首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of photoperiod on the metabolism of GA20 in Salix pentandra was studied by feeding [3H]-GA20 to seedlings which had been grown previously under long day (LD) or short day (SD) conditions. After 48 h in LD or SD, metabolites were separated on sequential, silica gel partition columns and reversed-phase C18 HPLC. The principal metabolite co-chromatographed with [3H]-GA1 and this conversion was confirmed by feeding [2H]-GA20, which was converted to [2H]-GA1 as identified by gas chromatography-selected ion monitoring. Chromatographic evidence also indicated the minor conversion of [3H]-GA20 to [3H]-GA8 (via [3H]-GA1) and trace conversion to [3H]-GA29 (GAs A1.8,20.29 are native in Salix). Ethyl acetate-insoluble [3H] metabolites were formed and could be cleaved by cellulase to release putative [3H]-GA20 and [3H]-GA1 suggesting the conversion to glucosyl conjugates of these GAs. Metabolism of [3H]-GA20 was slightly more rapid in plants previously grown under LD than SD, an effect which reflected the generally increased shoot growth under LD. However, altering the photoperiod after [3H]-GA20 addition had only a slight effect on the metabolism of [3H]-GA20 in Salix seedlings. This indicates that the conversion of GA20 to GA1 is not a controlling step in the photoperiodic regulation of growth cessation in Salix.  相似文献   

2.
After 30 minutes of incubation of young leaf sections of d-5 maize (Zea mays L.) in [3H]gibberellin A1 ([3H]GA1), the metabolite [3H]GA8 was present in significant amounts, with a second metabolite, [3H]GA8-glucose ([3H]GA8-glu), appearing soon after. A third [3H]GA1 metabolite, the polar uncharacterized conjugate [3H]GA1-X, took more than 1 hour to appear. The protein synthesis inhibitor cycloheximide inhibited the production of all [3H]GA1 metabolites, indicating a possible protein synthesis requirement for [3H]GA1 metabolism.  相似文献   

3.
Jacobs, W. P., Beall, F. D. and Pharis, R. P. 1988. The transport and metabolism of gibberellins A1 and A5 in excised segments from internodes of Phaseolus coccineus. -Physiol. Plant. 72: 529–534. The transport and metabolism of gibberellins (GAs) ([3H]-GA, and [3H]-GA5) of high specific radioactivity were investigated in excised segments from young internodes of Phaseolus coccineus L. Both GA1 and GA5 are native to this species and present in shoot tissue. The segments, 5.1 mm long, were incubated for 6 h in the horizontal position with agar donor blocks containing the [3H]-GA on the morphological apical or basal ends and with plain agar receiver blocks on the opposite end. At the end of incubation, the individual agar blocks were analyzed immediately for total radioactivity, or both blocks and intervening tissue were frozen and freeze-dried for later chromatographic analysis. The movement of both [3H]-GA, and [3H]-GA5 was found to be consistently without polarity. However, approximately 5-fold more [3H]-GA, than [3H]-GA5 was transported through the Phaseolus segments into receivers when equal amounts were in the donors. The extractable radioactivity from receiver blocks was primarily that of the donor GA. No putative GA conjugates were found in any class of receivers, but more GA metabolites were found in the free acid fraction from acropetal than basipetal receivers. Chromatographic analysis by reversed phase C18 high performance liquid chromatography of the tissue segments showed that [3H]-GA, was metabolized more than [3H]-GA5. Tissue adjacent to receiver blocks contained not only the precursor GA from the donor, but also polar ‘free GA metabolites’ and putative GA glucosyl conjugates. These results provide evidence that GA., which is the known ‘effector’ GA for elongation in shoot tissue of several species, is more effectively transported than GA5 (a known precursor of GA1) or than GA1s more polar metabolites.  相似文献   

4.
In an early-flowering line of pea (G2) apical senescence occurs only in long days (LD), while growth in short days (SD) is indeterminate. In SD, G2 plants are known to produce a graft-transmissible substance which delays apical senescence in related lines that are photoperiod-insensitive with regard to apical senescence. Gibberellic acid (GA3) applied to the apical bud of G2 plants in LD delayed apical senescence indefinitely, while N6-benzyladenine and -naphthaleneacetic acid were ineffective. Of the gibberellins native to pea, GA9 had no effect whereas GA20 had a moderate senescence-delaying effect. [3H]GA9 metabolism in intact leaves of G2 plants was inhibited by LD and was restored by placing the plants back in SD. Leaves of photoperiod-insensitive lines (I-types) metabolized GA9 readily regardless of photoperiod, but the metabolites differed qualitatively from those in G2 leaves. A polar GA9 metabolite, GAE, was found only in G2 plants in SD. The level of GA-like substances in methanol extracts from G2 plants dropped about 10-fold after the plants were moved from SD to LD; it was restored by transferring the plants back to SD. A polar zone of these GA-like materials co-chromatographed with GAE. It is suggested that a polar gibberellin is synthesized by G2 plants in SD; this gibberellin promotes shoot growth and meristematic activity in the shoot apex, preventing senescence.Abbreviations GA gibberellin - GA3 gibberellic acid - SD short days - LD long days  相似文献   

5.
The potential for gibberellins (GAs) to control stem elongation and itsplasticity (range of phenotypic expression) was investigated inStellaria longipes grown in long warm days. Gibberellinmetabolism and sensitivity was compared between a slow-growing alpine dwarfwithlow stem elongation plasticity and a rapidly elongating, highly plastic prairieecotype. Both ecotypes elongated in response to exogenous GA1,GA4 or GA9, but surprisingly, the alpine dwarf wasrelatively unresponsive to GA3. Endogenous GA1,GA3, GA4, GA5, GA8, GA9and GA20 were identified and quantified in stem tissue harvested atcommencement, middle and end of the period of most rapid elongation. Theconcentration of GAs which might be expected to promote shoot elongation washigher during rapid elongation than toward its end for both ecotypes. Whilethere was a trend for certain GAs (GA3, GA4,GA9, GA20) to be higher in stems of the alpine ecotypeduring rapid elongation, that result does not explain the slower growth of thealpine ecotype and the faster growth of the prairie ecotype under a range ofconditions. To determine if the two ecotypes metabolized GA20differently, plants were fed [2H]- or[3H]-GA20. The metabolic products identified included[2H2]-GA1, -GA8, -GA29,-GA60, -3-epi-GA1, GA118(-1-epi-GA60) and -GA77. The concentration of[2H2]-GA1 also did not differ between the twoecotypes and metabolism of [2H2]- or[3H]-GA20 was also similar. In the same experiments thepresence of epi-GA1, GA29, GA60,GA118 and GA77 was indicated, suggesting that these GAsmay also occur naturally in S. longipes, in addition tothose described above. Collectively, these results suggest that while stemelongation within ecotypes is likely regulated by GAs, differences in GAcontent, sensitivity to GAs (GA3 excepted), or GA metabolism areunlikely to be the controlling factor in determining the differences seen ingrowth rate between the two ecotypes under the controlled environmentconditionsof this study. Nevertheless, further study is warranted especially underconditions where environmental factors may favour a GA:ethylene interaction.  相似文献   

6.
Application of gibberellin A53 (GA53) to short-day (SD)-grown spinach (Spinacia oleracea L.) plants caused an increase in petiole length and leaf angle similar to that found in plants transferred to long days (LD). [2H] GA53 was fed to plants in SD, LD, and in a SD to LD transition experiment, and the metabolites were identified by gas chromatography with selected ion monitoring. After 2, 4, or 6 SD, [2H]GA53 was converted to [2H]GA19 and [2H]GA44. No other metabolites were detected. After 2 LD, only [2H] GA20 was identified. In the transition experiment in which plants were given 4 SD followed by 2 LD, all three metabolites were found. The results demonstrate unequivocally that GA19, GA20, and GA44 are metabolic products of GA53, and strongly suggest that photoperiod regulates GA metabolism, in part, by controlling the conversion of GA19 to GA20.  相似文献   

7.
The following seven gibberellins (GAs) have been identified by gas chromatography-mass spectrometry in shoots and leaves of the long-day plant Agrostemma githago: GA53, GA44, GA19, GA17, GA20, GA1, and 3-epi-GA1. The levels of these compounds were measured, using selected ion monitoring, during photoperiodic induction. The levels of GA44, GA19, GA17, and GA20 all increased to a peak at eight long days (LD), followed by a decline, while the levels of GA1 and 3-epi-GA1 did not reach a peak until 12 LD. The level of GA53 remained steady over the first 10–12 LD. Later in the LD treatment the levels of GA53, GA44, GA19, and GA17 increased again. The rate of metabolism of all GAs except GA53 was higher after 12–16 LD than under short days. These data thus provide indirect evidence for an effect of photoperiodic induction on GA turnover in A. githago.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - GC-MS gas chromatography-mass spectrometry - HPLC high performance liquid chromatography - LD long day(s) - MeTMS trimethylsilylether of the methyl ester - SD short day(s) - SIM selected ion monitoring  相似文献   

8.
A mutant R-9 of Gibberella fujikuroi has been isolated and shown to be blocked for GA1 and GA3 biosynthesis, but not for GA4, GA7 and other gibberellins. Cultures of this mutant convert low concentrations of [1,2-3H2]-GA1 into GA3 in a radiochemical yield of 2·7 %.  相似文献   

9.
Shoots of mature grafted propagules of Picea abies (L.) Karst. metabolized [3H]gibberellin A4 (GA4) to at least 14 acidic substances, two of which were tentatively identified by gas-liquid radiochromatography as GA2 (possibly an artifact) and GA34. [3H]GA9 was converted into a number of metabolites, one of which was chromatographically similar to, but not identical with, GA4. Metabolism was maximally 61 and 57% over 48 hours for GA4 and GA9, respectively, and was correlated with the rate of change (i.e. increase followed by decrease) in endogenous GA-like substances as shoot elongation progressed. Propagules covered with a clear plastic film, a treatment which promotes flowering, metabolized [3H]GA4 more slowly than did control plants in the open. Inasmuch as a GA4/7 mixture can also promote flowering in P. abies, the retarded metabolism of [3H]GA4 may reflect the manner in which trees under plastic metabolize endogenous GA-like substances. If so, then the stimulating effect of this cultural treatment on flowering may come about through an increased level of endogenous, less polar GA-like substances.  相似文献   

10.
[17-13C,3H]-Labeled gibberellin A20 (GA20), GA5, and GA1 were fed to homozygous normal (+/+), heterozygous dominant dwarf (D8/+), and homozygous dominant dwarf (D8/D8) seedlings of Zea mays L. (maize). 13C-Labeled GA29, GA8, GA5, GA1, and 3-epi-GA1, as well as unmetabolized [13C]GA20, were identified by gas chromatography-selected ion monitoring (GC-SIM) from feeds of [17-13C, 3H]GA20 to all three genotypes. 13C-Labeled GA8 and 3-epi-G1, as well as unmetabolized [13C]GA1, were identified by GC-SIM from feeds of [17-13C, 3H]GA1 to all three genotypes. From feeds of [17-13C, 3H]GA5, 13C-labeled GA3 and the GA3-isolactone, as well as unmetabolized [13C]GA5, were identified by GC-SIM from +/+ and D8/D8, and by full scan GC-MS from D8/+. No evidence was found for the metabolism of [17-13C, 3H]GA5 to [13C]GA1, either by full scan GC-mass spectrometry or by GC-SIM. The results demonstrate the presence in maize seedlings of three separate branches from GA20, as follows: (a) GA20 → GA1 → GA8; (b) GA20 → GA5 → GA3; and (c) GA20 → GA29. The in vivo biogenesis of GA3 from GA5, as well as the origin of GA5 from GA20, are conclusively established for the first time in a higher plant (maize shoots).  相似文献   

11.
Field pennycress (Thlaspi arvense L.) is a winter annual crucifer with a cold requirement for stem elongation and flowering. In the present study, the metabolism of exogenous [2H]-ent-kaurenoic acid (KA) and [14C]-gibberellin A12-aldehyde (GA12-aldehyde) was compared in thermo- and noninduced plants. Thermoinduction greatly altered both quantitative and qualitative aspects of [2H]-KA metabolism in the shoot tips. The rate of disappearance of the parent compound was much greater in thermoinduced shoot tips. Moreover, there was 47 times more endogenous KA in noninduced than in thermoinduced shoot tips as determined by combined gas chromatography-mass spectrometry (GC-MS). The major metabolite of [2H]-KA in thermoinduced shoot tips was a monohydroxylated derivative of KA, while in noninduced shoot tips, the glucose ester of the hydroxy KA metabolite was the main product. Gibberellin A9 (GA9) was the only GA in which the incorporation of deuterium was detected by GC-MS, and this was observed only in thermoinduced shoot tips. The amount of incorporation was small as indicated by the large dilution by endogenous GA9. In contrast, thermo- and noninduced leaves metabolized exogenous [2H]-KA into GA20 equally well, although the amount of conversion was also limited. These results are consistent with the suggestion (JD Metzger [1990] Plant Physiol 94: 000-000) that the conversion of KA in to GAs is under thermoinductive control only in the shoot tip, the site of perception for thermoinductive temperatures in field pennycress. There were essentially no differences in the qualitative or quantitative distribution of metabolites formed following the application of [14C]-GA12-aldehyde to the shoot tips of thermo- or noninduced plants. Thus, the apparent thermoinductive regulation of the KA metabolism into GAs is probably limited to the two metabolic steps involved in converting KA to GA12-aldehyde.  相似文献   

12.
Maki SL  Brenner ML 《Plant physiology》1991,97(4):1359-1366
Gibberellins (GAs) are either required for, or at least promote, the growth of the pea (Pisum sativum L.) fruit. Whether the pericarp of the pea fruit produces GAs in situ and/or whether GAs are transported into the pericarp from the developing seeds or maternal plant is currently unknown. The objective of this research was to investigate whether the pericarp tissue contains enzymes capable of metabolizing GAs from [14C]GA12-7-aldehyde ([14C]GA12ald) to biologically active GAs. The metabolism of GAs early in the biosynthetic pathway, [14C]GA12 and [14C]GA12ald, was investigated in pericarp tissue isolated from 4-day-old pea fruits. [14C]GA12ald was metabolized primarily to [14C]GA12ald-conjugate, [14C]GA12, [14C]GA53, and polar conjugate-like products by isolated pericarp. In contrast, [14C]GA12 was converted primarily to [14C]GA53 and polar conjugate-like products. Upon further investigations with intact 4-day-old fruits on the plant, [14C]GA12 was found to be converted to a product which copurified with endogenous GA20. Lastly, [2H]GA20 and [2H]GA1 were recovered 48 hours after application of [2H]- and [14C]GA53 to pericarp tissue of intact 3-day-old pea fruits. These results demonstrate that pericarp tissue metabolizes GAs and suggests a function for pericarp GA metabolism during fruit growth.  相似文献   

13.
Metabolism of tritiated gibberellin a(20) in maize   总被引:6,自引:5,他引:1       下载免费PDF全文
After the application of 2.36 Curies per millimole [2,3-3H]gibberellin A20 (GA20) to 21-day-old maize (Zea mays L., hybrid CM7 × CM49) plants, etiolated maize seedlings, or maturing maize cobs, a number of 3H-metabolites were observed. The principal acidic (pH 3.0), ethyl acetate-soluble metabolite was identified as [3H]GA1 on the basis of co-chromatography with standard [3H]GA1 on SiO2 partition, high resolution isocratic elution reverse phase C18 high performance liquid chromatography and gas-liquid chromatography radiocounting. Two other acidic metabolites were identified similarly as [3H]GA8 and C/D ring-rearranged [3H]GA20, although gas-liquid chromatography radiocounting was not performed on these metabolites. Numerous acidic, butanol-soluble (e.g. ethyl acetate-insoluble) metabolites were observed with retention times on C18 high performance liquid chromatography radiocounting similar to those of authentic glucosyl conjugates of GA1 and GA8, or with retention times where conjugates of GA20 would be expected to elute. Conversion to [3H]GA1 was greatest (23% of methanol extractable radioactivity) in 21-day-old maize plants. In etiolated maize seedlings, the C/D ring-rearranged [3H]GA20-like metabolite was the major acidic product, while conversion to [3H]GA1 was low.  相似文献   

14.
In G2 peas (Pisum sativum L.) apical senescence occurs only in long days (LD), and indeterminate growth is associated with elevated gibberellin (GA) levels in the shoot in short days (SD). Metabolism of GA12 aldehyde was investigated by feeding shoots grown in SD or LD with [14C]GA12 aldehyde through the cut end of the stem for 0.5 to 6 hours in the light and analyzing the tissue extract by high performance liquid chromatography. More radioactive products were detected than can be accounted for by the two GA metabolic pathways previously known to be present in peas. Three of the major products appear to be GA conjugates, but an additional pathway(s) of GA metabolism may be present. The levels of putative C20 GAs, [14C]GA53, [14C]GA44, [14C]GA19, and/or [14C] GA17, were all elevated in SD as compared to LD. Putative [14C]GA, was slightly higher in LD than in SD. Putative [14C]GA53 was a major metabolite after 30 minutes of treatment in SD but had declined after longer treatment times to be replaced by elevated levels of putative [14C] GA44 and [14C]GA19/17. Metabolism of GA20 was slow in both photoperiods. Although GA20 and GA19 are the major endogenous GAs as determined by gas chromatography-mass spectrometry, putative [14C]GA20 and [14C]GA19 were never major products of [14C]GA12 aldehyde metabolism. Thus, photoperiod acts in G2 peas to change the rate of GA53 production from GA12 aldehyde, with the levels of the subsequent GAs on the 13-OH pathway being determined by the amount of GA53 being produced.  相似文献   

15.
Summary Interconversion of GA4 to GA1 and GA34 occurred within 24 h of application of 1,2-[3H]-GA4 to seedlings of dwarf rice, cv. Tan-ginbozu. Identification was made by direct comparison of the trimethylsilyl ether derivatives of the methyl esters of Silica-gel partition-column fractions on gas-liquid radiochromatography with derivatized GA1 and GA34 standards on three columns: 2% QF-1, 2% SE-30, and 1% XE-60. GA2, an artifact of the purification and chromatography system, may also be formed by the plant. The conversions from GA4 to GA1 and GA34 are single hydroxylations. At least two unidentified radioactive products were also formed by the plant. Interconversions were in the order of 0.3 to 0.8% of applied [3H]-GA4.Abbreviations GA gibberellin - GLC gas-liquid chromatography - GLRC gasliquid radiochromatography - TMSMe trimethylsilyl ether of methyl ester - TLC thin-layer chromatography  相似文献   

16.
Uptake and metabolism of 1,2-[3H]gibberellin A1 ([3H]GA1, I) and its 3-hydroxy epimer ([3H]pseudoGA1, II) by barley (Hordeum vulgare L.) half-seeds were measured after 24 hours of incubation, in the presence or absence of abscisic acid in the media. Uptake of both compounds was enhanced by abscisic acid, and abscisic acid enhanced the extent of metabolism of [3H]GA1. However, [3H]pseudoGA1 was not metabolized, even in the presence of abscisic acid. The significance of the stereo-chemistry of the 3-hydroxyl position is discussed.  相似文献   

17.
[3H]Gibberellin A1 ([3H]GA1)applied to seedlings of dwarf rice (Oryza sativa L. cv. Tanginbozu) was metabolized to GA8. Identification of GA8, was made by gas-liquid radiochromatography using three liquid stationary phases.  相似文献   

18.
The correlation between gibberellin (GA) metabolism and growth rate was investigated using two Sorghum bicolor inbred lines, Hegari and AT×623, and their heterotic F1 hybrid. Previous studies have demonstrated that this hybrid is taller and has substantially greater shoot dry weights and leaf areas than either parental inbred. [3H]GA20 was applied to the leaf whorl of seedlings and after 24 hours, plants were harvested and separated into roots, shoot cylinders containing the apical meristems, and leaf blades. Chromatographic analyses of metabolites indicated the conversions of [3H]GA20 to [3H]GA1,8 and 29. The conversion of [2H]GA20 to [2H]GA1 was demonstrated by gas chromatography-selected ion monitoring (GC-SIM). Putative glucosyl conjugates of all of the [3H]GAs were also produced and GA8 was identified by GC-SIM following enzymic cleavage of the putative [3H]GA8 glucosyl conjugate fraction. Comparing the genotypes, [3H]GA20 metabolism was more rapid in the shoot cylinders of the hybrid than in the shoot cylinders from inbreds. In the hybrid samples, there was a three-fold increase in the putative conjugate(s) of [3H]GA1 which was the principal metabolite, and increased production of [3H]GA8 and the putative conjugates of [3H]GA29 and [3H]GA8. Conversely, levels of the remaining precursor, [3H]GA20, and its putative conjugate(s) were reduced in the hybrid. The rate of GA20 metabolism was thus positively correlated with growth rate across these sorghum genotypes. This correlation supports a promotive role of GA in the regulation of shoot growth and in the expression of heterosis (hybrid vigor) in sorghum.  相似文献   

19.
Cell-free preparations from seeds of Marah macrocarpus L. and Malus domestica L. catalyzed the conversion of gibberellin A9 (GA9) and 2,3-dehydroGA9 to GA7; GA9 was also metabolized to GA4 in a branch pathway. The preparation from Marah seeds also metabolized GA5 to GA3 in high yield; GA6 was a minor product and was not metabolized to GA3. Using substrates stereospecifically labeled with deuterium, it was shown that the metabolism of GA5 to GA3 and of 2,3-dehydroGA9 to GA7 occurs with the loss of the 1β-hydrogen. In cultures of Gibberella fujikuroi, mutant B1-41a, [1β,2β-2H2]GA4, was metabolized to [1,2-2H2]GA3 with the loss of the 1α- and 2α-hydrogens. These results provide further evidence that the biosynthetic origin of GA3 and GA7 in higher plants is different from that in the fungus Gibberella fujikuroi.  相似文献   

20.
[3H]gibberellin A9 was applied to shoots or seed parts of G2 pea to produce radiolabeled metabolites. These were used as markers during purification for the recovery of endogenous GA9 and its naturally occurring metabolites. GA9 and its metabolites were purified by HPLC, derivatized and examined by GC-MS. Endogenous GA9, GA20, GA29 and GA51 were identified in pea shoots and seed coats. GA51-catabolite and GA29-catabolite were also detected in seed coats. GA70 was detected in seed coats following the application of 1 g of GA9. Applied [3H]GA9 was metabolized through both the 13-hydroxylation and 2-hydroxylation pathways. Labeled metabolites were tentatively identified on the basis of co-chromatography on HPLC with endogenous compounds identified by GC-MS. In shoots [3H]GA51 and [3H]GA51-catabolite were the predominant metabolites after 6 hrs, but by 24 hrs there was little of these metabolites remaining, while [3H]GA29-catabolite and an unidentified metabolite predominated. In seed coats [3H]GA51 was the initial product, later followed by [3H]GA51-catabolite and an unidentified metabolite (different from that in shoots), with lesser amounts of [3H]GA20, [3H]GA29 and [3H]GA29-catabolite. [3H]GA70 was a very minor product in both cases. [3H]GA9 was not metabolized by pea cotyledons.Edited by T.J. Gianfagna.Author for correspondence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号