首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After 30 minutes of incubation of young leaf sections of d-5 maize (Zea mays L.) in [3H]gibberellin A1 ([3H]GA1), the metabolite [3H]GA8 was present in significant amounts, with a second metabolite, [3H]GA8-glucose ([3H]GA8-glu), appearing soon after. A third [3H]GA1 metabolite, the polar uncharacterized conjugate [3H]GA1-X, took more than 1 hour to appear. The protein synthesis inhibitor cycloheximide inhibited the production of all [3H]GA1 metabolites, indicating a possible protein synthesis requirement for [3H]GA1 metabolism.  相似文献   

2.
Agrostemma githago is a long-day rosette plant in which transfer from short days (SD) to long days (LD) results in rapid stem elongation, following a lag phase of 7–8 d. Application of gibberellin A20 (GA20) stimulated stem elongation in plants under SD, while 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride (AMO-1618, an inhibitor of GA biosynthesis) inhibited stem elongation in plants exposed to LD. This inhibition of stem elongation by AMO-1618 was overcome by simultaneous application of GA20, indicating that GAs play a role in the photoperiodic control of stem elongation in this species. Endogenous GA-like substances were analyzed using reverse-phase high-performance liquid chromatography and the d-5 corn (Zea mays L.) assay. Three zones with GA-like activity were detected and designated, in order of decreasing polarity, as A, B, and C. A transient, 10-fold increase in the activity of zone B occurred after 8–10 LD, coincident with the transition from lag phase to the phase of rapid stem elongation. After 16 LD the activity in this zone had returned to a level similar to that under SD, even though the plants were elongating rapidly by this time. However, when AMO-1618 was applied to plants after 11 LD, there was a rapid reduction in the rate of stem elongation, indicating that continued GA biosynthesis was necessary following the transient increase in activity of zone B, if stem elongation was to continue under LD. It was concluded that control of stem elongation in A. githago involves more than a simple qualitative or quantitative change in the levels of endogenous GAs, and that photoperiodic induction alters both the sensitivity to GAs and the rate of turnover of endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - LD long day(s) - LDP long-day plant(s) - SD short day(s)  相似文献   

3.
Two maize inbreds, CM7 and CM49, and CM7 × CM49, their F1 hybrid (which displayed significant heterosis), were examined with regard to response to exogenous gibberellin A3 (GA3), and in their ability to metabolize GA20, a native GA of maize. The leaf sheath elongation response to GA3 was far greater for the imbreds than for their hybrid. The inbreds also displayed significant elongation of the leaf blades in response to GA3, whereas the hybrid was unaffected. Promotion of cell division in the leaf sheath of CM7 and the hybrid was effected by GA3, but no promotion of cell elongation was observed in CM49, even though significant leaf sheath elongation occurred. Shoot dry weight of both inbreds was significantly increased by GA3, but response by the hybrid in this parameter was slight and variable. Root dry weight of CM7 was significantly increased by GA3, but was unchanged in CM49 and the hybrid. Thus, inbred shoot dry weight increases effected by GA3 were not at the expense of the root system. Rapid metabolism of [2,3-3H]GA20 occurred in all genotypes, although genotypic differences were observed. The hybrid had the highest rates of metabolism to GA glucosyl conjugate-like substances. Oxidative metabolism was also fastest in the hybrid, followed by CM7, and slowest in CM49, the slowest-growing inbred. Thus, rate of GA20 metabolism is under genetic control in normal (i.e. not dwarfed) maize genotypes. These results, taken together with previous reports that the hybrid has significantly enhanced levels of endogenous GA-like substances, suggest that GA play a role in the expression of heterosis in maize.  相似文献   

4.
[3H]Gibberellin A20 (GA20) of high specific radioactivity (49.9 gigabecquerel per millimole) was applied equilaterally in a ring of microdrops to the internodal pulvinus of shoots of 3-week-old gravistimulated and vertical normal maize (Zea mays L.), and to a pleiogravitropic (prostrate) maize mutant, lazy (la). All plants converted the [3H]GA20 to [3H]GA1 and [3H]GA29-like metabolites as well as to several metabolites with the partitioning and chromatographic behavior of glucosyl conjugates of [3H]GA1, [3H]GA29, and [3H]GA8. The tentative identification of these putative [3H]GA glucosyl conjugates was further supported by the release of the free [3H]GA moiety after cleavage with cellulase. Within 12 hours of the [3H]GA20 feed, there was a significantly higher proportion of total radioactivity in lower than in upper halves of internode and leaf sheath pulvini in gravistimulated normal maize. Further, there was a significantly higher proportion of putative free GA metabolites of [3H]GA20, especially [3H]GA1, in the lower halves of normal maize relative to upper halves. The differential localization of the metabolites between upper and lower halves was not apparent in the pleiogravitropic mutant, la. Endogenous GA-like substances were also examined in gravistimulated maize shoots. Forty-eight hours after gravistimulation of 3-week-old maize seedlings, endogenous free GA-like substances in upper and lower leaf sheath and internode pulvini halves were extracted, chromatographed, and bioassayed using the `Tanginbozu' dwarf rice microdrop assay. Lower halves contained consistently higher total levels of GA-like activity. The qualitative elution profile of GA-like substances differed consistently, upper halves containing principally a GA20-like substance and lower halves containing mainly GA1-like and GA19-like substances. Gibberellins A1 (10 nanograms per gram) and A20 (5 nanograms per gram) were identified from these lower leaf sheath pulvini by capillary gas chromatography-selected ion monitoring. Results from all of these experiments are consistent with a role for GAs in the differential shoot growth that follows gravitropism, although the results do not eliminate the possibility that the redistribution of GAs results from the gravitropic response.  相似文献   

5.
Uptake and metabolism of 1,2-[3H]gibberellin A1 ([3H]GA1, I) and its 3-hydroxy epimer ([3H]pseudoGA1, II) by barley (Hordeum vulgare L.) half-seeds were measured after 24 hours of incubation, in the presence or absence of abscisic acid in the media. Uptake of both compounds was enhanced by abscisic acid, and abscisic acid enhanced the extent of metabolism of [3H]GA1. However, [3H]pseudoGA1 was not metabolized, even in the presence of abscisic acid. The significance of the stereo-chemistry of the 3-hydroxyl position is discussed.  相似文献   

6.
Winter canola (Brassica napus cv Crystal) is an oilseed crop that requires vernalization (chilling treatment) for the induction of stem elongation and flowering. To investigate the role of gibberellins (GAs) in vernalization-induced events, endogenous GA content and the metabolism of [3H]GAs were examined in 10-week vernalized and nonvernalized plants. Shoot tips were harvested 0, 8, and 18 d postvernalization (DPV), and GAs were purified and quantified using 2H2-internal standards and gas chromatography-selected ion monitoring. Concentrations of GA1, GA3, GA8, GA19, and GA20 were 3.1-, 2.3-, 7.8-, 12.0-, and 24.5-fold higher, respectively, in the vernalized plants at the end of the vernalization treatment (0 DPV) relative to the nonvernalized plants. Thermoregulation apparently occurs prior to GA19 biosynthesis, since vernalization elevated the concentration of all of the monitored GAs. [3H]GA20 or [3H]GA1 was applied to the shoot tips of vernalized and nonvernalized plants, and after 24 h, plants were harvested at 6, 12, and 15 DPV. Following high-performance liquid chromatography analyses, vernalized plants showed increased conversion of [3H]GA20 to a [3H]GA1-like metabolite and reduced conversion of [3H]GA1 or [3H]GA20 to polar 3H-metabolites, putative glucosyl conjugates. These results demonstrate that vernalization influences GA content and GA metabolism, with GAs serving as probable regulatory intermediaries between chilling treatment and subsequent stem growth.  相似文献   

7.
Gibberellins A1, A3, and iso-A3 were identified from aseptic cultures of Azospirillum lipoferum strain op 33 by capillary gas chromatography-mass spectrometry (GC-MS) and GC-MS-selected ion monitoring. There were 20 to 40 picograms (in GA3 equivalents, estimated from bioassay) of gibberellins A1 and A3 per milliliter of cell culture (containing 109 cells).  相似文献   

8.
THOMPSON  P. A. 《Annals of botany》1973,37(1):133-154
Germination tests were done on 19 populations of Agrostemmagithago to examine their responses in relation to the culturalhistory of the plant and to try to determine what changes mayhave accompanied cultivation and the part these may have playedin the establishment and subsequent decline of the species asa weed. Differences found from one population to another were foundto be relatively minor, and the responses of all the collectionsresembled those of other species of Silenoideae distributednaturally around the Mediterranean basin. Differences were establishedbetween adventive populations of A. githago and species naturallydistributed in deciduous woodland and steppeland zones of Europe,even when growth patterns and habitat preferences were relativelysimilar. It was concluded that A. githago had originated in an area witha Mediterranean climate and that there had been few changesin the germination responses of the species during its periodof association with man as a weed of cultivation. The significanceof this result is discussed in relation to the decline of thespecies in Europe during the last hundred years, and with respectto the effects of cultivation on the germination of species,including crop plants, of Mediterranean origin which possessgermination responses similar to those of Agrostemma.  相似文献   

9.
The time course of protein synthesis in embryos of dormant and afterripened Agrostemma githago seeds was studied. In embryos of afterripened geminating seeds, protein synthesis increased in three successive stages: (a) concurrent with swelling; (b) during the lag phase between the completion of water uptake and the onset of growth; and (c) immediately after protrusion through the seed coat. Embryos of dormant seeds showed the first increase but not the second unless dormancy was broken by imbibition at 4°C. This indicates that dormancy affects processes prior to the onset of growth. The third increase was largely due to higher oxygen availability after the rupture of the seed coat and not to actual growth. It could also be elicited in dormant embryos by isolating them from the seeds.

Electrophoretic analysis of the newly synthesized proteins demonstrated that the patterns of dormant and afterripened embryos became significantly different in both axes and cotyledons only just prior to the onset of axis elongation. Thereafter, the differences became larger.

When afterripened or dormant seeds were transferred from a low, germination-permitting to a high, germination-inhibiting temperature, the seeds germinated at the high temperature if they had completed the lag phase to a sufficient extent at the low temperature. This shows that the processes during the lag phase were inhibited by the high temperature while the onset of growth was not affected.

  相似文献   

10.
The biotransformation of [14C]4-n-nonylphenol (5 mg l–1; 10 mg l–1) by Agrostemma githago cell suspensions was studied using a batch two-liquid-phase system (medium/n-hexadecane 200:1, v/v). The highly lipophilic 4-n-nonylphenol was applied via n-hexadecane phase. After 7 d of incubation, more than 85% of applied 4-n-nonylphenol was absorbed by the cells, and 40% was transformed to 10 side-chain monohydroxylated metabolites (two with additional double bond at side-chain). The primary metabolites were analyzed by GC-EIMS. In the cells, the monohydroxylated products and residual 4-n-nonylphenol were present as glycosides. The method proved to be suitable for the production of primary metabolites of 4-n-nonylphenol on a larger scale for identification purposes and for metabolic profiling of the compound.  相似文献   

11.
Gibberellin A1, (GA1), GA19, and GA20 in phloem exudates andcotyledons of seedlings of Pharbitis nil cv. Violet, grown underdifferent photoperiodic conditions, were qualitatively and semi-quantitativelyanalyzed by a combination of high performance-liquid chromatography(HPLC) and radioimmunoassays (RIA). The levels of GA19 and GA20were higher in cotyledons from plants grown under dark treatment(DT) conditons of 16 h-light/8 h-dark for 6 days followed by8 h-light/16 h-dark for 3 days than in those grown under continuouslight (CL) for 9 days. This relationship was also observed forthe GAs in phloem exudates, although the levels were much lowerthan in the cotyledons. When GAs were applied to the cotyledons,elongation of the epicotyl was promoted more by GA20 than byGA1 or GA19, especially under the CL treatment. The relativeeffect of GA1 and GA20 on the epicotyl elongation was reversedwhen these GAs were applied to epicotyls pre-treated with prohexadione,an inhibitor of 2-oxoglutarate-dependent dioxygenases. 3Present address: Frontier Research Program, The Institute ofPhysical and Chemical Research (RIKEN), 2-1 Hirosawa, Wakoshi,Saitama, 351-01 Japan 4Present address: Laboratory of Horticulture, Faculty of Agriculture,Nagoya University, Nagoya, 464-01 Japan  相似文献   

12.
B. Schmerder  H. Borriss 《Planta》1986,169(4):589-593
In dark-grown, isolated embryos of Agrostemma githago, a transient period of nitrate-reductase (NR) (NADH: nitrate oxidoreductase, EC 1.6.6.1) activity occurred from 6 to 36 h after the start of imbibition. During this period, NR activity was enhanced by nitrate, 6-benzylamino-purine and ethylene. Ethylene and 6-benzylamino-purine acted synergistically, whereas ethylene had no effect on nitrate induction. Aminoethoxyvinyl-glycine, an inhibitor of ethylene biosynthesis, inhibited the cytokinin-induced increase of NR activity, but had no effect on the nitrate-induced increase. The inhibition by aminoethoxyvinylglycine was overcome completely by ethylene. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid had the same effect on NR activity as ethylene. Our data indicate that NR induction by cytokinins only occurs in the presence of ethylene, and that nitrate enhances NR activity through a mechanism which is distinct from the induction by hormones.Abbreviations ACC 1-aminocycloproparte-1-carboxylic acid - AVG aminoethoxyvinylglycine - BAP 6-benzylaminopurine - c.p. cotyledonary pair - NR nitrate reductase This article was finalized by the second author two weeks before his death. It was translated and adapted by Dr. G.J. de Klerk, Research School of Biological Sciences, Australian National University, Canberra. Reprint requests should be sent to Dr. de Klerk at his present address: Bulb Research Centre, Vennestraat 22, 2160 AB Lisse, The NetherlandsDeceased 4 September 1985  相似文献   

13.
Experiments were designed to test the hypothesis that the labeled products recovered from plant tissue incubated with [14C]GA12-7-aldehyde ([14C]GA12ald) would serve as appropriate [14C]markers for the recovery of naturally-occurring gibberellins (GAs). The [14C]GA12ald (about 200 millicuries per millimole) was synthesized from pumpkin endosperm using [4,5-14C]mevalonic acid. It was added to the adaxial surface of isolated pea cotyledons at 22 days after flowering. Products recovered after 0.5 and 4.0 hour incubations yielded four major peaks which were separated by high performance liquid chromatography (HPLC). These products were purified by multiple-column HPLC using on-line radioactivity detection. They were then added as [14C]markers to two unlabeled pea extracts. In general, preparative HPLC followed by further HPLC purification resulted in a single UV-absorbing peak co-eluting with each [14C]marker. These [14C] and UV-absorbing peaks were shown to contain GA53, GA44, GA20, GA19, and GA17 by GC-MS. The finding of GA53 is novel; all others have previously been found in pea. Endogenous GAs of pea were thus readily detected using [14C]GA12ald metabolites as [14C]markers to recover naturally occurring GAs suggesting that the method may be applicable in detecting naturally occurring GAs in other species.  相似文献   

14.
Geert Jan de Klerk 《Planta》1981,153(6):524-529
Isolated embryos are more suitable for in vivo study of protein synthesis than non-isolated embryos because, after isolation, the uptake of labeled amino acids is about 1000 times higher. However, isolation also stimulates protein synthesis: Up to 4 h after isolation, the capacity to incorporate labeled amino acids increased 7 times. Therefore, data on incorporation obtained with isolated embryos cannot be extended to non-isolated embryos. The increase of protein synthesis was not due to synthesis of specific proteins, but was a general increase. Furthermore, ripening, dormant, and afterripened embryos showed the same degree of increase. Isolation therefore stimulates protein synthesis nonspecifically. When embryos were kept under anaerobic conditions after isolation, protein synthesis did not increase. Therefore, higher oxygen consumption after removal of the seedcoat is probably the cause of the higher incorporation capacity. Furthermore, the activation of protein synthesis lagged several hours behind the increase of oxygen consumption.Abbreviations A afterripened - D dormant - pre-rRNA precursor of ribosomal RNA  相似文献   

15.
16.
17.
The recovery from “lodging,” or bending over, by shoots of 42-day-old Avena sativa plants is controlled primarily by a negatively geotropic differential growth of the lower halves of the p-1 node-pulvinus and the base of the p-1 internode, relative to the upper halves. Although geostimulation causes a significant reduction in p-1 internode length, dry matter accumulation in the p-1 node-pulvinus is increased, apparently at the expense of the sheath. Recovery to an angle of 30° is associated with changes in endogenous gibberellin-like substances (GAs), and in differential metabolism of applied [3H]GA4 (1.4 Curie per millimole). Although geostimulation depressed total GAs (relative to upright plant parts) to 0.40 and 0.13 for node-pulvini and sheaths, respectively, it increased them 2-fold for internodes. Within the plant part geostimulation increased GAs (relative to upper halves) 29- and 7-fold in lower halves of node-pulvini and internodes, respectively, but reduced GAs to 0.3 in lower halves of sheaths. At age 42 days a GA4/7-like (nonpolar) substance predominates, with lesser amounts of a GA3-like (polar) substance. Native GAs of Avena include GA3, GA4, and GA7. Geostimulation enhanced the ratio of nonpolar to polar GAs for both halves of internodes, but tended to depress it for sheaths and nodepulvini.  相似文献   

18.
Maki SL  Brenner ML 《Plant physiology》1991,97(4):1359-1366
Gibberellins (GAs) are either required for, or at least promote, the growth of the pea (Pisum sativum L.) fruit. Whether the pericarp of the pea fruit produces GAs in situ and/or whether GAs are transported into the pericarp from the developing seeds or maternal plant is currently unknown. The objective of this research was to investigate whether the pericarp tissue contains enzymes capable of metabolizing GAs from [14C]GA12-7-aldehyde ([14C]GA12ald) to biologically active GAs. The metabolism of GAs early in the biosynthetic pathway, [14C]GA12 and [14C]GA12ald, was investigated in pericarp tissue isolated from 4-day-old pea fruits. [14C]GA12ald was metabolized primarily to [14C]GA12ald-conjugate, [14C]GA12, [14C]GA53, and polar conjugate-like products by isolated pericarp. In contrast, [14C]GA12 was converted primarily to [14C]GA53 and polar conjugate-like products. Upon further investigations with intact 4-day-old fruits on the plant, [14C]GA12 was found to be converted to a product which copurified with endogenous GA20. Lastly, [2H]GA20 and [2H]GA1 were recovered 48 hours after application of [2H]- and [14C]GA53 to pericarp tissue of intact 3-day-old pea fruits. These results demonstrate that pericarp tissue metabolizes GAs and suggests a function for pericarp GA metabolism during fruit growth.  相似文献   

19.
Field pennycress (Thlaspi arvense L.) is a winter annual crucifer with a cold requirement for stem elongation and flowering. In the present study, the metabolism of exogenous [2H]-ent-kaurenoic acid (KA) and [14C]-gibberellin A12-aldehyde (GA12-aldehyde) was compared in thermo- and noninduced plants. Thermoinduction greatly altered both quantitative and qualitative aspects of [2H]-KA metabolism in the shoot tips. The rate of disappearance of the parent compound was much greater in thermoinduced shoot tips. Moreover, there was 47 times more endogenous KA in noninduced than in thermoinduced shoot tips as determined by combined gas chromatography-mass spectrometry (GC-MS). The major metabolite of [2H]-KA in thermoinduced shoot tips was a monohydroxylated derivative of KA, while in noninduced shoot tips, the glucose ester of the hydroxy KA metabolite was the main product. Gibberellin A9 (GA9) was the only GA in which the incorporation of deuterium was detected by GC-MS, and this was observed only in thermoinduced shoot tips. The amount of incorporation was small as indicated by the large dilution by endogenous GA9. In contrast, thermo- and noninduced leaves metabolized exogenous [2H]-KA into GA20 equally well, although the amount of conversion was also limited. These results are consistent with the suggestion (JD Metzger [1990] Plant Physiol 94: 000-000) that the conversion of KA in to GAs is under thermoinductive control only in the shoot tip, the site of perception for thermoinductive temperatures in field pennycress. There were essentially no differences in the qualitative or quantitative distribution of metabolites formed following the application of [14C]-GA12-aldehyde to the shoot tips of thermo- or noninduced plants. Thus, the apparent thermoinductive regulation of the KA metabolism into GAs is probably limited to the two metabolic steps involved in converting KA to GA12-aldehyde.  相似文献   

20.
Gibberellins (GAs) A1, A5, and A29 were identified, and also GA32 was confirmed, as endogenous GAs of immature seeds (3-4 weeks after anthesis, 0.25-0.5 gram fresh weight) of apricot (Prunus armeniaca L.) based on capillary gas chromatography (GC), retention time (Rt), and selected ion monitoring (SIM), in comparison with authentic standards. Fractions subjected to GC-SIM were purified and separated using sequential solvent partitioning → paper chromatography → reverse phase C18 high performance liquid chromatography (HPLC) → bioassay on dwarf rice cv Tan-ginbozu. Two other peaks of free GA-like bioactivity (microdrop and immersion dwarf rice assays) were eluted from C18 HPLC at Rts where GA4/7 and GA8 (or other GAs with similar structures) would elute. Also, three unidentified GA glucoside-like compounds (based on bioactivity on the immersion assay, and no bioactivity on the microdrop assay) were noted. There were very high amounts of GA32 (112 ng of GA3 equivalents per gram fresh weight), and minor amounts (0.5 ng of GA3 equivalents) for each of GA1 and GA5, respectively, based on the microdrop assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号