首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle fiber type composition and capillary supply in rat diaphragm were investigated after 14 weeks of endurance training: body weight and muscle fiber area were significantly decreased, the muscle fiber type composition, capillary to fiber ratio and number of capillaries around each fiber type were unchanged, and the capillary density and number of capillaries around each fiber relative to fiber type areas were significantly increased. These small fiber areas and increased capillary supplies in the trained rats would facilitate oxygen transport to all parts of the muscle fiber during exercise. It is concluded that the changes observed in the trained rat diaphragm appear to enhance the capacity for oxidative metabolism.  相似文献   

2.
Extreme endurance training and fiber type adaptation in rat diaphragm   总被引:1,自引:0,他引:1  
Extreme endurance training was used to investigate the adaptability of the rat diaphragm muscle fibers. During the final phase of the 14-wk training program, the animals were running for 240 min/day at an estimated requirement of 80% of pretraining maximal O2 consumption. Analysis of a sample of the costal diaphragm indicated that training resulted in a 34% reduction (P less than 0.05) in the percent distribution of type IIa fibers [27.7 +/- 1.1 vs. 18.3 +/- 2.6 (SE)] and a 15% increase (P less than 0.05) in the percent of type IIb fibers (40.0 +/- 1.2 vs. 46.1 +/- 2.4). No change (P greater than 0.05) was found in the distribution of the type I fibers (32.3 +/- 1.2 vs. 35.7 +/- 1.3). Oxidative potential as assessed with NADH-tetrazolium reductase and measured microphotometrically increased (P less than 0.05) by 19% in type I fibers but did not change in either the type IIa or type IIb fibers. No effect of training was found when a different oxidative marker, succinic dehydrogenase, was employed. Similarly glycolytic potential based on the activity of alpha-glycerophosphate dehydrogenase was not affected by training. Glycogen concentration was elevated by 60% (P less than 0.01) in type I fibers and 77% (P less than 0.01) in type IIb fibers with training but was not altered (P greater than 0.05) in type IIa fibers. Reductions (P less than 0.05) in fiber area ranging from 11 to 20% were observed in all fiber types as a result of training, whereas the number of capillaries per fiber remained static.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Effect of alterations in muscle fiber length on diaphragm blood flow   总被引:1,自引:0,他引:1  
A variety of studies have examined the response of diaphragmatic blood flow (Qdi) to rhythmic pleiometric (i.e., shortening) and isometric contractions. The effect of changes in diaphragm fiber length on Qdi are, however, unknown. The present study examined the effect of changes in diaphragm fiber length on Qdi and the effect of alterations in length on the response of Qdi to increases in diaphragm contractile activity. Studies were performed on 21 anesthetized mechanically ventilated dogs in which a strip of costal diaphragm was developed in situ. The strip was immobilized in a rigid metal frame that permitted precise adjustment of muscle length. Strip blood flow was assessed with a drop counter attached to a catheter in the branch of the phrenic vein draining the strip. Strips were electrically stimulated via intramuscular electrodes, and the isometric tension developed was measured with a force transducer. Fiber length was expressed as a percentage of the length at which active isometric tension was maximum (Lo). With the diaphragm at rest, steady-state blood flow fell by 59 +/- 6% (SE) (P less than 0.001) as fiber length was increased from 92 to 107% Lo. Blood flow also varied as a function of length when muscles contracted rhythmically (15 contractions/min, duty cycle 50%) to generate isometric tensions equal to 20 and 80% of maximum. As fiber length increased from 92 to 106% Lo, Qdi fell by 36 +/- 6% (SE) when tension was 80% of maximum (P less than 0.01) and by 38 +/- 6% (SE) when tension was 20% of maximum (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The influence of nutritional deprivation on the contractile and fatigue properties of the diaphragm was studied in adult rats. Food access was restricted to one-third of normal daily intake until the body weight of nutritionally deprived (ND) animals was approximately 50% of controls (CTL). Isometric contractile properties were studied in an in vitro nerve muscle strip preparation. Both twitch (Pt) and tetanic (Po) tensions of diaphragms from the ND animals were markedly reduced compared with CTL; however, Pt/Po was higher for the ND group. The shape of the force-frequency curve (normalized to Po) was generally similar between the two groups, except at 5 and 10 pulses/s stimulation, where greater relative tensions were produced in diaphragms from the ND animals. Diaphragm fatigue was induced by repetitive stimulation at either 20 or 100 pulses/s. Endurance time (defined as the time required for tension to fall to 50% of initial) of diaphragms from ND animals was prolonged at both 20 and 100 pulses/s. Immediately after induction of fatigue, force-frequency curves for both ND and CTL diaphragms were shifted to the right. However, this rightward shift was attenuated in the ND group compared with CTL. Nutritional deprivation had no effect on the proportions of different fiber types within the diaphragm but did result in a significant decrease in the cross-sectional area of both fast-and slow-twitch fibers. This decrease in cross-sectional area was significantly greater for fast-twitch fibers. We conclude that these changes in diaphragm contractile and fatigue properties occur as a result of the influence of malnutrition on muscle fiber cross-sectional area.  相似文献   

5.
We hypothesized that the amount of sarcolemmal injury is directly related to the total tension time (TT(tot)), calculated as mean tension x total stimulation time. Diaphragm strips from Sprague-Dawley rats were superfused at optimal muscle length with Krebs containing procion orange to identify sarcolemmal injury. TT(tot) was induced by stimulation with 100 Hz for 3 min at duty cycles of 0.02, 0.15, 0.3, and 0.6, or with continuous contractions at 0.2, 0.4, 0.6, and 1.0 of maximal tension. A significant positive correlation between TT(tot) and the percentage of fibers with injured sarcolemma (r(2) = 0.63, P < 0.05) is seen. Stimulation (at 100 Hz, duty cycle = 1) resulted in fast fatigue with low injury, likely caused by altered membrane conductivity. Stimulations inducing the largest injury are those showing progressive force loss and high TT(tot), where injury may be due to activation of membrane degradative enzymes. The maximal tension measured at 20 min poststimulation was inversely related to the number of fibers injured, suggesting loss of force is caused by cellular injury.  相似文献   

6.
7.
1. In the presence of 1.2mm-atractyloside oxygen uptake by rat diaphragm muscle incubated with 5.6mm-glucose decreases, as well as glycogen synthesis and carbon dioxide production. Lactate formation from glucose increases, but that of phosphoglycerate diminishes fivefold. 2. When pyruvate is used as substrate, atractyloside decreases oxygen uptake. 3. The specific radioactivity of the (14)CO(2) (mumoles of (14)CO(2)/mumole of oxygen), calculated at concentrations of [1-(14)C]pyruvate between 0.091mm and 91mm, lies between 3.1x10(-4) and 5.7x10(-1). Atractyloside increases the specific radioactivity of the (14)CO(2) with the lowest concentrations of substrate and has no effect when the substrate concentration is 91mm. 4. No appreciable effect of atractyloside on the anaerobic production of (14)CO(2) from [1-(14)C]pyruvate at various incubation times and various concentrations is found. 5. It is suggested that atractyloside induces anaerobic conditions in the tissue. Further, it produces a rise in the pyruvate concentration and an ATP deficiency in the cell. Consequently it stimulates pyruvate dismutation, and glycolysis, to which phosphorylation is linked at the substrate level.  相似文献   

8.
AMP-activated protein kinase (AMPK) may mediate the stimulatory effect of contraction and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) on glucose transport in skeletal muscle. In muscles with different fiber type composition from fasted rats, AICAR increased 2-deoxyglucose transport and total AMPK activity approximately twofold in epitrochlearis (EPI), less in flexor digitorum brevis, and not at all in soleus muscles. Contraction increased both transport and AMPK activity more than AICAR did. In EPI muscles, the effects of AICAR and contractions on glucose transport were partially additive despite a lower AMPK activity with AICAR compared with contraction alone. In EPI from fed rats, glucose transport responses were smaller than what was seen in fasted rats, and AICAR did not increase transport despite an increase in AMPK activity. AICAR and contraction activated both alpha(1)- and alpha(2)-isoforms of AMPK. Expression of both isoforms varied with fiber types, and alpha(2) was highly expressed in nuclei. In conclusion, AICAR-stimulated glucose transport varies with muscle fiber type and nutritional state. AMPK is unlikely to be the sole mediator of contraction-stimulated glucose transport.  相似文献   

9.
10.
Summary We used the histochemical stain for ATPase to compare the fiber-type composition of rat internal and external intercostal muscles from thoracic (T) segments 2–5, 8, and 11. At each level, type II fibers were more numerous than type I fibers, type II B fibers were more numerous than II A fibers, and type I fibers were more numerous in external than in internal intercostals. However, fiber type composition varied from segment to segment. For example, the proportion of type II A fibers increased in a rostrocaudal gradient in internal but not external intercostals, and type I fibers were more prevalent at rostral and caudal than at intermediate levels in both internal and external intercostals. These results provide a basis for interpreting previous physiological and molecular studies which have compared intercostal muscles from different segmental levels.  相似文献   

11.
Chronic reduction of gravitational load in the rear limbs of rats to simulate the influence of near-zero gravity in skeletal muscles has been shown previously to elicit atrophy in the soleus muscle. Use of this model by the present investigation indicates that soleus atrophy was characterized by a decline in the number of fibers in groups that contained the slow isoenzyme of myosin and which were classified as type I from intensity of staining to myofibrillar actomyosin adenosinetriphosphatase (ATPase) and to NADH tetrazolium reductase. Furthermore total fiber number was not changed, whereas fibers containing the intermediate isoenzyme and those classified as type IIa increased. There results could be explained by either a change in the composition within existing fibers or a simultaneous loss of slow fibers and de novo synthesis of intermediate and fast fibers. Evidence for transformation included an absence of embryonic or neonatal myosin in muscles from suspended rats and the constant fiber number that was unchanged by 4 wk of suspension. Furthermore although fiber areas of both groups of type I and IIa fibers declined during suspension, variability of the fiber areas within each group did not increase.  相似文献   

12.
The influence of dexamethasone on diaphragm (DIA) fatigue, oxidative capacity, and fiber cross-sectional areas (CSA) was determined in growing hamsters. One group received dexamethasone by daily subcutaneous injection for 21 days (D animals), while pair-weight (P) and free-eating controls (CTL) received saline subcutaneously. Isometric contractile properties of the DIA were determined in vitro by supramaximal direct muscle stimulation in the presence of curare. DIA fatigue resistance was determined through repetitive stimulation at 40 pulses/s for 2 min. A computer-based image-processing system was used to histochemically determine muscle fiber-type proportions, CSA, and succinate dehydrogenase activities. The medial gastrocnemius muscle (MG) was used as a limb muscle control, with histochemical studies being performed on both the superficial (s) and deep/red (r) portions. Dexamethasone markedly attenuated the normal increment in body weight over the 3-wk period. DIA fatigue resistance was significantly reduced in the D compared with CTL and P animals. Dexamethasone had no effect on fiber-type proportions of the DIA or MGr (MGs contained only type II fibers). In the DIA, the CSA of type II fibers was reduced 33% in D and 18.5% in P animals compared with CTL. Although no significant atrophy was noted in the type I DIA fibers of either D or P animals, a trend toward significance was noted in D animals compared with CTL. In the MGs, the CSA of type II fibers was reduced 33% in D and 16.5% in P animals compared with CTL. Significant atrophy of type I and II fibers of the MGr was noted in D animals compared with CTL (33.8 and 35% reductions, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The purpose of this investigation was to determine whether heavy-resistance exercise training alters the skeletal muscle fiber composition of young rats. Ten male Long Evans rats (3 wk old) were trained to lift progressively heavier weights, which were secured to the rats' tails, while they ascended a 40-cm 90 degree mesh incline 20 times/day 5 days/wk for a food reward. After 8 wk of training, they lifted 406 +/- 19 (SD) g in addition to their body weight (261 +/- 9 g). Compared with 10 sedentary pair-fed rats, no hypertrophy of forelimb muscles (biceps brachii and brachialis) was observed, but rectus femoris wet and dry weights were greater (P less than 0.01) in the trained group. In the deep region of the rectus femoris, type I fiber area was similar between groups, but the trained rats had both a lower (P less than 0.05) percentage of type I fibers and a smaller (P less than 0.05) portion of the total area occupied by type I fibers. The percentage of type IIb fibers in the deep region of the rectus femoris was also similar between groups, but the portion of the deep area composed of type IIb fibers was greater (P less than 0.05) in the trained rats. In the superficial region of the rectus femoris, the trained rats' type IIb fibers were larger (P less than 0.01) and occupied a greater (P less than 0.05) portion of the superficial muscle area.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
We used the histochemical stain for ATPase to compare the fiber-type composition of rat internal and external intercostal muscles from thoracic (T) segments 2-5, 8, and 11. At each level, type II fibers were more numerous than type I fibers, type II B fibers were more numerous than II A fibers, and type I fibers were more numerous in external than in internal intercostals. However, fiber type composition varied from segment to segment. For example, the proportion of type II A fibers increased in a rostrocaudal gradient in internal but not external intercostals, and type I fibers were more prevalent at rostral and caudal than at intermediate levels in both internal and external intercostals. These results provide a basis for interpreting previous physiological and molecular studies which have compared intercostal muscles from different segmental levels.  相似文献   

16.
17.
18.
Muscle fiber composition of m. vastus lateralis has significant individual variability mainly depending on genetic factors. Present study shows analysis of association between polymorphisms of three muscle performance-related genes and muscle fiber type composition in 48 young healthy men. DNA was obtained from mouthwash samples by alkaline extraction. Polymorphism determination of PPARalpha, ACE and ACTN3 genes was performed using polymerase chain raction. Muscle fiber typing from m. vastus lateralis was performed using immunohistochemistry method. We found an association of increased frequency of intron 7 G allele of PPARalpha gene (93.9% vs 60.0%) and D allele of ACE gene (68.8% vs 34.4%) in the group with the highest proportion of slow-twitch fibers (56-70%) compared to the group with the lowest proportion (25-43%). Thus, PPARalpha and ACE genes can be considered as potential candidate genes for muscle fiber type determination.  相似文献   

19.
We hypothesize that 1) the effect of denervation (DNV) is more pronounced in fibers expressing fast myosin heavy chain (MHC) isoforms and 2) the effect of DNV on maximum specific force reflects a reduction in MHC content per half sarcomere or the number of cross bridges in parallel. Studies were performed on single Triton X-100-permeabilized fibers activated at a pCa (-log Ca2+ concentration) of 4.0. MHC content per half sarcomere was determined by densitometric analysis of SDS-PAGE gels and comparison to a standard curve of known MHC concentrations. After 2 of wk DNV, the maximum specific force of fibers expressing MHC2X was reduced by approximately 40% (MHC(2B) expression was absent), whereas the maximum specific force of fibers expressing MHC2A and MHC(slow) decreased by only approximately 20%. DNV also reduced the MHC content in fibers expressing MHC2X, with no effect on fibers expressing MHC2A and MHC(slow). When normalized for MHC content per half sarcomere, force generated by DNV fibers expressing MHC2X and MHC2A was decreased compared with control fibers. These results suggest the force per cross bridge is also affected by DNV.  相似文献   

20.
Strips of isolated rat diaphragm muscle were attached to a servomotor-transducer apparatus, and the muscle length was cycled in a sinusoidal fashion about the length at which maximum isometric twitch force was developed, Lo. The amplitude of the length displacement (excursion amplitude) and rate of cycling were varied between 3 and 13% Lo and 1-4 Hz respectively. The muscle was tetanically stimulated (100 Hz, supramaximal voltage, stimulus duration (duty cycle) 20% of the length cycle period) during the shortening stage of the imposed length cycle at the phase that yielded maximum net positive work. The force and displacement of the muscle were recorded. Work per cycle was calculated from the area of the loop formed by plotting force against length for one full stretch-shorten cycle. Work per cycle decreased, but power increased, as cycle frequency was increased from 1 to 4 Hz. Maximum work done per cycle was about 12.8 J/kg at a cycle frequency of 1 Hz. Maximum mean power developed was about 27 W/kg and occurred at a cycle frequency of 4 Hz. Work and power were maximum at an excursion amplitude of 13% of Lo (i.e., Lo +/- 6.5%). Measured work and power output are considerably less than values estimated from length-tension and force-velocity curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号