共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
Gubernator B Bartoszewski R Kroliczewski J Wildner G Szczepaniak A 《Photosynthesis research》2008,95(1):101-109
Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) can be divided into two branches: the “red-like type” of marine
algae and the “green-like type” of cyanobacteria, green algae, and higher plants. We found that the “green-like type” rubisco
from the thermophilic cyanobacterium Thermosynechococcus elongatus has an almost 2-fold higher specificity factor compared with rubiscos of mesophilic cyanobacteria, reaching the values of
higher plants, and simultaneously revealing an improvement in enzyme thermostability. The difference in the activation energies
at the transition stages between the oxygenase and carboxylase reactions for Thermosynechococcus elongatus rubisco is very close to that of Galdieria partita and significantly higher than that of spinach. This is the first characterization of a “green-like type” rubisco from thermophilic
organism. 相似文献
3.
Sulpice R Tschoep H VON Korff M Büssis D Usadel B Höhne M Witucka-Wall H Altmann T Stitt M Gibon Y 《Plant, cell & environment》2007,30(9):1163-1175
D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the first step in photosynthetic carbon assimilation and represents the largest sink for nitrogen in plants. Improvement of its kinetic properties or the efficiency with which it is used in planta would benefit photosynthesis, nitrogen and water use efficiency, and yield. This paper presents a new non-radioactive microplate-based assay, which determines the product [3-phosphoglycerate (3-PGA)] in an enzymic cycle between glycerol-3-phosphate dehydrogenase and glycerol-3-phosphate oxidase. High sensitivity permits use of highly diluted extracts, and a short reaction time to avoid problems due to fall-off. Throughput was several hundreds of samples per person per day. Sensitivity and convenience compared favourably with radioisotopic assays, which were previously used to assay Rubisco. Its use is illustrated in three applications. (1) Maximal and initial activities and the K(m) for ribulose-1,5-bisphosphate were determined in raw extracts of leaves from several species. Similar values were obtained from those in the literature. (2) Diurnal changes were compared in rosettes of wild-type (WT) Arabidopsis and the starchless pgm mutant. Despite these dramatic differences in carbon metabolism, Rubisco activity and activation were similar in both genotypes. (3) A preliminary association mapping study was performed with 118 Arabidopsis accessions, using 183 markers that probably cover approximately 3-8% of the total genome. At a P-value < 0.005, two, two and no quantitative trait loci (QTL) were found for Rubisco maximal activity, initial activity and activation state, respectively. Inspection of the genomic regions that span these markers revealed these QTL involved genes not previously implicated in the regulation of Rubisco expression or activity. 相似文献
4.
HEMANTH P. K. SUDHANI MARíA‐JESúS GARCíA‐MURRIA JOAQUíN MORENO 《Plant, cell & environment》2013,36(6):1160-1170
The activity of the photosynthetic carbon‐fixing enzyme, ribulose 1,5‐bisphosphate carboxylase/oxygenase (Rubisco), is partially inhibited by arsenite in the millimolar concentration range. However, micromolar arsenite can fully inhibit Rubisco in the presence of a potentiating monothiol such as cysteine, cysteamine, 2‐mercaptoethanol or N‐acetylcysteine, but not glutathione. Arsenite reacts specifically with the vicinal Cys172‐Cys192 from the large subunit of Rubisco and with the monothiol to establish a ternary complex, which is suggested to be a trithioarsenical. The stability of the complex is strongly dependent on the nature of the monothiol. Enzyme activity is fully recovered through the disassembly of the complex after eliminating arsenite and/or the thiol from the medium. The synergic combination of arsenite and a monothiol acts also in vivo stopping carbon dioxide fixation in illuminated cultures of Chlamydomonas reinhardtii. Again, this effect may be reverted by washing the cells. However, in vivo inhibition does not result from the blocking of Rubisco since mutant strains carrying Rubiscos with Cys172 and/or Cys192 substitutions (which are insensitive to arsenite in vitro) are also arrested. This suggests the existence of a specific sensor controlling carbon fixation that is even more sensitive than Rubisco to the arsenite–thiol synergism. 相似文献
5.
Abstract Coefficients describing the sensitivity of the rate of photosynthetic carbon dioxide fixation to small changes in the stomatal conductance and boundary layer conductance are derived. These sensitivity or ‘control’ coefficients, together with those for the carboxylase and oxygenase activities of ribulose 1,5-bisphosphate carboxylase/oxygenase, are calculated from standard gas exchange data and apply under conditions where leaf temperature and water vapour concentration at the leaf surface remain largely constant. It is shown that the magnitude of the control coefficients depends on conditions such as photon flux density, ambient CO2 concentration and relative humidity at the leaf surface. The extension of this analysis to encompass the sensitivity of the photosynthetic fluxes to changes in enzyme concentrations and kinetic properties is also discussed. 相似文献
6.
Zhu Genhai Bohnert Hans J. Jensen Richard G. Wildner Günter F. 《Photosynthesis research》1998,55(1):67-74
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (EC 4.1.1.39) not only catalyzes carboxylation and oxygenation of ribulose-1,5-bisphosphate (RuBP), but it can also act either as an epimerase or isomerase converting RuBP into xylulose-1,5-bisphosphate (XuBP) or 3-ketoarabinitol-1,5-bisphosphate (KABP), respectively, a process called misfire. XuBP is formed as a result of misprotonation at C3 of the RuBP-enediol. It is released from Rubisco active sites and accumulates in the reaction mixture. Increasing the amounts of CO2 or O2 decreases XuBP production. However, KABP synthesis, which has been proposed to be only a product due to C2 misprotonation of the RuBP-endiol, is dependent upon the presence of O2. KABP remains tightly bound to Rubisco active sites after its formation, causing the loss of Rubisco activity (fallover). The results suggest that the non-stabilized form of the peroxy-intermediate in the oxygenase reaction can be converted in a backreaction to KABP and molecular oxygen. The stabilization of the peroxy-intermediate due to the presence of Mn2+ instead of Mg2+ eliminates the formation of KABP. 相似文献
7.
Rowan F. Sage 《Photosynthesis research》1993,35(3):219-226
Modulation of the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in low light and darkness was measured in A) 25 genotypes from the four cultivated species of Phaseolus (P. vulgaris, P. acutifolius, P. lunatus and P. coccineus), B) 8 non-cultivated Phaseolus species, and C) the related species Macroptileum atropurpureum. The activity ratio of Rubisco (the ratio of initial and total Rubisco activities, which reflects Rubisco carbamylation), and the molar activity of fully-activated Rubisco (which primarily reflects the inhibition of Rubisco activity by carboxyarabinitol 1-phosphate, CA1P) were assayed in leaves from the cultivated species sampled at midday in full sunlight, in low light at dusk (60 to 100 mol photons m-2s-1), and after at least 4 h in darkness. Dark inhibition of Rubisco molar activity was compared in both cultivated and non-cultivated species. In all cultivated genotypes, a significant reduction of the activity ratio of Rubisco was measured in leaves sampled at low light; however, the molar activity of fully activated Rubisco was not greatly reduced in these low light samples. In darkened leaves, molar activities substantially declined in most Phaseolus species with 11 of 13 exhibiting greater than 60% reduction. In P. vulgaris, the reduction of molar activity was extensive (greater than 69%) in all genotypes studied, which included wild progenitors as well as ancient and advanced cultivars. These results indicate that at low light late in the day, modulation of Rubisco activity is primarily through changes in carbamylation state, with CA1P playing a more limited role. By contrast in the dark, binding of CA1P dominates the modulation of Rubisco activity in Phaseolus in a pattern that appears to be conserved within a species, but can vary significantly between species within a genus. The degree of CA1P inhibition in Phaseolus was associated with phylogenetic affinities within the genus, as the species with extensive dark-inhibition of Rubisco activity tended to be more closely related to each other than to species with reduced inhibition of Rubisco activity.Abbreviations CA1P
carboxyarabinitol 1-phosphate
- CABP
carboxyarabinitol bisphosphate
- PFD
photon flux density between 400 and 700 nm
- Rubisco
ribulose-1,5-bisphosphate carboxylase/oxygenase 相似文献
8.
Liu C Hong FS Wu K Ma HB Zhang XG Hong CJ Wu C Gao FQ Yang F Zheng L Wang XF Liu T Xie YN Xu JH Li ZR 《Biochemical and biophysical research communications》2006,342(1):36-43
Neodymium (Nd), as a member of rare earth elements, proved to enhance the photosynthesis rate and organic substance accumulation of spinach through the increase in carboxylation activity of Rubisco. Although the oxygenase activity of spinach Rubisco was slightly changed with the Nd(3+) treatment, the specific factor of Rubisco was greatly increased. It was partially due to the promotion of Rubisco activase (R-A) activity but mainly to the formation of Rubisco-Rubisco activase super-complex, a heavier molecular mass protein (about 1200kD) comprising both Rubisco and Rubisco activase. This super-complex was found during the extraction procedure of Rubisco by the gel electrophoresis and Western-blot studies. The formation of Rubisco-R-A super-complex suggested that the secondary structure of the protein purified from the Nd(3+)-treated spinach was different from that of the control. Extended X-ray absorption fine structure study of the 'Rubisco' purified from the Nd(3+)-treated spinach revealed that Nd was bound with four oxygen atoms and two sulfur atoms of amino acid residues at the Nd-O and Nd-S bond lengths of 2.46 and 2.89A, respectively. 相似文献
9.
Structural framework for catalysis and regulation in ribulose-1,5-bisphosphate carboxylase/oxygenase
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the enzyme assimilating CO2 in biology. Despite serious efforts, using many different methods, a detailed understanding of activity and regulation in Rubisco still eludes us. New results in X-ray crystallography may provide a structural framework on which to base experimental approaches for more detailed analyses of the function of Rubisco at the molecular level. This article gives a critical review of the field and summarizes recent results from structural studies of Rubisco. 相似文献
10.
Harano K Ishida H Kittaka R Kojima K Inoue N Tsukamoto M Satoh R Himeno M Iwaki T Wadano A 《Photosynthesis research》2003,78(1):59-65
When cyanobacterium cells are grown under extremely low CO2 concentration, the number of carboxysomes, structures containing ribulose-bisphosphate carboxylase (Rubisco; EC 4.1.1.39),
is known to increase. This suggests that Rubisco helps to regulate photosynthesis in cyanobacteria. However, no studies have
been done on the changes of Rubisco content and activity in response to the extracellular CO2 concentration, and no information is available on its effect on photosynthesis. To elucidate the relationship between the
expression responses of Rubisco and extracellular CO2, wild-type cells (Synechococcus PCC7942) and carboxysome-lacking cells were grown under various CO2 concentrations, and Rubisco activity was determined. In both strains, Rubisco activity increased when the cells were grown
under a CO2 concentration around, or less than, K
1/2(CO2) of photosynthesis. In carboxysome-lacking cells, Rubisco activity increased five to six times at most, and a simultaneous
increase in the rate of photosynthesis was observed. These results suggest that stimulation of expression of Rubisco occurs
to compensate for the decrease in the rate of photosynthesis under CO2-limited conditions.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
11.
Quaternary structure and oxygenase activity of D-ribulose-1,5-bisphosphate carboxylase from Hydrogenomonas eutropha. 总被引:1,自引:0,他引:1 下载免费PDF全文
Electrophoretically homogeneous ribulose-1,5-bisphosphate (RuBP) carboxylase was obtained from autotropically grown Hydrogenomonas eutropha by sedimentation of the 105,000 X g supernatant in a discontinuous sucrose gradient and by ammonium sulfate fractionation followed by another sucrose gradient centrifugation. The molecular weight of the enzyme determined by light scattering was 490,000 +/- 15,000. The enzyme could be dissociated by sodium dodecyl sulfate into three types of subunits, and the molecular weights (+/- 10%) could be measured. There were two species of large subunits, L and L' (molecular weight 56,000 and 52,000, respectively) and one species of small subunits (molecular weight, 15,000). The mole ratio of L to L' was 5:3, and the overall mole ratio of the small to large subunits was 1.08. The simplest quaternary structure of the enzyme is L5L'3S8. The enzyme contained RuBP oxygenase activity as evidenced by the O2-dependent production of phosphoglycolate and 3-phosphoglyceric acid in equimolar quantities from RuBP. 相似文献
12.
13.
14.
It has been generally proved impossible to reassemble ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from fully denatured subunits in vitro in higher plant,because large subunit of fullydenatured Rubisco is liable to precipitate when the denaturant is removed by common methods of directdilution and one-step dialysis.In our experiment,the problem of precipitation was resolved by an improvedgradual dialysis method,which gradually decreased the concentration of denaturant.However,fully denaturedRubisco subunits still could not be reassembled into holoenzyme using gradual dialysis unless chaperonin 60was added.The restored activity of reassembled Rubisco was approximately 8% of natural enzyme.Thequantity of reassembled Rubisco increased greatly when heat shock protein 70 was present in the reassemblyprocess.ATP and Mg~(2 ) were unnecessary for in vitro reassembly of Rubisco,and Mg~(2 ) inhibited the reassemblyprocess.The reassembly was weakened when ATP,Mg~(2 ) and K~ existed together in the reassembly process. 相似文献
15.
McNevin DB Badger MR Whitney SM von Caemmerer S Tcherkez GG Farquhar GD 《The Journal of biological chemistry》2007,282(49):36068-36076
The carboxylation kinetic (stable carbon) isotope effect was measured for purified d-ribulose-1,5-bisphosphate carboxylases/oxygenases (Rubiscos) with aqueous CO(2) as substrate by monitoring Rayleigh fractionation using membrane inlet mass spectrometry. This resulted in discriminations (Delta) of 27.4 +/- 0.9 per thousand for wild-type tobacco Rubisco, 22.2 +/- 2.1 per thousand for Rhodospirillum rubrum Rubisco, and 11.2 +/- 1.6 per thousand for a large subunit mutant of tobacco Rubisco in which Leu(335) is mutated to valine (L335V). These Delta values are consistent with the photosynthetic discrimination determined for wild-type tobacco and transplastomic tobacco lines that exclusively produce R. rubrum or L335V Rubisco. The Delta values are indicative of the potential evolutionary variability of Delta values for a range of Rubiscos from different species: Form I Rubisco from higher plants; prokaryotic Rubiscos, including Form II; and the L335V mutant. We explore the implications of these Delta values for the Rubisco catalytic mechanism and suggest that Rubiscos that are associated with a lower Delta value have a less product-like carboxylation transition state and/or allow a decarboxylation step that evolution has excluded in higher plants. 相似文献
16.
Multiple catalytic roles of His 287 of Rhodospirillum rubrum ribulose 1,5-bisphosphate carboxylase/oxygenase. 下载免费PDF全文
M. R. Harpel F. W. Larimer F. C. Hartman 《Protein science : a publication of the Protein Society》1998,7(3):730-738
Active-site His 287 of Rhodospirillum rubrum ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase interacts with the C3-hydroxyl of bound substrate or reaction-intermediate analogue (CABP), water molecules, and ligands for the activator metal-ion (Andersson I, 1996, J Mol Biol 259:160-174; Taylor TC, Andersson I, 1997, J Mol Biol 265:432-444). To test structure-based postulates of catalytic functionality, His 287 was replaced with Asn or Gln. The mutants are not affected adversely in subunit assembly, activation (binding of Mg2+ and carbamylation of Lys 191), or recognition of phosphorylated ligands; they bind CABP with even greater tenacity than does wild-type enzyme. H287N and H287Q are severely impaired in catalyzing overall carboxylation (approximately 10(3)-fold and > 10(5)-fold, respectively) and enolization (each mutant below threshold for detection) of RuBP. H287N preferentially catalyzes decarboxylation of carboxylated reaction intermediate instead of forward processing to phosphoglycerate. Analysis of RuBP turnover that occurs at high concentrations of mutants over extended time periods reveal > 10-fold reduced CO2/O2 specificities, elevated misprotonation of the enediol intermediate, and misprocessing of the oxygenated intermediate of the oxygenase pathway. These results are consistent with multifaceted roles for His 287 in promoting enediol formation, enediol tautomerization, and forward-processing of carboxylated intermediate. 相似文献
17.
CO2是导致温室效应的主要气体,固定和转化CO2的研究对于温室效应的减缓和环境保护方面具有重要意义。近年来CO2转化的研究取得了迅猛发展,其中生物法固定CO2由于其反应条件温和且绿色无污染的优点而备受关注。本文对转化CO2有关的乳酸脱氢酶(LDH)、苹果酸脱氢酶(MDH)和草酰乙酸脱羧酶(OAADC)进行了初步的固定化分析。首先以碳纳米管、壳聚糖和海藻酸钠为原料,制备了包埋上述CO2转化酶的微胶囊固定化体系,然后分别比较了游离酶和固定化酶的操作稳定性和储存稳定性。研究结果表明,固定化的CO2转化酶的操作稳定性和储存稳定得到明显的提高。本研究对CO2的转化和应用方面具有重要参考价值。 相似文献
18.
Dissociation of ribulose-1,5-bisphosphate bound to ribulose-1,5-bisphosphate carboxylase/oxygenase and its enhancement by ribulose-1,5-bisphosphate carboxylase/oxygenase activase-mediated hydrolysis of ATP 总被引:3,自引:2,他引:3 下载免费PDF全文
Ribulose bisphosphate (RuBP), a substrate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is an inhibitor of Rubisco activation by carbamylation if bound to the inactive, noncarbamylated form of the enzyme. The effect of Rubisco activase on the dissociation kinetics of RuBP bound to this form of the enzyme was examined and characterized with the use of 3H-labeled RuBP and proteins purified from spinach (Spinacia oleracea L.) In the absence of Rubisco activase and in the presence of a large excess of unlabeled RuBP, the dissociation rate of bound [1-3H]RuBP was much faster after a short (30 second) incubation than after an extended incubation (1 hour). After 1 hour of incubation, the dissociation rate constant (Koff) of the bound RuBP was 4.8 × 10−4 per second, equal to a half-time of about 35 minutes, whereas the rate after only 30 seconds was too fast to be accurately measured. This time-dependent change in the dissociation rate was reflected in the subsequent activation kinetics of Rubisco in the presence of RuBP, CO2, and Mg2+, and in both the absence or presence of Rubisco activase. However, the activation of Rubisco also proceeded relatively rapidly without Rubisco activase if the RuBP level decreased below the estimated catalytic site concentration. High pH (pH 8.5) and the presence of Mg2+ in the medium also enhanced the dissociation of the bound RuBP from Rubisco in the presence of RuBP. In the presence of Rubisco activase, Mg2+, ATP (but not the nonhydrolyzable analog, adenosine-5′-O-[3-thiotriphosphate]), excess RuBP, and an ATP-regenerating system, the dissociation of [1-3H]RuBP from Rubisco was increased in proportion to the amount of Rubisco activase added. This result indicates that Rubisco activase-mediated hydrolysis of ATP is required for promotion of the enhanced dissociation of the bound RuBP from Rubisco. Furthermore, product analysis by ion-exchange chromatography demonstrated that the release of the bound RuBP, in an unchanged form, was considerably faster than the observed increase in Rubisco activity. Thus, RuBP dissociation was experimentally separated from activation and precedes the subsequent formation of active, carbamylated Rubisco during activation of Rubisco by Rubisco activase. 相似文献
19.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a key enzyme in photosynthesis and photorespiration. The inactivation and subsequent conformational changes and dissociation of rice Rubisco by SDS have been studied. At low SDS concentrations (0.4 mM), Rubisco completely lost its carboxylase activity and most of its sulfhydryl groups became exposed. Dissociation of small subunits and significant conformational changes occurred at higher SDS concentrations. Increasing SDS concentrations caused only slight changes in CD spectrum, indicating no significant effect of SDS on the secondary structure of the enzyme. The results prove that the active site of Rubisco is more fragile to denaturants than the protein as a whole. The results also suggest that small subunits are more liable to SDS denaturation and thus dissociate first, while the more hydrophobic large subunits remain complexed. The naturally existing hydrophobic surface of Rubisco may be an important factor in the interaction of Rubisco with other macromolecules. 相似文献
20.
Ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein prevents the in vitro decline in activity of ribulose-1,5-bisphosphate carboxylase/oxygenase 下载免费PDF全文
The rate of CO2 fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) following addition of ribulose 1,5-bisphosphate (RuBP) to fully activated enzyme, declined with first-order kinetics, resulting in 50% loss of rubisco activity after 10 to 12 minutes. This in vitro decline in rubisco activity, termed fall-over, was prevented if purified rubisco activase protein and ATP were added, allowing linear rates of CO2 fixation for up to 20 minutes. Rubisco activase could also stimulate rubisco activity if added after fallover had occurred. Gel filtration of the RuBP-rubisco complex to remove unbound RuBP allowed full activation of the enzyme, but the inhibition of activated rubisco during fallover was only partially reversed by gel filtration. Addition of alkaline phosphatase completely restored rubisco activity following fallover. The results suggest that fallover is not caused by binding of RuBP to decarbamylated enzyme, but results from binding of a phosphorylated inhibitor to the active site of rubisco. The inhibitor may be a contaminant in preparations of RuBP or may be formed on the active site but is apparently removed from the enzyme in the presence of the rubisco activase protein. 相似文献