首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of aerated and ferricyanide catholytes on the bioelectricity production was evaluated in dual chambered microbial fuel cell (MFC) (mediatroless anode; graphite electrodes) employing selectively enriched H(2) producing mixed consortia as anodic inoculum. Two MFCs with aerated catholyte (MFC(AC)) and ferricyanide catholyte (MFC(FC)) were operated separately to elucidate the difference in power generation potential and carbon removal efficiency under similar operating conditions [ambient pressure; room temperature (28+/-2 degrees C); acidophilic microenvironment (pH 6)]. The experimental data demonstrated the feasibility of in situ bioelectricity generation along with wastewater treatment. Effective power generation and substrate removal efficiency was documented in the fuel cell operated with ferricyanide catholyte (586 mV; 2.37 mA; 0.559 kg COD/m(3) day) than aerated catholyte (572 mV; 1.68 mA; 0.464 kg COD/m(3) day). Maximum power yield (0.635 W/kg COD(R) and 0.440 W/kg COD(R)) and current density (222.59 mA/m(2) and 190.28 mA/m(2)) was observed at 100 Omega resistor with ferricyanide and aerated catholytes, respectively. The study documented both wastewater treatment and electricity production through direct conversion of H(2) in a single system.  相似文献   

2.
The influence of substrate loading rate on fermentative hydrogen (H2) production was studied in biofilm configured sequencing batch reactor using chemical wastewater as substrate. Reactor was operated with selectively enriched anaerobic mixed microflora at different organic loading rates (OLRs; 6.3, 7.1 and 7.9kg COD/m3 day) after adjusting the feed to a pH of 6.0 (acidophilic) to provide suitable environment for acidogenic bacterial function. Variation in H2 production rate was observed with change in OLR [specific hydrogen yield - 13.44molH2/kgCODRday (6.3kgCOD/m3day), 8.23molH2/kgCODRday (7.1kgCOD/m3 day) and 6.064molH2/kgCODR day (7.9kgCOD/m3 day)]. H2 yield showed reasonably good correlation with pH drop [6.3kgCOD/m3 day (R2 - 0.9796), 7.1kgCOD/m3 day (R2 - 0.9973), 7.9kgCOD/m3 day (R2 - 0.9908)]. Increase in OLR showed marked reduction in COD removal efficiency [22.6% - 6.3kgCOD/m3 day; 19.8% - 7.1kgCOD/m3 day and 17.2% - 7.9kgCOD/m3 day].  相似文献   

3.
The effectiveness of a commercial inoculum for degrading a dairy wastewater with high fat content was evaluated, and compared with an activated sludge inoculum from a dairy wastewater treatment pond. Both inocula reached similar chemical oxygen demand removal in batch experiments. The population dynamics was also studied by determining heterotrophic counts. Predominant microorganisms were differentiated by colony morphology and genomic fingerprinting (BOX-PCR) analysis. The higher population diversity and the wider range of CO2 production rate observed in batch reactors inoculated with activated-sludge, indicated that microorganisms from this inoculum were well adapted and may have had synergic activity for the degradation of the dairy effluent. When the bioreactor was operated with the commercial inoculum in continuous mode, according to its microbial growth kinetics, other microorganisms became predominant. These results showed that inoculated microorganisms did not persist in the open system and periodic addition of microorganisms may be needed to achieve a high performance treatment.  相似文献   

4.
The effect of anodic biofilm growth and extent of its coverage on the anodic surface of a single chambered mediatorless microbial fuel cell (MFC) was evaluated for bioelectricity generation using designed synthetic wastewater (DSW) and chemical wastewater (CW) as substrates and anaerobic mixed consortia as biocatalyst. Three MFCs (plain graphite electrodes, air cathode, Nafion membrane) were operated separately with variable biofilm coverage [control; anode surface coverage (ASC), 0%], partially developed biofilm [PDB; ASC approximately 44%; 90 days] and fully developed biofilm [FDB; ASC approximately 96%; 180 days] under acidophilic conditions (pH 6) at room temperature. The study depicted the effectiveness of anodic biofilm formation in enhancing the extracellular electron transfer in the absence of mediators. Higher specific power production [29mW/kg COD(R) (CW and DSW)], specific energy yield [100.46J/kg VSS (CW)], specific power yield [0.245W/kg VSS (DSW); 0.282W/kg VSS (CW)] and substrate removal efficiency of 66.07% (substrate degradation rate, 0.903kgCOD/m(3)-day) along with effective functioning fuel cell at relatively higher resistance [4.5kOmega (DSW); 14.9kOmega (CW)] correspond to sustainable power [0.008mW (DSW); 0.021mW (CW)] and effective electron discharge (at higher resistance) and recovery (Coulomb efficiency; 27.03%) were observed especially with FDB operation. Cyclic voltammetry analysis documented six-fold increment in energy output from control (1.812mJ) to PDB (10.666mJ) operations and about eight-fold increment in energy from PDB to FDB (86.856mJ). Biofilm configured MFC was shown to have the potential to selectively support the growth of electrogenic bacteria with robust characteristics, capable of generating higher power yields along with substrate degradation especially operated with characteristically complex wastewaters as substrates.  相似文献   

5.
Cassava alcohol wastewater produced from the bioethanol production industry is carbohydrate-rich wastewater with large quantities of insoluble organic compounds. Microbial fuel cells (MFCs) were used for electricity recovery and pollutants removal from this wastewater. Different pretreatment methods (solid–liquid separation, ultrasonication, pre-fermentation) and anode-aeration modes were explored in MFCs aimed to enhance the efficiency of power generation and pollutants removal. Pre-fermentation was found to be the most effective pretreatment method. A maximum power density of 437.13 ± 15.6 mW/m2 and TCOD removal of 62.5 ± 3.5 % were achieved using the pre-fermented wastewater, 150 and 20 % higher than the un-pretreated control. Aeration in anode chamber could promote the hydrolysis of organic matter and production of VFAs in the raw wastewater, and increase TCOD removal and power density. Pre-fermentation coupled with halfway anode aeration may be a feasible strategy to enhance power generation and pollutants removal from the cassava wastewater in MFCs.  相似文献   

6.
Influence of recirculation on the performance of anaerobic sequencing batch biofilm reactor (AnSBBR) was studied in the process of treating hypersaline (total dissolved inorganic solids (TDIS) approximately 26 g/l) and low biodegradable (BOD/COD approximately 0.3) composite chemical wastewater. Significant enhancement in the substrate removal efficiency and biogas yield was observed after introducing the recirculation to the system. Maximum efficiency (COD removal efficiency - 51%; SDR - 3.14 kg COD/cum-day) was observed at recirculation to feed (R/F) ratio of 2 (OLR - 6.15 kg C OD/cum-day; HLR - 2.30 cum (liquid)/cum day; UFV(A) - 0.023 m/h). Subsequent increase of R/F to 3 (OLR - 6.15 kg COD/cum-day; HLR - 3.07cum (liquid)/cum-day; UFV(A) - 0.035 m/h) resulted in reduction in COD removal efficiency (32%; SDR - 1.97 kg COD/cum-day). The enhanced performance of the system due to the introduction of recirculation was attributed to the improvement in the mass transfer between the substrate present in the bulk liquid and the attached biofilm. The hydrodynamic behavior due to recirculation mode of operation reduced the concentration gradient (substrate inhibition) of substrate and reaction by-products (VFA) resulting in mixed flow conditions.  相似文献   

7.
The aim of this work was to evaluate the efficiency of horizontal subsurface flow constructed wetlands (HSFCWs) planted with Typha domingensis and Phragmites australis in the final treatment of dairy wastewater. Ten microcosms-scale reactors simulating HSFCWs were arranged outdoors under a semi-transparent plastic roof. Five replicates were planted with T. domingensis and five with P. australis. In both cases, light expanded clay aggregate (LECA) 10/20 was used as a substrate. Real effluent with previous treatment was used. In order to evaluate contaminant removal efficiencies in each reactor, pH, electrical conductivity, suspended solids, ammonium, nitrate, nitrite, total phosphorus, and chemical oxygen demand (COD) were analyzed before and after treatment. HSFCWs planted with T. domingensis and P. australis were efficient for the final treatment of dairy wastewater. Removal efficiencies obtained in microcosms planted with both macrophytes were over 96% for ammonium and nitrite. Nitrate removal efficiency was 39%. COD decreased along the experiment near 75% for both treatments. High removal percentages for suspended solids (78.4–81.1%) were also achieved. However, systems planted with T. domingensis were significantly more efficient for total phosphorus removal (88.5%) than those planted with P. australis (71.6%).  相似文献   

8.
An entrapped mixed microbial cells (EMMC) process was used to investigate the simultaneous removal of carbon and nitrogen from dilute swine wastewater. Cellulose triacetate was used as the matrix for entrapping the mixed microbial cells. The EMMC process was tested with various oxygen supply conditions (ratios of aeration to non-aeration times) and two types of carrier sizes (large and medium). Also, various pre-treatments with chemical coagulation, screen separation and ammonium crystallization prior to the EMMC process, and post-treatment after the EMMC process were investigated. It was found that at a hydraulic retention time of 30 h and one hour of aeration and one hour of non-aeration, the EMMC process packed with medium carriers after the pretreatment of ammonium crystallization, exhibited the best total nitrogen removal efficiency of 95.1 +/- 1.0% when compared to the other two pre-treatment methods. The total chemical oxygen demand (TCOD) and soluble chemical oxygen demand removal efficiencies were 83.5 +/- 2.2% and 84.1 +/- 1.1%, respectively. Lime post-treatment provided TCOD and total phosphorus removal efficiencies of 59.6 +/- 2.7% and 98.0 +/- 0.5%, respectively. Thus, a cost analysis for ammonium crystallization pre-treatment, EMMC process, and post-treatment with lime was conducted. The unit cost for a 2000 pig operation is approximately dollars 4.91/pig/year. For the application of the EMMC process with the proposed pre- and post-treatments, a suitable farm size needs to be greater than a 2000 pig operation. Because of the high efficiency and the simple operation of simultaneous carbon and nitrogen removal, the EMMC process has the potential for treatment of dilute swine wastewater in a land-limited area and can be manufactured as pre-fabricated wastewater treatment units.  相似文献   

9.
The aim of this work was to study the influence of influent chemical oxygen demand (COD), upflow velocity of wastewater, and cationic polymer additives in inoculum, on biomass granulation and COD removal efficiency in upflow anaerobic sludge blanket (UASB) reactor for treating low strength wastewater. Statistical models were formulated based on these three variables to optimize the biomass granulation and COD removal efficiency in UASB reactors using a two-level, full factorial design. For the thick inoculum used in this study, having suspended solids (SS) >80 g/l and volatile suspended solids (VSS) to SS ratio <0.3, cationic polymer additives in the inoculum showed adverse effect on biomass granulation and COD removal efficiency. It is concluded that for such thick inoculum, granulation can be obtained while treating low strength wastewaters in UASB reactor by selecting proper combination of influent COD and liquid upflow velocity so as to represent the organic loading rate (OLR) greater than 1.0 kg COD/m(3) d. Validation of model predictions for treatment of synthetic wastewater and actual sewage reveals the efficacy of these models for enhancing granulation and COD removal efficiency.  相似文献   

10.
The wastewater from the dairy industries usually contains high concentrations of contaminants and, since the volume generated is also high, the total contaminant load is very significant. Among the available options for treatment, biological degradation looks like the most promising one. Furthermore, the supplementation of the native microbial populations with external microorganisms with high specific degradation rates (bio-augmentation) has demonstrated to improve the performance of treatment. The main objective of this research was to select a combination of bacteria to improve the aerobic treatment of dairy processing wastewater. For this purpose, eleven fat/protein-degrading microorganisms belonging to the genera Bacillus, Serratia, Lactococcus, Enterococcus, Stenotrophomonas, Klebsiella and Escherichia, were evaluated as potential degrading bacteria using a Plackett-Burman design. Assays were carried out to select the strains that most significantly influenced the degradation of wastewater and biomass yield, in terms of COD removal. A simulated dairy industry effluent was used as culture medium. Four strains were selected as potential members of the microbial consortium: Lactococcus garvieae, Bacillus thuringiensis, Escherichia coli and Stenotrophomonas sp. The optimal operation temperature and pH range of the selected consortium were 32°C and 6 ~ 8, respectively. The degradation percentages reached with the selected consortium were 80.67 and 83.44% at 24 and 48 h, respectively. The selected consortium significantly improved the degradation of the dairy wastewater, and the degradation degree achieved by this consortium was higher than by using the strains individually.  相似文献   

11.
Won SG  Lau AK 《Bioresource technology》2011,102(13):6876-6883
In this study, a series of tests were conducted in a 6 L anaerobic sequencing batch reactor (ASBR) to investigate the effect of pH, hydraulic retention time (HRT) and organic loading rate on biohydrogen production at 28 °C. Sucrose was used as the main substrate to mimic carbohydrate-rich wastewater and inoculum was prepared from anaerobic digested sludge without pretreatment. The reactor was operated initially with nitrogen sparging to form anaerobic condition. Results showed that methanogens were effectively suppressed. The optimum pH value would vary depending on the HRT. Maximum hydrogen production rate and yield of 3.04 L H2/L reactor d and 2.16 mol H2/mol hexose respectively were achieved at pH 4.5, HRT 30 h, and OLR 11.0 kg/m3 d. Two relationships involving the propionic acid/acetic acid ratio and ethanol/acetic acid ratio were derived from the analysis of the metabolites of fermentation. Ethanol/acetic acid ratio of 1.25 was found to be a threshold value for higher hydrogen production.  相似文献   

12.
Summary Start-up and operation of a fluidized-bed reactor were investigated with butyrate or butyrate plus acetate as sole substrates. Start-up could be enhanced by increasing the amount of inoculum and by providing balanced substrate concentrations in a wellbuffered synthetic wastewater. High-rate degradation of butyrate to methane and carbon dioxide was achieved with a maximum organic loading rate (OLR) of 34.5 kg chemical oxygen demand (COD)/m3·d at a hydraulic retention time (HRT) of 0.47 d and with a COD removal efficiency of 87%.  相似文献   

13.
Recently, an increasing application of so called advanced oxidation processes (AOPs) to industrial wastewater has been observed. In particular, an integrated approach of biological and chemical treatment of wastewater is advantageous conceptually. The subject of our study was synthetic wastewater, simulating effluents from knitting industry. The wastewater contained components that are very often used in Polish textile industry: an anionic detergent Awiwaz KG conc., a softening agent Tetrapol CLB and an anthraquinone dyestuff-Acid Blue 40, CI 2125. The toxicity of the detergents and the dye was determined in terms of effective concentration EC50 using mixed cultures of activated sludge as well as pure culture of luminescent bacteria Vibrio fischerii NRRLB-11177. The dye did not undergo biodegradation without AOPs pretreatment, therefore a degree of its removal (decolourisation) by the AOPs has been determined and its bio-sorption properties on the flocks of activated sludge have been studied. The dye adsorption onto flocks of activated sludge was described by Henry's isotherm. Our investigations focussed on the influence of various oxidants like O3, H2O2 and UV light on biodegradation of single components aqueous solution as well as of the whole textile wastewater. The results of kinetic measurements of the biodegradation (by means of acclimated activated sludge) was described by Monod type of kinetic equation. The experimental evidence of the positive effect of chemical oxidation pretreatment on the biodegradation of recalcitrant compounds was quantified by estimation of the kinetic parameters of the Monod equation. Due to the AOPs pretreatment a decrease of the Monod constant and an increase of maximal specific growth rate was observed. The activity of degradative enzymes of activated sludge was assayed by the methods of 2-[4-iodophenyl]-3-[4-nitrophenyl]-5-phenyltetrazolium chloride test.  相似文献   

14.
Zhao X  Zhang L  Liu D 《Bioresource technology》2008,99(9):3729-3736
In order to utilize and control the invasive weed, crofton weed (Eupatorium adenophorum Spreng), a potential pathway was proposed by using it as a feedstock for production of fermentable sugars. Three chemical pretreatment methods were used for improving enzymatic saccharification of the weed stem. Mild H2SO4 pretreatment could obtain a relatively high yield of sugars in the pretreatment (32.89%, based on initial holocellulose), however, it led to only a slight enhancement of enzymatic digestibility. NaOH pretreatment could obtain a higher enzymatic conversion ratio of cellulose compared with H2SO4 pretreatment. Peracetic acid (PAA) pretreatment seemed to be the most effective for improving enzymatic saccharification of the weed stem in the three chemical pretreatment methods under the same conditions. The conversion ratio of cellulose in the sample pretreated by PAA under the "optimal" condition was increased to 50% by cellulase loading of 80 FPU/g cellulose for 72 h incubation. A number of empirical quadratic models were successfully developed according to the experimental data to predict the yield of sugar and degree of delignification.  相似文献   

15.
The aerobic fat biodegradation potential and growth characteristics of a commercial and a native inoculum (activated sludge from a dairy wastewater treatment pond), were evaluated. Batch tests were conducted with a medium based on butter oil, as the sole source of carbon, and mineral salts. Residual fat, biomass and CO(2) production were measured. Overall fat removal values were above 78% for both inocula. The growth kinetics of the commercial and native inocula followed Haldane and Monod models respectively. Both inocula showed a similar behaviour when butter oil concentration was under 360 mg/l; at higher values, the difference between the growth rates increased as a consequence of the inhibition exhibited by the commercial inoculum. The selection of an inoculum for bioaugmentation of bioreactors in the wastewater treatment requires a comprehensive knowledge of their degradation ability and tolerance to fluctuating compounds and of the operational conditions that will be utilized.  相似文献   

16.
Toxicity of organic extraction reagents to anaerobic bacteria   总被引:1,自引:0,他引:1  
Various forms of liquid-liquid extraction systems are being developed to separate products, such as ethanol and volatile fatty acids (VFA), from fermentation liquids, since distillation is energetically expensive. Continuous extraction is advantageous, as product inhibition of the fermentation is minimized. However, some extraction solvents may be toxic or inhibitory to microorganisms.Thirty organic chemicals were examined by means of a small scale (60 mL) batch fermentation bioassay procedure for their toxicity to a commercial inoculum (Methanobac, W.B.E. Ltd.), which was a mixed culture of facultatively anaerobic, acid-producing bacteria. Gas production, pH change of medium, and the concentrations of ethanol, VFA, and lactic acid were measured after 75 h growth. The optimum experimental conditions for toxicity testing were alfalfa as substrate (2 g), a buffered nutrient medium (pH 6.8), "Methanobac" inoculum (10 mL), and test chemicals at levels between 10 and 100 muL/mL.Thirteen chemicals were nontoxic, and included the paraffins (C(6)-C(12)), phthalates, organophosphorus compounds, Freon 113 (1,1,2-trichloro-1,2,2-trifluoro ethane), Aliquat 336 (tricaprylylmethyl ammonium chloride), di-isoamyl ether, and trioctylamine. Other amine extractants were partially toxic. Alcohols (C(5)-C(12)), ketones (C(5)-C(8)), benzene derivatives, isoamyl acetate, and di-isopropyl ether were toxic. Generally, the chemicals were not toxic unless present at levels in excess of that expected to be required to saturate the aqueous phase.Total gas production was a good indicator of toxicity even within 24 h, but the presence of homofermentative (nongas producing) lactic acid bacteria complicated interpretation."Methanobac" inoculum was compared with an inoculum derived from a rumen culture for four test chemicals. The results were essentially the same. However, the toxicity of a chemical to bacteria is likely to vary considerably between bacterial species.  相似文献   

17.
The effect of inoculum source on anaerobic thermophilic digestion of separately collected organic fraction of municipal solid wastes (SC_OFMSW) has been studied. Performance of laboratory scale reactors (V: 1.1 L) were evaluated using six different inoculums sources: (1) corn silage (CS); (2) restaurant waste digested mixed with rice hulls (RH_OFMSW); (3) cattle excrement (CATTLE); (4) swine excrement (SWINE); (5) digested sludge (SLUDGE); and (6) SWINE mixed with SLUDGE (1:1) (SWINE/SLUDGE). The SC_OFMSW was separately and collected from university restaurant. The selected conditions were: 25% of inoculum, 30% of total solid and 55 degrees C of temperature, optimum in the thermophilic range. The six inoculum sources showed an initial start-up phase in the range between 2 and 4 days and the initial methane generation began over 10 days operational process. Results indicated that SLUDGE is the best inoculum source for anaerobic thermophilic digestion of the treatment of organic fraction of municipal solid waste at dry conditions (30%TS). Over 60 days operating period, it was confirmed that SLUDGE reactor can achieve 44.0%COD removal efficiency and 43.0%VS removal. In stabilization phase, SLUDGE reactor showed higher volumetric biogas generated of 78.9 mL/day (or 35.6 mLCH(4)/day) reaching a methane yield of 0.53 LCH(4)/gVS. Also, SWINE/SLUDGE and SWINE were good inoculums at these experimental conditions.  相似文献   

18.
Optimization of solid substrate fermentation of wheat straw   总被引:9,自引:0,他引:9  
Optimal conditions for solid substrate fermentation of wheat straw with Chaetomium cellulolyticum in laboratory-scale stationary layer fermenters were developed. The best pretreatment for wheat straw was ammonia freeze explosion, followed by steam treatment, alkali treatment, and simple autoclaving. The optimal fermentation conditions were 80% (w/w) moisture content; incubation temperature of 37 degrees C; 2% (w/w) unwashed mycelial inoculum; aeration at 0.12 L/h/g; substrate thickness of 1 to 2 cm; and duration of three days. Technical parameters for this optimized fermentation were: degree of substance utilization, 27.2%; protein yield/substrate, 0.09 g; biomass yield/bioconverted substrate, 0.40 g; degree of bioconversion of total available sugars in the substrate, 60.5%; specific efficiency of bioconversion, 70.8%; and overall efficiency of biomass production from substrate, 42.7%. Mixed culturing of Candida utilis further increased biomass production by 20%. The best mode of fermentation was a semicontinuous fed-batch fermentation where one-half of the fermented material was removed at three-day intervals and replaced by fresh substrate. In this mode, protein production was 20% higher than in batch mode, protein productivity was maintained over 12 days, and sporulation was prevented.  相似文献   

19.
The anaerobic treatment of the wastewater from the meat processing industry was studied using a 7.2 1 UASB reactor. The reactor was equipped with an unconventional configuration of the three-phase separation system. The effluent was characterized in terms of pH (6.3-6.6), chemical oxygen demand (COD) (2,000-6,000 mg l(-1)), biochemical oxygen demand BOD5 (1,300-2,300 mg 1(-1)), fats (40-600 mg l(-1)) and total suspended solids (TSS) (850-6,300 mg l(-1)) The reactor operated continuously throughout 80 days with hydraulic retention time of 14, 18 and 22 h. The wastewater from Rezende Industrial was collected after it had gone through pretreatment (screening, flotation and equalization). COD, BOD and TSS reductions and the biogas production rate were the parameters considered in analyzing the efficiency of the process. The average production of biogas was 111 day(-1) (STP) for the three experimental runs. COD removal varied from 77% to 91% while BOD removal was 95%. The removal of total suspended solids varied from 81% to 86%. This fact supports optimal efficiency of the proposed three-phase separation system as well as the possibility of applying it to the treatment of industrial effluents.  相似文献   

20.
The effect of cationic polymer additives on biomass granulation and COD removal efficiency had been examined in lab-scale upflow anaerobic sludge blanket (UASB) reactors, treating low strength synthetic wastewater (COD 300-630 mg/l). Under identical conditions, two reactors were operated with and without polymer additives in inoculum under four different organic loading rates (OLRs). The optimum polymer dose was adopted based upon the results of jar test and settling test carried out with inoculum seed sludge. With the use of thick inoculum, SS greater than 110 g/l and VSS/SS ratio less than 0.3, granulation was observed in UASB reactor treating synthetic wastewater as well as actual sewage, when OLR was greater than 1.0 kg COD/m(3) d. Polymer additive with such thick inoculum was observed to deteriorate percentage granules and COD removal efficiency compared to inoculum without polymer additives. At OLR less than 1.0 kg COD/m(3) d, proper granulation could not be achieved in both the reactors inoculated with and without polymer additive. Also, under this low loading, drastic reduction in COD removal efficiency was observed with polymer additives in inoculum. Hence, it is rational to conclude that biomass granulation for treatment of low strength biodegradable wastewater depends on the applied loading rate and selection of thick inoculum sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号