首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Circadian morphological variations of pinealocytes in the superficial pineal of the Chinese hamster (Cricetulus griseus) were studied using quantitative electron-microscopic techniques. The volume of the nucleus and cytoplasm of pinealocytes exhibited similar circadian variations, with the maximum around the middle of the light period and the minimum during the first half of the dark period. Synaptic ribbons in pinealocytes were classified into three groups, type-1, –2 and –3 synaptic ribbons, which appeared as rods, round or irregular bodies and ring-shaped structures, respectively; a synaptic ribbon index was determined for the respective types. The synaptic ribbon index was expressed as the number of synaptic ribbons in the pinealocyte profile representing the cell size. The type-1 synaptic ribbon index, which was smallest during the second half of the light period, was increased during the dark period. The length of straight or slightly curved rods showed a 24-h change similar to that of the type-1 synaptic ribbon index; the length of the rods was maximal during the first half of the dark period and minimal at the end of the light period. There was no apparent circadian variation in the type-2 synaptic ribbon index. The type-3 synaptic ribbon index was higher during the light period than during the dark period; the index attained zero 3h after the onset of darkness and, thereafter, increased gradually.  相似文献   

2.
Summary The effects of melatonin on synaptic ribbons (SR) in pinealocytes of the Chinese hamster (Cricetulus griseus) were examined. SR were classified into types 1, 2 and 3, which appear as rods, round or irregular bodies and ring-shaped structures, respectively; a synaptic ribbon index (SR index) was determined for the three types. Administration of two doses of 1.5 mg/kg melatonin at noon and 3 p.m. causes an increase in the type-1 and type-2 SR indices 3 h after the second injection in hamsters kept under alternating light and dark conditions (lights on from 7 a.m. to 7 p.m.). Likewise, in animals that are exposed to extended light for 6 h and receive two doses of melatonin at 7 p.m. and 10 p.m., an increase in the type-1 and type-2 SR indices occurs 3 h after the second injection. The increase in the type-2 SR index induced by melatonin administration to hamsters exposed to extended light is greater than the increase in the type-1 SR index under the same experimental conditions. Type-2 SR index, but not type-1 SR index, increases following bilateral superior cervical ganglionectomy. An increase in type-1 and type-2 SR indices occurs at 6 p.m. in ganglionectomized animals administered two doses of melatonin 6 h (noon) and 3 h (3 p.m.) before the time of sacrifice. No significant change is observed in type-3 SR index in animals subjected to any of the above treatments. The results indicate that exogenous melatonin may act directly on pinealocytes of the Chinese hamster to cause an increase in size and/or number of the type-1 and type-2 SR. Type 3-SR may have a role different from that of type-1 and type-2 SR; type-1 and type-2 SR may be functionally related.  相似文献   

3.
Summary Synaptic ribbons (SR) in pinealocytes of adult (120–130 day-old) male Chinese hamsters (Cricetulus griseus) were classified into types 1, 2 and 3; these have a central dense structure showing rod-like, various and ringlike profiles, respectively. The central structure of the type-2 SR usually appeared as round, oval or comma-like bodies, and occasionally as plates showing various profiles or clubshaped bodies. The quantity of each type of SR, expressed as the SR index, was determined over a 24-h period under a light/dark regime (LD) 1212 or LD 1410. On comparing the results obtained from adults with previously published data from young (60–70-days-old) animals under LD 1212, it was found that, in both young and adult animals, the type-1 and type-3 SR indices exhibited different 24-h variations, whereas the type-2 SR index remained constant over a 24-h period. In addition, the indices of the type-2 SR, but not those of the other SR types, were found to be significantly larger in adult than in young animals. In adult animals, the effects of the photoperiod were different between the three types of SR. A nocturnal increase in the type-1 SR index was observed under both LD 1212 and LD 1410, its time course being different for each of these photoperiods. Under LD 1410, the type-2 SR index showed a significant 24-h rhythm with larger values during the dark period; this was not observed under LD 1212. The type-3 SR index was almost the same under LD 1212 and LD 1410. The results suggest that pinealocyte SR of the Chinese hamster may be composed of three types of SR, each with a different functional role.  相似文献   

4.
Summary Effects of a short-term exposure to continuous darkness on 24-h morphological variations in pinealocytes in the superficial pineal of the Chinese hamster (Cricetulus griseus) were examined. Pinealocytes contained type-1, -2 and -3 synaptic ribbons (SR), which had a central dense structure showing rod-like, various and ring-like profiles, respectively, and the quantity of each type of SR was expressed by SR index. 24-h changes in the type-1 and type-3 SR indices persisted in darkness and thus may be endogenous in nature. As under alternating light and dark (LD) conditions, the type-2 SR indices were almost constant over a 24-h period under continuous darkness, but the indices were larger in animals under darkness than in those under LD conditions. The 24-h variations in the nuclear and cytoplasmic volumes were abolished after exposing animals to darkness for 7 days, suggesting that these rhythms may be regulated exogenously. The amount of condensed chromatin exhibited a circadian change; this rhythm persisted under darkness. The results suggest that 24-h variations in the nuclear and cytoplasmic volumes in pinealocytes of the Chinese hamster are regulated by mechanisms different from those controlling the rhythms in SR and chromatin, and that the changes in the nuclear and cytoplasmic volumes and chromatin are related to the change in synthetic activity of pinealocytes.  相似文献   

5.
Summary Neurons projecting from the brain to the pineal gland via the pineal stalk were investigated in the golden hamster with the use of the retrograde horseradish-peroxidase tracing method both in vivo and in vitro. Labelled perikarya were observed in the medial and lateral habenular nuclei as well as in the posterior commissure. Single cells located in the ependymal lining of the pineal- and suprapineal recesses were also retrogradely labelled. These results show that a distinct central innervation of the pineal gland exists in the golden hamster, in agreement with findings in other mammalian species investigated by means of a similar methodology. In addition, also direct signals from the cerebrospinal fluid to the parenchyma might be conducted via cells located within the ependymal layer of the pineal- and suprapineal recesses.This study was supported by grants from the Deutscher Akademischer Austauschdienst to M.M. (312/dk-4-is), the Deutsche Forschungsgemeinschaft to H.W.K. (Ko 758/2-2, 2-3), and the Carlsberg Foundation  相似文献   

6.
Summary In the present study the central innervation of the guinea-pig pineal gland was investigated. The habenulae and the pineal stalk contain myelinated and non-myelinated nerve fibres with few dense-cored and electron-lucent vesicles. Some myelinated fibres leave the main nerve fibre bundles, lose their myelin-sheaths and terminate in the pineal gland. Although direct proof is lacking, the non-myelinated fibres appear to end near the site where the bulk of the myelinated fibres are located. Here a neuropil area exists where synapses between non-myelinated fibre elements are abundant. Neurosecretory fibres were also seen. The results support the concept of functional interrelationships between hypothalamus, epithalamus and the pineal gland.  相似文献   

7.
By use of antibodies raised against leu-enkephalin and met-enkephalin immunoreactive, opioidergic bi- and multipolar cells were demonstrated in the pineal gland of the European hamster. Ultrastructural analysis of these opioidergic cells revealed them to be pinealocytes. Processes emerged from the cell bodies and terminated in club-shaped swellings containing many small clear and some larger granular vesicles. Some of the terminals made synapse-like contacts with non-immunoreactive pinealocytes. The presence of the opioidergic pinealocytes strongly indicates that the pineal gland of the European hamster, in addition to its pinealopetal nervous regulation, is regulated by intrapineal peptidergic pinealocytes via a synaptic mechanism. A possible paracrine role of the opioidergic cells must also be considered.  相似文献   

8.
Summary Light- and electron-microscopic observations on the pineal gland of Phodopus sungorus revealed intracytoplasmic inclusions resembling nucleolus-like bodies similar to those found in other regions of the central nervous system. Bernhard's EDTA method was used to confirm that these inclusions were nucleolus-like bodies. These structures were rarely found in pinealocytes of sexually active longday animals, whereas large numbers of them were observed in pinealocytes of sexually quiescent short-day animals. Nucleolus-like bodies may therefore be involved in pineal secretion.  相似文献   

9.
Summary Synaptic ribbons, functionally enigmatic structures of mammalian pinealocytes, were studied during the postnatal development of the pineal gland in the golden hamster (Mesocricetus auratus). On day 4 post partum, synaptic ribbons appear in cells that have already started to differentiate into pinealocytes. Between days 4 and 9, an increase in the number of synaptic ribbons occurs, concomitant with the continuing differentiation of the pineal tissue. Between days 9 and 16, when differentiation of this tissue is almost completed, the number of synaptic ribbons decreases and approaches that characteristic of the adult pineal gland. During development, the synaptic ribbons increase in length, and dense core vesicles are frequently found in the vicinity of these structures. It is assumed that a functional relationship exists between dense core vesicles and the synaptic ribbons, which are considered to be engaged in a certain form of secretory activity of the mammalian pineal gland.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

10.
Summary Electron microscopy was employed in a study of the pineal gland of the Mongolian gerbil (Meriones unguiculatus). It was determined that the gerbil pineal gland contains pinealocytes and glial cells with the pinealocytes being the predominant cell type. The pinealocytes contain numerous organelles traditionally considered as being either synthetic or secretory in function such as an extensive Golgi region, smooth (SER) and rough (RER) endoplasmic reticulum, secretory vesicles and microtubules. Other cytoplasmic components are also present in the pinealocytes (synaptic ribbons, subsurface cisternae) for which no function has been assigned. Dense-cored vesicles are rare. Vacuolated pinealocytes are present and appear to be intimately associated with the formation of the pineal concertions. Evidence presented supports the proposal that the concretions form within the vacuoles. Once the concretions reach an enlarged state, the vacuolated pinealocytes break down and the concretions are thus extruded into the extracellular space where they apparently continue to increase in size. The morphology of the glial cells was interpreted as indicative of a high synthetic activity. The glial cells contain predominantly the rough variety of endoplasmic reticulum and form an expansion around the wide perivascular area.Supported by NSF grant PCM 77-05734  相似文献   

11.
Summary By means of morphometric analytical procedures, a diurnal rhythm in the cellular volume of gerbil pinealocytes was determined. This rhythm has been attributed primarily to a change in the cytoplasmic volume of the pinealocytes which is low during the daylight hours and increases to reach a peak during the middle of the dark period. At the ultrastructural level, six cytoplasmic components of the pinealocytes were found to exhibit a rhythm: free cytoplasm, smooth endoplasmic reticulum (SER), rough endoplasmic reticulum (RER) and ribosomes, secretory vesicles, microtubules, and mitochondria. The presumptive secretory vesicles and the microtubules reached a peak in volume one hour before lights-off. It is suggested that lights-on and lights-off both signal a decrease in size and/or number of the secretory vesicles. The SER and RER/ribosomes reached their peak volume one hour after lights-off which is interpreted as indicating a peak in indoleamine synthesis and protein synthesis, respectively. The volume of free cytoplasm exhibits two peaks; one occurs one hour before lights-off while the second peak occurs in the middle of the dark phase. It is suggested that, although part of the secretory product of the pinealocyte may be present in dense-cored vesicles, other locations could include the free cytoplasm and clear secretory vesicles.Supported by NSF grant #PCM 77-05734  相似文献   

12.
Male adult (200-day-old) Chinese hamsters (Cricetulus griseus) raised from weaning under either LD 16:8 or LD 8:16 were used. The pineal gland of the Chinese hamster consists of superficial (major) and deep (minor) components and a continuous, or interrupted, narrow parenchymal stalk interposed between them. The volume of the superficial pineal including the parenchymal stalk is greater under LD 16:8 than under LD 8:16. Under both photoperiods, pinealocytes in the superficial pineal have larger nuclei and more abundant cytoplasm than those in the deep pineal. Nuclei in the superficial pineal appear pale and usually have irregular profiles, whereas those in the deep pineal appear dark and have round profiles. In the superficial pineal, pinealocyte nuclei are larger, paler, and more irregular; and, in addition, nuclear density is lower under LD 16:8 than under LD 8:16. Similar, but less prominent, photoperiod-induced changes occur in the volume of the deep pineal, the size of pinealocytes, and pinealocyte nuclear morphology in the deep pineal. The results indicate that the development and differentiation of pinealocytes in both pineal portions may be advanced under long photoperiods and delayed under short photoperiods, although pinealocytes in the deep pineal may remain not fully differentiated even in adults. Since testicular weights and body weights are similar under both photoperiods, the photoperiod may exert marked influences on the development of the pineal gland without affecting reproductive activity and growth rates of animals.  相似文献   

13.
Summary A light microscopic investigation of the rabbit pineal gland with the aid of silver-stained sections gave the following results. In the gland a medulla and a cortex can be distinguished, the medulla containing so-called light and dark pinealocytes, the cortex only light ones. Autonomic nerve fibres reach the pineal organ by two routes: (1) via the perivascular spaces of pineal blood vessels and (2) via two distinct nerve bundles, the nervi conarii. Bilateral superior cervical ganglionectomy revealed that these pinealo-petal nerve fibres are mainly orthosympathetic postganglionic. Intramural pineal neurones with synaptic-like structures on their cell bodies and dendrites point to the presence of a parasympathetic innervation next to the orthosympathetic one. Direct afferent or efferent neural connections with the brain appeared to be absent. Acknowledgements. The author wishes to thank Professor Dr. J. Ariëns Kappers for encouragement and help, Mr. H. K. Koerten for his technical assistance and Miss A. M. Feddema for typing the manuscipt.  相似文献   

14.
Summary Synaptic ribbons in the pineal organ of the goldfish were examined electron microscopically with particular attention to their topography. These structures were formed of parallel membranes, which were poorly preserved with OsO4 fixation and could be extracted from thin sections with pronase indicating their proteinaceous nature. Synaptic ribbons were closely apposed to the plasma membrane bordering dendrites of ganglion cells, but were also related to processes of both photoreceptor and supportive cells. Their close proximity to invaginations of the plasma membrane and portions of the endoplasmic reticulum suggest that they are involved in the turnover of cytoplasmic membranes. Tubular and spherical organelles of unknown function are also described.  相似文献   

15.
Summary Serotonin-like immunoreactivity was investigated in the pineal complex of the golden hamster by use of the indirect immunohistochemical technique. The superficial and deep portions of the pineal gland, and also the pineal stalk exhibited an intense cellular immunoreaction for serotonin. In addition, perivascular serotonin-immunoreactive nerve fibers were observed. Some serotonin-immunoreactive processes of the pinealocytes terminated on the surface of the ventricular lumen in the pineal and suprapineal recesses, indicating a receptive or secretory function of these cells. Several serotonin-immunoreactive processes connected the deep pineal with the habenular area. One week after bilateral removal of both superior cervical ganglia the serotonin immunoreaction of the entire pineal complex was greatly decreased. However, some cells in the pineal complex, of which several exhibited a neuron-like morphology, remained intensively stained after ganglionectomy. This indicates that the indoleamine content of some cells in the pineal complex of the golden hamster is independent of the sympathetic innervation.Supported by a Grant from the Italian Society for Veterinary Sciences  相似文献   

16.
Summary The pinealocytes of the pig contain conspicuous dense bodies, the nature and role of which are not yet fully elucidated. The aim of this study was to demonstrate whether or not these structures are involved in the secretion process. The tannic acid-Ringer incubation (TARI)-method, which allows a clear-cut ultrastructural study of secretory discharge by exocytosis, has been used. The results indicate that pig pinealocytes release the content of the dense bodies with an amorphous inner structure into the extracellular space via exocytosis and that this secretion is quantitatively important. The secreted material is proteinaceous in nature; this indicates that polypeptides are released by the pineal.  相似文献   

17.
Summary Mammalian pinealocytes have been shown to contain synaptic-like microvesicles with putative secretory functions. As a first step to elucidate the possibility that pinealocyte microvesicles store messenger molecules, such as neuroactive amino acids, we have studied the distributional pattern of glutamate immunoreactivity in the pineal gland of the Mongolian gerbil (Meriones unguiculatus) at both light- and electron-microscopic levels. In semithin sections of plastic-embedded pineals, strong glutamate immunoreactivity could be detected in pinealocytes throughout the pineal gland. The density of glutamate immunolabeling in pinealocytes varied among individual cells and was mostly paralled by the density of immunostaining for synaptophysin, a major integral membrane protein of synaptic and synaptic-like vesicles. Postembedding immunogold staining of ultrathin pineal sections revealed that gold particles were enriched over pinealocytes. In particular, a high degree of immunoreactivity was associated with accumulations of microvesicles that filled dilated process terminals of pinealocytes. A positive correlation between the number of gold particles and the packing density of microvesicles was found in three out of four process terminals analyzed. However, the level of glutamate immunoreactivity in pinealocyte process endings was lower than in presumed glutamatergic nerve terminals of the cerebellum and posterior pituitary. The present results provide some evidence for a microvesicular compartmentation of glutamate in pinealocytes. Our findings thus lend support to the hypothesis that glutamate serves as an intrapineal signal molecule of physiological relevance to the neuroendocrine functions of the gland.  相似文献   

18.
Summary Fine structural features of pinealocytes of cotton rats (Sigmodon hispidus) were examined. Golgi complexes, mitochondria, endoplasmic reticulum and polysomes are usual organelles seen in the perikaryonal cytoplasm of pinealocytes. Many non-granulated vesicles (40 to 80 nm in diameter) and a few granulated vesicles (about 100 nm in diameter) are associated with the Golgi cisternae. Occasionally, the cisternae contain granular materials. The perikaryonal cytoplasm of pinealocytes is characterized by the presence of inclusion bodies. These bodies are usually round in shape, not bounded by a limiting membrane and composed of fine granular or filamentous materials of high electron-opacity, which are similar in appearance to the substance seen in the nucleolonema. Pinealocyte processes, filled with abundant non-granulated vesicles and some granulated vesicles, are mainly found within the parenchyma and occasionally in perivascular spaces.Supported in part by NSF grant no. PCM 77-05734 and NIH grant no. HD-10202 (Morphology Core)  相似文献   

19.
Summary A combined thin-section/freeze-fracture study was performed on the superficial pineal gland of the golden hamster, comparing the parenchymal and interstitial cells of this animal with those previously investigated in rats. In contrast to rats, no gap junctions and gap/tight junction combinations could be found between pineal parenchymal cells of the hamster. Furthermore, the interstitial cells of the hamster pineal gland were found to have large flat cytoplasmic processes, which abut over large areas equipped with tight junctions. In thin sections, profiles of interstitial cell processes were seen to surround groups of pinealocytes. Interstitial cells and their sheet-like, tight junction-sealed processes thus appear to delimit lobule-like compartments of the hamster pineal gland. Because the classification of the interstitial cells is uncertain, the expression of several markers characteristic of mature and immature astrocytes and astrocyte subpopulations has been investigated by indirect immunohistology. Many of the non-neuronal elements in the pineal gland are vimentin-positive glial cells, subpopulations of which express glial fibrillary acidic protein (GFA) and C1 antigen. The astroglial character of these cells is supported by the lack of expression of markers for neuronal, meningeal and endothelial cells. M1 antigen-positive cells have not been detected.Supported by a grant from Deutsche Forschungsgemeinschaft (Scha 185/9-2)  相似文献   

20.
Summary Postnatal development of the innervation of the pineal gland in situ as well as the reinnervation of pineal grafts by tyrosine hydroxylase (TH)- and neuropeptide Y (NPY)-immunoreactive nerve fibers were examined using the avidin-biotin-peroxidase immunohistochemical technique. TH-immunoreactive nerve fibers appeared in the pineal gland on the second postnatal day (P2) in both hamsters and gerbils. NPY-immunoreactive nerve fibers first appeared in the pineal gland of gerbils on P2 and in the hamsters on P3. By the seventh postnatal day (P7), the pineal glands of both hamsters and gerbils were richly innervated by TH- and NPY-fibers that appeared as smooth fibers or fibers with sporadic varicosities. By the age of 4 weeks, the innervation of the pineal glands of hamsters and gerbils by TH-and NPY-fibers was fully developed. Abundant TH- and NPY-fibers formed a dense meshwork in the parenchyma of the superficial and deep pineals. The great majority of the fibers bore a large number of varicosities. More NPY-fibers were found in the pineal glands of gerbils than hamsters. NPY fibers were distributed evenly throughout the pineal glands of the gerbil, but they were more often located in the central region of the superficial pineal of the hamster. For the pineal grafts, superficial pineals from neonatal and 4-week-old hamsters were transplanted to different sites in the third cerebral ventricle (infundibular recess, posterior third ventricle) or beneath the renal capsule. The pineal grafts from 4-week-old donors appeared to undergo severe degeneration and eventually disappeared. The pineal grafts from neonatal hamsters, however, successfully survived and became well integrated into their new locations. Abundant TH-and NPY-fibers in the host brain were found surrounding the pineal grafts placed in the third cerebral ventricle, but were only rarely seen entering the parenchyma of the grafts. A few TH-fibers were demonstrated in the renal grafts 4 weeks after transplantation. These studies describe the postnatal development of the innervation of the pineal glands in situ by TH-and NPY-nerve fibers, and demonstrate a lack of reinnervation of cerebroventricular pineal grafts by TH and NPY fibers from adjacent host brain.Portions of the results of this paper were previously reported in abstract form at the 1990 Meeting of The American Association of Anatomists (Anat Rec 226:57A)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号