CheR proteins: pentapeptide-dependent and pentapeptide-independent methyltransferases. Analysis of MCP C-terminal ends showed that only approximately 10% of MCPs contain a putative C-terminal binding motif, the majority of which are restricted to the different proteobacteria classes (alpha, beta, gamma, delta). These findings suggest that tethering of CheR to MCPs is a relatively recent event in evolution and that the pentapeptide-independent methylation system is more common than the well-characterized pentapeptide-dependent methylation system.  相似文献   

2.
Aer is a membrane-associated protein that mediates aerotactic responses in Escherichia coli. Its C-terminal half closely resembles the signaling domains of methyl-accepting chemotaxis proteins (MCPs), which undergo reversible methylation at specific glutamic acid residues to adapt their signaling outputs to homogeneous chemical environments. MCP-mediated behaviors are dependent on two specific enzymes, CheR (methyltransferase) and CheB (methylesterase). The Aer signaling domain contains unorthodox methylation sites that do not conform to the consensus motif for CheR or CheB substrates, suggesting that Aer, unlike conventional MCPs, might be a methylation-independent transducer. Several lines of evidence supported this possibility. (i) The Aer protein was not detectably modified by either CheR or CheB. (ii) Amino acid replacements at the putative Aer methylation sites generally had no deleterious effect on Aer function. (iii) Aer promoted aerotactic migrations on semisolid media in strains that lacked all four of the E. coli MCPs. CheR and CheB function had no influence on the rate of aerotactic movements in those strains. Thus, Aer senses and signals efficiently in the absence of deamidation or methylation, methylation changes, methylation enzymes, and methyl-accepting chemotaxis proteins. We also found that chimeric transducers containing the PAS-HAMP sensing domain of Aer joined to the signaling domain and methylation sites of Tar, an orthodox MCP, exhibited both methylation-dependent and methylation-independent aerotactic behavior. The hybrid Aear transducers demonstrate that methylation independence does not emanate from the Aer signaling domain but rather may be due to transience of the cellular redox changes that are thought to trigger Aer-mediated behavioral responses.  相似文献   

3.
Sensory adaptation in bacterial chemotaxis is mediated by methylation and demethylation of specific glutamyl residues in the cytoplasmic domain of chemoreceptors. Methylation is catalyzed by methyltransferase CheR. In E. coli and related organisms, methylation sufficiently rapid to be physiologically effective requires a carboxyl terminal pentapeptide sequence on the receptor being modified or, via adaptational assistance, on a neighboring homodimer in a receptor cluster. Pentapeptide‐enhanced methylation is thought to be mediated by a ~30 residue, potentially disordered sequence that serves as a flexible arm connecting the receptor body and pentapeptide‐bound methyltransferase, thus allowing diffusionally restricted enzyme to reach methyl‐accepting sites. However, it was not known how many or which sites on the same or neighboring receptors were accessible to the tethered enzyme. We investigated using molecular modeling and found that, in a hexagonal array of trimers of receptor dimers, CheR tethered to a dimer of chemoreceptor Tar by its native 30‐residue flexible‐arm sequence could reach all methyl‐accepting sites on the dimer to which it was tethered plus 48 methyl‐accepting sites distributed among nine neighboring dimers, equivalent to the total sites carried by six receptors. This modeling‐determined methylation neighborhood of one enzyme‐binding dimer and six neighbors corresponds precisely with the experimentally identified neighborhood of seven. Thus, the experimentally observed adaptational assistance can occur by docking of pentapeptide‐bound, diffusionally restricted enzyme to methyl‐accepting sites on neighboring receptors. Our analysis introduces the notion that physiologically relevant adaptational assistance could occur even if only a subset of sites on a particular receptor are within reach.  相似文献   

4.
Sensory adaptation of low-abundance chemoreceptors in Escherichia coli requires assistance from high-abundance receptors, because only high-abundance receptors carry the carboxyl-terminal pentapeptide sequence NWETF that enhances adaptational covalent modification. Using membrane vesicles containing both high-abundance receptor Tar and low-abundance receptor Trg, we observed effective assistance in vitro for all three adaptational modifications: methylation, demethylation and deamidation. These results demonstrated that adaptational assistance involves not only the previously documented assistance for methylation but also assistance for the two CheB-catalysed reactions. We determined rates of assisted methylation and demethylation at many ratios of assisting to assisted receptor. Analysis by a model of assistance indicated one Tar dimer could assist seven Trg dimers in methylation or five in demethylation, defining assistance neighbourhoods. These neighbourhoods were larger than a trimer of homodimers, required only receptors and were minimally affected by formation of signalling complexes. Time courses of assisted Trg methylation in membranes with low amounts of Tar showed that assisting receptors did not diffuse beyond initial neighbourhoods for at least two hours. Taken together, these observations indicate that chemoreceptors can form stable neighbourhoods larger than trimers in the absence of other chemotaxis proteins. Such interactions are likely to occur in natural receptor clusters in vivo.  相似文献   

5.
Adaptation to persisting stimulation is required for highly sensitive detection of temporal changes of stimuli, and often involves covalent modification of receptors. Therefore, it is of vital importance to understand how a receptor and its cognate modifying enzyme(s) modulate each other through specific protein-protein interactions. In the chemotaxis of Escherichia coli, adaptation requires methylation of chemoreceptors (e.g. Tar) catalyzed by the CheR methyltransferase. CheR binds to the C-terminal NWETF sequence of a chemoreceptor that is distinct from the methylation sites. However, little is known about how CheR recognizes its methylation sites or how it is distributed in a cell. In this study, we used comparative genomics to demonstrate that the CheR chemotaxis methyltransferase contains three structurally and functionally distinct modules: (i) the catalytic domain common to a methyltransferase superfamily; (ii) the N-terminal domain; and (iii) the beta-subdomain of the catalytic domain, both of which are found exclusively in chemotaxis methyltransferases. The only evolutionary conserved motif specific to CheR is the positively charged face of helix alpha2 in the N-terminal domain. The disulfide cross-linking analysis suggested that this face interacts with the methylation helix of Tar. We also demonstrated that CheR localizes to receptor clusters at cell poles via interaction of the beta-subdomain with the NWETF sequence. Thus, the two chemotaxis-specific modules of CheR interact with distinct regions of the chemoreceptor for targeting to the receptor cluster and for recognition of the substrate sites, respectively.  相似文献   

6.
Many proteins have recently been shown to localize to different regions of the bacterial cell. This is most striking in the case of the Escherichia coli chemotaxis pathway in which the components localize at the cell poles. Rhodobacter sphaeroides has a more complex chemotaxis system with two complete pathways, each localizing to different positions, one pathway at the pole and one at a discrete cluster within the cytoplasm of the bacterium. Using genomic replacement of the wild-type chemotaxis genes in R. sphaeroides with their corresponding fluorescent protein fusions in conjunction with in frame deletions of other chemotaxis genes, we have investigated which proteins are required for the formation of the polar and cytoplasmic chemotaxis protein clusters. As in E. coli, the polarly targeted CheA and CheW homologues are required for the formation of the polar cluster. However, the formation of the cytoplasmic cluster requires the cytoplasmic chemoreceptors and CheW but not the CheAs. Interestingly, even when deletion of a component resulted in the chemotaxis proteins of one pathway becoming delocalized and diffuse in the cytoplasm, in no case were any chemotaxis proteins seen to localize to the other signalling cluster.  相似文献   

7.
In bacterial chemotaxis, transmembrane chemoreceptors, the CheA histidine kinase, and the CheW coupling protein assemble into signaling complexes that allow bacteria to modulate their swimming behavior in response to environmental stimuli. Among the protein-protein interactions in the ternary complex, CheA-CheW and CheW-receptor interactions were studied previously, whereas CheA-receptor interaction has been less investigated. Here, we characterize the CheA-receptor interaction in Thermotoga maritima by NMR spectroscopy and validate the identified receptor binding site of CheA in Escherichia coli chemotaxis. We find that CheA interacts with a chemoreceptor in a manner similar to that of CheW, and the receptor binding site of CheA's regulatory domain is homologous to that of CheW. Collectively, the receptor binding sites in the CheA-CheW complex suggest that conformational changes in CheA are required for assembly of the CheA-CheW-receptor ternary complex and CheA activation.  相似文献   

8.
In order to determine whether ClpXP-mediated proteolysis is a common mechanism used to regulate the chemotaxis machinery during the cell cycle of Caulobacter crescentus, we have characterized a soluble cytoplasmic chemoreceptor, McpB. The mcpB gene lies adjacent to the major chemotaxis operon, which encodes 12 chemotaxis proteins, including the membrane chemoreceptor McpA. Like McpA, McpB possesses a C-terminal CheBR docking motif and three potential methylation sites, which we suggest are methylated. The McpB protein is degraded via a ClpX-dependent pathway during the swarmer-to-stalked cell transition, and a motif, which is 3 amino acids N-terminal to the McpB CheBR docking site, is required for proteolysis. Analysis of the degradation signal in McpB and McpA reveals a common motif present in the other four chemoreceptors that possess CheBR docking sites. A green fluorescent protein (GFP) fusion bearing 58 amino acids from the C terminus of McpA, which contains this motif, is degraded, suggesting that the C-terminal sequence is sufficient to confer ClpXP protease susceptibility.  相似文献   

9.
Bacterial chemotaxis receptors are posttranslationally modified by carboxyl methylation of specific glutamate residues within their cytoplasmic domains. This highly regulated, reversible modification counterbalances the signaling effects of ligand binding and contributes to adaptation. On the basis of the crystal structure of the gamma-glutamyl methyltransferase CheR, we have postulated that positively charged residues in helix alpha2 in the N-terminal domain of the enzyme may be complementary to the negatively charged methylation region of the methyltransferase substrates, the bacterial chemotaxis receptors. Several altered CheR proteins, in which positively charged arginine or lysine residues were substituted with alanines, were constructed and assayed for their methylation activities toward wild-type receptor and a series of receptor variants containing different glutamates available for methylation. One of the CheR mutant proteins (Arg53Ala) showed significantly lower activity toward all receptor constructs, suggesting that Arg53 may play a general role in catalysis of methyl transfer. The rest of the mutant proteins exhibited different patterns of relative methylation rates toward different receptor substrates, indicating specificity, probably through interaction of CheR with the receptor at sites distal to the specific site of methylation. The findings imply complementarity between positively charged residues of the alpha2 helix of CheR and the negatively charged glutamates of the receptor. It is likely that this complementarity is involved in discriminating different methylation states of the receptors.  相似文献   

10.
M R Kehry  F W Dahlquist 《Cell》1982,29(3):761-772
Sensory transduction in E. coli consists of two phases, excitation and adaptation, both of which involve the methyl-accepting chemotaxis proteins (MCPs). These molecules relay transmembrane signals and are reversibly methylated during adaptation of E. coli to environmental stimuli. Each MCP contains multiple sites of methylation, and we identified six of these sites in MCPI. Recently, a second covalent modification of MCPs has been identified, which is not methylation. This modification, designated CheB-dependent modification, is stimulated by repellents and causes a net increase in the negative charge of MCPI and MCPII by one or two charges. We demonstrate that one CheB modification occurs on the methyl-accepting methionine-and lysine-containing tryptic peptide in MCPI and MCPII, and the second CheB modification is on an arginine-containing tryptic peptide. The CheB modification allows three additional methyl groups to be incorporated into the methyl-accepting methionine-lysine peptide, while not actually creating all of these methylation sites. The two CheB modifications occur sequentially. A possible mechanism by which CheB modification permits additional methylations and the role of CheB modification in bacterial chemotaxis are discussed.  相似文献   

11.

SUMMARY

Chemoreceptors sense environmental signals and drive chemotactic responses in Bacteria and Archaea. There are two main classes of chemoreceptors: integral inner membrane and soluble cytoplasmic proteins. The latter were identified more recently than integral membrane chemoreceptors and have been studied much less thoroughly. These cytoplasmic chemoreceptors are the subject of this review. Our analysis determined that 14% of bacterial and 43% of archaeal chemoreceptors are cytoplasmic, based on currently sequenced genomes. Cytoplasmic chemoreceptors appear to share the same key structural features as integral membrane chemoreceptors, including the formations of homodimers, trimers of dimers, and 12-nm hexagonal arrays within the cell. Cytoplasmic chemoreceptors exhibit varied subcellular locations, with some localizing to the poles and others appearing both cytoplasmic and polar. Some cytoplasmic chemoreceptors adopt more exotic locations, including the formations of exclusively internal clusters or moving dynamic clusters that coalesce at points of contact with other cells. Cytoplasmic chemoreceptors presumably sense signals within the cytoplasm and bear diverse signal input domains that are mostly N terminal to the domain that defines chemoreceptors, the so-called MA domain. Similar to the case for transmembrane receptors, our analysis suggests that the most common signal input domain is the PAS (Per-Arnt-Sim) domain, but a variety of other N-terminal domains exist. It is also common, however, for cytoplasmic chemoreceptors to have C-terminal domains that may function for signal input. The most common of these is the recently identified chemoreceptor zinc binding (CZB) domain, found in 8% of all cytoplasmic chemoreceptors. The widespread nature and diverse signal input domains suggest that these chemoreceptors can monitor a variety of cytoplasmically based signals, most of which remain to be determined.  相似文献   

12.
Sensory adaptation in bacterial chemotaxis is mediated by covalent modification of chemoreceptors. Specific glutamyl residues are methylated and demethylated in reactions catalyzed by methyltransferase CheR and methylesterase CheB. In Escherichia coli and Salmonella enterica serovar typhimurium, efficient adaptational modification by either enzyme is dependent on a conserved pentapeptide sequence at the chemoreceptor carboxyl terminus, a position distant from the sites of modification. For CheR-catalyzed methylation, previous work demonstrated that this sequence acts as a high affinity docking site, enhancing methylation by increasing enzyme concentration near methyl-accepting glutamates. We investigated pentapeptide-mediated enhancement of CheB-catalyzed demethylation and found it occurred by a distinctly different mechanism. Assays of binding between CheB and the pentapeptide sequence showed that it was too weak to have a significant effect on local enzyme concentration. Kinetic analyses revealed that interaction of the sequence and the methylesterase enhanced the rate constant of demethylation not the Michaelis constant. This allosteric activation occurred if the sequence was attached to chemoreceptor, but hardly at all if it was present as an isolated peptide. In addition, free peptide inhibited demethylation of the native receptor carrying the pentapeptide sequence at its carboxyl terminus. These observations imply that the allosteric change is transmitted through the protein substrate, not the enzyme.  相似文献   

13.
The basic structural unit of the signaling complex in bacterial chemotaxis consists of the chemotaxis kinase CheA, the coupling protein CheW, and chemoreceptors. These complexes play an important role in regulating the kinase activity of CheA and in turn controlling the rotational bias of the flagellar motor. Although individual three-dimensional structures of CheA, CheW, and chemoreceptors have been determined, the interaction between chemoreceptor and CheW is still unclear. We used nuclear magnetic resonance to characterize the interaction modes of chemoreceptor and CheW from Thermotoga maritima. We find that chemoreceptor binding surface is located near the highly conserved tip region of the N-terminal helix of the receptor, whereas the binding interface of CheW is placed between the β-strand 8 of domain 1 and the β-strands 1 and 3 of domain 2. The receptor-CheW complex shares a similar binding interface to that found in the "trimer-of-dimers" oligomer interface seen in the crystal structure of cytoplasmic domains of chemoreceptors from Escherichia coli. Based on the association constants inferred from fast exchange chemical shifts associated with receptor-CheW titrations, we estimate that CheW binds about four times tighter to its first binding site of the receptor dimer than to its second binding site. This apparent anticooperativity in binding may reflect the close proximity of the two CheW binding surfaces near the receptor tip or further, complicating the events at this highly conserved region of the receptor. This work describes the first direct observation of the interaction between chemoreceptor and CheW.  相似文献   

14.
Sensory adaptation in bacterial chemotaxis is mediated by covalent modification of chemoreceptors, specifically methylation and demethylation of glutamates catalyzed by methyltransferase CheR and methylesterase CheB. The methylesterase is a two-domain response regulator in which phosphorylation of the regulatory domain enhances activity of the catalytic domain. In Escherichia coli and Salmonella typhimurium, a crucial determinant of efficient methylation and demethylation is a specific pentapeptide sequence at the chemoreceptor carboxyl terminus, a position distant from sites of enzymatic action. Each enzyme binds pentapeptide, but the site of binding has been located only for CheR. Here we locate the pentapeptide-binding site on CheB by assessing catalytic activity and pentapeptide binding of CheB fragments, protection of CheB from proteolysis by pentapeptide, and interference with pentapeptide-CheB interaction by a CheB segment. The results place the binding site near the hinge between regulatory and catalytic domains, in a segment spanning the carboxyl-terminal end of the regulatory domain and the beginning of the linker that stretches to the catalytic domain. This location is quite different from the catalytic domain location of the pentapeptide-binding site on CheR and is likely to reflect the rather different ways in which pentapeptide binding enhances enzymatic action for the methyltransferase and the methylesterase.  相似文献   

15.
An expressed sequence tag homologous to cheA was previously isolated by random sequencing of Thermotoga maritima cDNA clones (C. W. Kim, P. Markiewicz, J. J. Lee, C. F. Schierle, and J. H. Miller, J. Mol. Biol. 231: 960-981, 1993). Oligonucleotides complementary to this sequence tag were synthesized and used to identify a clone from a T. maritima lambda library by using PCR. Two partially overlapping restriction fragments were subcloned from the lambda clone and sequenced. The resulting 5,251-bp sequence contained five open reading frames, including cheA, cheW, and cheY. In addition to the chemotaxis genes, the fragment also encodes a putative protein isoaspartyl methyltransferase and an open reading frame of unknown function. Both the cheW and cheY genes were individually cloned into inducible Escherichia coli expression vectors. Upon induction, both proteins were synthesized at high levels. T. maritima CheW and CheY were both soluble and were easily purified from the bulk of the endogenous E. coli protein by heat treatment at 80 degrees C for 10 min. CheY prepared in this way was shown to be active by the demonstration of Mg(2+)-dependent autophosphorylation with [32P]acetyl phosphate. In E. coli, CheW mediates the physical coupling of the receptors to the kinase CheA. The availability of a thermostable homolog of CheW opens the possibility of structural characterization of this small coupling protein, which is among the least well characterized proteins in the bacterial chemotaxis signal transduction pathway.  相似文献   

16.
The bacterial chemotaxis adaptor protein CheW physically links the chemoreceptors (MCPs) and the histidine kinase CheA. Extensive investigations using bacterium Escherichia coli have established the central role of CheW in the MCP-modulated activation of CheA. Here we report the solution structure of CheW from E. coli determined by NMR spectroscopy. The results show that E. coli CheW shares an overall fold with previously reported structure of CheW from Thermotoga maritima, whereas local conformational deviations are observed. In particular, the C-terminal alpha-helix is considerably longer in E. coli CheW and appears to shrink the active binding pocket with CheA. Our study provides the structural basis for further investigations in E. coli chemotaxis.  相似文献   

17.
Ribosome recycling factor (RRF) of Thermotoga maritima was expressed in Escherichia coli from the cloned T. maritima RRF gene and purified. Expression of T. maritima RRF inhibited growth of the E. coli host in a dose-dependent manner, an effect counteracted by the overexpression of E. coli RRF. T. maritima RRF also inhibited the E. coli RRF reaction in vitro. Genes encoding RRFs from Streptococcus pneumoniae and Helicobacter pylori have been cloned, and they also impair growth of E. coli, although the inhibitory effect of these RRFs was less pronounced than that of T. maritima RRF. The amino acid sequence at positions 57 to 62, 74 to 78, 118 to 122, 154 to 160, and 172 to 176 in T. maritima RRF differed totally from that of E. coli RRF. This suggests that these regions are important for the inhibitory effect of heterologous RRF. We further suggest that bending and stretching of the RRF molecule at the hinge between two domains may be critical for RRF activity and therefore responsible for T. maritima RRF inhibition of the E. coli RRF reaction.  相似文献   

18.
As a step towards studying representative members of the two-component family of signal transduction proteins, we have cloned genes encoding a histidine protein kinase and a response regulator from the hyperthermophilic bacterium Thermotoga maritima. The genes have been designated HpkA and drrA, respectively. The deduced HpkA sequence contains all five characteristic histidine protein kinase motifs with the same relative order and spacing found in the mesophilic bacterial proteins. A hydropathy profile indicates that HpkA possesses only one membrane-spanning segment located at the extreme N terminus. The N-terminal region of DrrA exhibits all of the characteristics of the conserved domains of mesophilic bacterial response regulators, and the C-terminal region shows high similarity to the OmpR-PhoB subfamily of DNA-binding proteins. Recombinant T. maritima proteins, truncated HpkA lacking the putative membrane-spanning N- terminal amino acids and DrrA, were expressed in Escherichia coli. Partial purification of T. maritima proteins was achieved by heat denaturation of E. coli host proteins. In an in vitro assay, truncated HpkA protein was autophosphorylated in the presence of ATP. Thus, the N-terminal hydrophobic region is not required for kinase activity. Phosphotransfer between truncated HpkA and DrrA was demonstrated in vitro with the partially purified proteins. The phosphorylation reactions were strongly temperature dependent. The results indicate that the recombinant T. maritima two-component proteins overexpressed in E. coli are stable as well as enzymatically active at elevated temperatures.  相似文献   

19.
20.
Post‐translational modifications (PTMs) of proteins are central in any kind of cellular signaling. Modern mass spectrometry technologies enable comprehensive identification and quantification of various PTMs. Given the increased numbers and types of mapped protein modifications, a database is necessary that simultaneously integrates and compares site‐specific information for different PTMs, especially in plants for which the available PTM data are poorly catalogued. Here, we present the Plant PTM Viewer (http://www.psb.ugent.be/PlantPTMViewer), an integrative PTM resource that comprises approximately 370 000 PTM sites for 19 types of protein modifications in plant proteins from five different species. The Plant PTM Viewer provides the user with a protein sequence overview in which the experimentally evidenced PTMs are highlighted together with an estimate of the confidence by which the modified peptides and, if possible, the actual modification sites were identified and with functional protein domains or active site residues. The PTM sequence search tool can query PTM combinations in specific protein sequences, whereas the PTM BLAST tool searches for modified protein sequences to detect conserved PTMs in homologous sequences. Taken together, these tools help to assume the role and potential interplay of PTMs in specific proteins or within a broader systems biology context. The Plant PTM Viewer is an open repository that allows the submission of mass spectrometry‐based PTM data to remain at pace with future PTM plant studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号