首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensor capable of detecting a specific DNA sequence was designed by bulk modification of a graphite epoxy composite electrode with streptavidin (2% w/w). Streptavidin is used to immobilise a biotinylated capture DNA probe to the surface of the electrode. Simultaneous hybridisation occurs between the biotin DNA capture probe and the target-DNA and between the target-DNA and a digoxigenin modified probe. The rapid binding kinetic of streptavidin-biotin allows a one step immobilisation/hybridisation procedure. Secondly, enzyme labelling of the DNA duplex occurs via an antigen-antibody reaction between the Dig-dsDNA and an anti-Dig-HRP. Finally, electrochemical detection is achieved through a suitable substrate (H2O2) for the enzyme-labelled duplex. Optimisation of the sensor design, the modifier content and the immobilisation and hybridisation times was attained using a simple nucleotide sequence. Regeneration of the surface is achieved with a simple polishing procedure that shows good reproducibility. The generic use of a modified streptavidin carbon-polymer biocomposite electrode capable of surface regeneration and a one step hybridisation/immobilisation procedure are the main advantages of this approach. In DNA analysis, this procedure, if combined with the polymerase chain reaction, would represent certain advantages with respect to classical techniques, which prove to be time consuming in situations where a simple and rapid detection is required. This innovative developed material may be used for the detection of any analyte that can be coupled to the biotin-streptavidin reaction, as is the case of immunoassays.  相似文献   

2.
An immobilisation procedure based on the direct coupling of thiol-derivatised oligonucleotide probes to bare gold sensor surfaces has been used for DNA sensing applications. The instrumentation used relies on surface plasmon resonance (SPR) transduction; in particular the commercially available instruments BIACORE X and SPREETA, have been employed in this study. The performances of the SPR-based DNA sensors resulting from direct coupling of thiol-derivatised DNA probes onto gold chips, have been studied in terms of the main analytical parameters, i.e. selectivity, sensitivity, reproducibility, analysis time, etc. A comparison between the thiol-derivatised immobilisation approach and a reference immobilisation method, based on the coupling of biotinylated oligonucleotide probes onto a streptavidin coated dextran sensor surface, using synthetic complementary oligonucleotides has been discussed. Finally, a denaturation method to obtain ssDNA ready for hybridisation analysis has been applied to polymerase chain reaction (PCR) amplified samples, for the detection of genetically modified organisms (GMOs).  相似文献   

3.
In this paper we report the coupling of the Polymerase Chain Reaction (PCR) with a piezoelectric biosensor to detect a point mutation in a human gene. Biotinylated 23-mer probes were immobilised on the streptavidin coated gold surface of a quartz crystal; streptavidin was covalently bound to the thiol/dextran modified gold surface. The hybridisation of the immobilised probes with a short sequence (23 mer) complementary, non-complementary and mismatched DNA was investigated: the device was able to distinguish the different synthetic oligonucleotides. Many cycles of measurements can be performed on the same crystal surface regenerating the single strand of DNA with 1 mM of HCl. The same hybridisation reaction was then performed using real samples of human DNA extracted from blood and amplified by PCR, following a standard procedure for genetic detection of the polymorphism of the apolipoprotein E (apoE) gene. The procedure was able to distinguish the sequences present in the different samples, which differ only in one base: in this way it was possible distinguish between different groups of genotypes with apoE typing. Experiments with 'blank' samples confirmed the absence of adsorption or non-specific effects on the quartz crystal treated with the reported procedure.  相似文献   

4.
The present report reviews immobilisation techniques of purified oligonucleotides on electrochemical transducers and their corresponding detection techniques. Most of the literature reviewed was published in the 1990s. The immobilisation techniques of a DNA probe to the surface of an electrochemical transducer made from carbon, gold, platinum or polypyrrole, ranged from simple adsorption to covalent bonding. Recent efforts to couple the recognition layer containing the immobilised nucleic acid recognition layer with the electrochemical signal transducer are discussed. Special attention is given to hybridisation biosensing based on electroactive indicators.  相似文献   

5.
A DNA piezoelectric sensor has been developed for the detection of genetically modified organisms (GMOs). Single stranded DNA (ssDNA) probes were immobilised on the sensor surface of a quartz crystal microbalance (QCM) device and the hybridisation between the immobilised probe and the target complementary sequence in solution was monitored. The probe sequences were internal to the sequence of the 35S promoter (P) and Nos terminator (T), which are inserted sequences in the genome of GMOs regulating the transgene expression. Two different probe immobilisation procedures were applied: (a) a thiol-dextran procedure and (b) a thiol-derivatised probe and blocking thiol procedure. The system has been optimised using synthetic oligonucleotides, which were then applied to samples of plasmidic and genomic DNA isolated from the pBI121 plasmid, certified reference materials (CRM), and real samples amplified by the polymerase chain reaction (PCR). The analytical parameters of the sensor have been investigated (sensitivity, reproducibility, lifetime etc.). The results obtained showed that both immobilisation procedures enabled sensitive and specific detection of GMOs, providing a useful tool for screening analysis in food samples.  相似文献   

6.
Sputtered silicon nitride optical waveguide surfaces were silanized and modified with a hetero-bifunctional crosslinker to facilitate thiol-reactive immobilization of contact-printed DNA probe oligonucleotides, streptavidin and murine anti-human interleukin-1 beta capture agents in microarray formats. X-ray photoelectron spectroscopy (XPS) was used to characterize each reaction sequence on the native silicon oxynitride surface. Thiol-terminated DNA probe oligonucleotides exhibited substantially higher surface printing immobilization and target hybridization efficiencies than non-thiolated DNA probe oligonucleotides: strong fluorescence signals from target DNA hybridization supported successful DNA oligonucleotide probe microarray fabrication and specific capture bioactivity. Analogously printed arrays of thiolated streptavidin and non-thiolated streptavidin did not exhibit noticeable differences in either surface immobilization or analyte capture assay signals. Non-thiolated anti-human interleukin-1 beta printed on modified silicon nitride surfaces reactive to thiol chemistry exhibited comparable performance for capturing human interleukin-1 beta analyte to commercial amine-reactive microarraying polymer surfaces in sandwich immunoassays, indicating substantial non-specific antibody-surface capture responsible for analyte capture signal.  相似文献   

7.
A new electrochemical hybridisation genosensor has been designed. This genosensor is based on a concept adapted from classical dot–blot DNA analysis, but implemented in an electrochemical biosensor configuration. The use of amperometric transduction and the enzyme label method—that increases the genosensor sensitivity—are the main features of this new approach. The analytical procedure consists of five steps: DNA target immobilisation by adsorption onto a nylon membrane, hybridisation between DNA target and biotin–DNA probe, complexation reaction between biotin-DNA probe and an enzyme (horseradish peroxidase) streptavidin conjugate; integration of the modified membrane onto an electrochemical transducer; and finally, amperometric detection using a suitable substrate for the enzyme labelled duplex. Besides the adapted dot–blot format, a competitive assay in which the target is in solution is reported as well. This procedure, based on amperometric transduction, represents certain advantages with respect to dot–blot analysis: labelled hybrid detection is far simpler, quicker and requires more ordinary or simple reactives; the response obtained is a direct analytical signal via low-cost instrumentation, a nonisotopic labelling is used, and the membranes can be reused. These characteristics are ideal in implementing the procedure developed in kit form.  相似文献   

8.
The analytical performance of an enhanced surface area electrolyte insulator semiconductor (EIS) device was investigated for DNA sensor development. The work endeavored to advance EIS performance by monitoring the effect of DNA probe layers have on the impedimetric signal during target hybridisation detection. Two universally employed covalent chemistries, direct and spacer-mediated attachment of amino modified probe molecules to amino-functionalised surfaces were investigated. Relative areal densities of immobilised probe were measured on planar and enhanced surface area substrates using epi-fluorescence microscopy. The reproducibility of the each immobilisation method was seen to have a direct effect on the reproducibility of the impedimetric signal. The sensitivity and selectivity was seen to be dependent on the type of immobilisation method. Real time, impedimetric detection of target DNA hybridisation concentrations as low as 25 and 1 nM were possible. The impact that probe concentration had on the impedimetric signal for selective and non-selective interactions was also investigated.  相似文献   

9.
A two-step method for the directed immobilization of nucleic acids at ultramicroelectrodes with micron-size dimensions is described. The approach is based on the immobilization of streptavidin at the surface of carbon or noble metal electrodes within a novel electro-deposited polymer, formed by electropolymerization of the natural compound scopoletin (7-hydroxy-6-methoxy-coumarin) at potentials between 0.4 and 0.7 V vs. Ag/AgCl. Biotin-tagged nucleic acids or proteins are immobilized on top of the modified electrodes in a second step. The new method has some advantages compared to classical electropolymerization approaches (e.g. polypyrrole, polyphenol), because the growing polymer is highly hydrophilic, resulting in efficient incorporation of streptavidin and a high biotin binding capacity of 6 pmol cm(-2). The polymer film seems to be non-conductive but shows good swelling properties in aqueous solutions. The feasibility of the method for the electro-directed biochemical modification of individual microelectrodes has been demonstrated by sequential immobilization of two different single strand oligonucleotides onto interdigitated ultramicroelectrodes. The resulting miniature DNA probe was used for single base mutation detection with two synthetic targets (fluorescence-labeled 17-mer oligomers) by evaluating the fluorescence patterns after hybridisation with the immobilised DNA probes. The new method is useful for the production of microelectrode based DNA chips and for the electro-directed immobilisation of biomolecules at microelectrode structures with high spatial resolution and yield.  相似文献   

10.
Investigation of nucleic acid interactions was performed using dual polarization interferometry, a novel approach to elucidating molecular interactions. This paper presents a preliminary study of adsorption of single stranded DNA onto functionalised silicon oxynitride, compared with covalent linkage, and avidin-biotin immobilisation. The effect of probe concentration on hybridisation efficiency was also examined. We found that increasing the electrolyte concentration resulted in a decrease of adsorbed DNA and that capture of a biotinylated duplex DNA on an adsorbed avidin layer resulted in four times fewer molecules per cm(2) than for duplex DNA covalently bound via an amine end terminal. The rate of thickness increase of a biotin probe layer on an adsorbed avidin capture layer increased 10-fold when the probe concentration was increased from 0.1 microM to 1 microM. The close grafting density of the higher concentration probe meant that the immobilised probes were unavailable for hybridisation.  相似文献   

11.
Dual polarisation interferometry is an analytical technique that allows the simultaneous determination of thickness, density and mass of a biological layer on a sensing waveguide surface in real time. We evaluated, for the first time, the ability of this technique to characterise the covalent immobilisation of single stranded probe DNA and the selective detection of target DNA hybridisation on a silanised support. Two immobilisation strategies have been evaluated: direct attachment of the probe molecule and a more complex chemistry employing a 1,2 homobifunctional crosslinker molecule. With this technique we demonstrate it was possible to determine probe orientation and measure probe coverage at different stages of the immobilisation process in real time and in a single experiment. In addition, by measuring simultaneously changes in thickness and density of the probe layer upon hybridisation of target DNA, it was possible to directly elucidate the impact that probe mobility had on hybridisation efficiency. Direct covalent attachment of an amine modified 19 mer resulted in a thickness change of 0.68 nm that was consistent with multipoint attachment of the probe molecule to the surface. Blocking with BSA formed a dense layer of protein molecules that absorbed between the probe molecules on the surface. The observed hybridisation efficiency to target DNA was approximately 35%. No further significant reorientation of the probe molecule occurred upon hybridisation. The initial thickness of the probe layer upon attachment to the crosslinker molecule was 0.5 nm. Significant reorientation of the probe molecule surface normal occurred upon hybridisation to target DNA. This indicated that the probe molecule had greater mobility to hybridise to target DNA. The observed hybridisation efficiency for target DNA was approximately 85%. The results show that a probe molecule attached to the surface via a crosslinker group is better able to hybridise to target DNA due to its greater mobility.  相似文献   

12.
An electrochemical genosensor for the detection of specific sequences of DNA has been developed using disposable screen-printed gold electrodes. Screen-printed gold electrodes were firstly modified with a mixed monolayer of a 25-mer thiol-tethered DNA probe and a spacer thiol, 6-mercapto-1-hexanol (MCH). The DNA probe sequence was internal to the sequence of the 35S promoter, which sequence is inserted in the genome of GMOs regulating the transgene expression. An enzyme-amplified detection scheme, based on the coupling of a streptavidin-alkaline phosphatase conjugate and biotinylated target sequences was then applied. The enzyme catalysed the hydrolysis of the electroinactive alpha-naphthyl phosphate to alpha-naphthol; this product is electroactive and has been detected by means of differential pulse voltammetry. The assay was, firstly, characterised using synthetic oligonucleotides. Relevant parameters, such as the probe concentration and the immobilisation time, the use of the MCH and different enzymatic conjugates, were investigated and optimised. The genosensor response was found to be linearly related to the target concentration between 0 and 25 nmol/L; the detection limit was 0.25 nmol/L. The analytical procedure was then applied for the detection of the 35S promoter sequence, which was amplified from the pBI121 plasmid by polymerase chain reaction (PCR). Hybridisation conditions (i.e., hybridisation buffer and hybridisation time) were further optimised. The selectivity of the assay was confirmed using biotinylated non-complementary amplicons and PCR blanks. The results showed that the genosensor enabled sensitive (detection limit: 1 nmol/L) and specific detection of GMO-related sequences, thus providing a useful tool for the screening analysis of bioengineered food samples.  相似文献   

13.
A new electrochemical DNA biosensor for bovine papillomavirus (BPV) detection that was based on screen-printed electrodes was comprehensively studied by electrochemical methods of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). A BPV probe was immobilised on a working electrode (gold) modified with a polymeric film of poly-L-lysine (PLL) and chitosan. The experimental design was carried out to evaluate the influence of polymers, probe concentration (BPV probe) and immobilisation time on the electrochemical reduction of methylene blue (MB). The polymer poly-L-lysine (PLL), a probe concentration of 1μM and an immobilisation time of 60min showed the best result for the BPV probe immobilisation. With the hybridisation of a complementary target sequence (BPV target), the electrochemical signal decreased compared to a BPV probe immobilised on the modified PLL-gold electrode. Viral DNA that was extracted from cattle with papillomatosis also showed a decrease in the MB electrochemical reduction, which suggested that the decreased electrochemical signal corresponded to a bovine papillomavirus infection. The hybridisation specificity experiments further indicated that the biosensor could discriminate the complementary sequence from the non-complementary sequence. Thus, the results showed that the development of analytical devices, such as a biosensor, could assist in the rapid and efficient detection of bovine papillomavirus DNA and help in the prevention and treatment of papillomatosis in cattle.  相似文献   

14.
In this paper, a simple and useful approach for DNA sensing based on surface plasmon resonance (SPR) transduction is reported. A new DNA sample pre-treatment has been optimised to allow fast and simple detection of hybridisation reaction between a target sequence in solution and a probe immobilised on the sensing surface. This pre-treatment consisted in a denaturation procedure of double stranded DNA containing the target sequence and was based on an high temperature treatment (95 degrees C, 5 min) followed by a 1 min incubation with small oligonucleotides. The oligonucleotides are designed to prevent the re-hybridising of the denatured strands, while enabling the target sequence to bind the immobilised probe. The important parameters of the procedure, i.e. incubation time, length and concentration of the oligonucleotides, have been studied in detail. The optimised DNA denaturation procedure has been successfully applied to the detection of amplified DNA with a commercially available SPR biosensor (Biacore X). DNA samples extracted from plant and human blood were tested after amplification by polymerase chain reaction (PCR).  相似文献   

15.
The use of a rigid carbon-polymer composite material as an electrochemical transducer in hybridisation genosensors is reported. Graphite-epoxy composites (GEC) have an uneven surface where DNA can be adsorbed using a simple dry-adsorption procedure. Single-stranded-DNA binds strongly to GEC in a way that prevents the strands from self-associating, while permitting hybridisation with complementary DNA. Hybridisation has been detected through biotin-streptavidin interaction using a streptavidin conjugated to horseradish peroxidase. Non-specific adsorption onto GEC is almost non-existent even when the surface has not been treated by blocking reagents. The analytical signal obtained was higher when compared with other electrochemical genosensors. Results can be achieved in 150 min, and the detection limit is in the order of fmol. Additionally, surface regeneration is possible using a simple polishing procedure, allowing for multiple use. The new genosensor based on GEC fulfils the requirements desired for these devices: ease of preparation as dry-adsorption of DNA is very simple and easily automated, robustness, sensitivity, low cost of production, ease of miniaturisation and simple use and fast response. Additionally, it can be used for field measurements and can be produced as a genosensor kit. Also, this material can be implemented for screen-printing procedures for the mass production of genosensors. The utility of the genosensor based on GEC is also illustrated with the detection of a sequence related to novel determinant of beta-lactamase resistance in Staphylococcus aureus.  相似文献   

16.
Field-effect-based capacitive electrolyte-insulator-semiconductor (EIS) sensors have been utilised for the deoxyribonucleic acid (DNA) immobilisation and hybridisation detection as well as for monitoring the layer-by-layer adsorption of polyelectrolytes (anionic poly(sodium 4-styrene sulfonate) (PSS) and cationic poly(allylamine hydrochloride) (PAH)). The EIS sensors with charged macromolecules have been systematically characterised by capacitance-voltage, constant-capacitance, impedance spectroscopy and atomic-force microscopy methods. The effect of the number and polarity of the polyelectrolyte layers on the shift of the capacitance-voltage curves has been investigated. Alternating potential shifts of about 30-90 mV have been observed after the adsorption of each polyanion and polycation layer, respectively. The DNA immobilisation and hybridisation signals were 35-55 and 24-33 mV, respectively. The possible mechanisms for the sensor responses are discussed.  相似文献   

17.
Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system''s redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring.  相似文献   

18.
应用时间分辨荧光技术进行核酸杂交分析,选用自制整合剂异硫氰酸苯基-EDTA将铕离子标记连接于链霉亲和素分子中,通过光化学反应制备生物素标记pUC118DNA探针,与固定在聚苯乙烯微滴板中的靶DNA杂交后,以铕离子Eu(3+)标记的链霉亲和素为检测物,检测靶DNA的含量,可检测到30pg的靶DNA.  相似文献   

19.
A hybridisation-based genosensor was designed on a 100 nm sputtered gold film. This material worked as an immobilisation and transduction surface. A 30-mer sequence that encodes a short lysine-rich region, unique to SARS (severe acute respiratory syndrome) virus, was chosen as target. A complementary strand (probe), labelled with a thiol group at the 3'-end, was immobilised on the film. After blocking the surface, hybridisation with the biotin-conjugated SARS strand (at the 3'-end) took place. Interaction with alkaline phosphatase-labelled streptavidin permits amplified indirect electrochemical detection. The analytical signal is constituted by an electrochemical process of indigo carmine, the soluble product of the enzymatic hydrolysis of 3-indoxyl phosphate. The use of a sensitive electrochemical technique such as square wave voltammetry allowed a detection limit of 6 pM to be obtained for this DNA sequence, lower than any other found in the bibliography. The parameters affecting the methodology were studied, with special attention being placed on selectivity. Specificity was clearly enhanced when interaction time and stringency (in the form of formamide percentage) were increased. With 1h of strand interaction and employing 50% of formamide in the hybridisation buffer, a 3-base mismatch strand was perfectly distinguished from the complementary.  相似文献   

20.
This paper describes the optimisation and the analytical performances of an enzyme-based electrochemical genosensor, developed using disposable oligonucleotide-modified screen-printed gold electrodes. The immobilisation of a thiol-tethered probe was qualitatively investigated by means of faradic impedance spectroscopy. Impedance spectra confirmed that the thiol moiety unambiguously drives the immobilisation of the oligonucleotide probe. Furthermore, both probe surface densities and hybridisation efficiencies were quantified through chronocoulometric measurements. Electrochemical transduction of the hybridisation process was also performed by means of faradic impedance spectroscopy, after coupling of a streptavidin-alkaline phosphatase conjugate and bio-catalysed precipitation of an insoluble and insulating product onto the sensing interface. Chronocoulometric results allowed discussion of the magnitude of hybridisation signals in terms of probe surface densities and their corresponding hybridisation efficiency. The genosensor response varied linearly (r2 = 0.9998) with the oligonucleotide target concentration over three orders of magnitude, between 12 pmol/L and 12 nmol/L. The estimated detection limit was 1.2 pmol/L (i.e., 7.2 x 10(6) target molecules in 10 microL of sample solution). The analytical usefulness of the impedimetric genosensor was finally demonstrated analysing amplified samples obtained from the pBI121 plasmid and soy and maize powders containing 1 and 5% of genetically modified product. Sensing of such unmodified amplicons was achieved via sandwich hybridisation with a biotinylated signaling probe. The electrochemical enzyme-amplified assay allowed unambiguous identification of all genetically modified samples, while no significant non-specific signal was detected in the case of all negative controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号