首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies were performed to determine if cyclooxygenase (COX)-2 regulates muscarinic receptor-initiated signaling involving brain phospholipase A2 (PLA2) activation and arachidonic acid (AA; 20 : 4n-6) release. AA incorporation coefficients, k* (brain [1–14C]AA radioactivity/integrated plasma radioactivity), representing this signaling, were measured following the intravenous injection of [1–14C]AA using quantitative autoradiography, in each of 81 brain regions in unanesthetized COX-2 knockout (COX-2–/–) and wild-type (COX-2+/+) mice. Mice were administered arecoline (30 mg/kg i.p.), a non-specific muscarinic receptor agonist, or saline i.p. (baseline control). At baseline, COX-2–/– compared with COX-2+/+ mice had widespread and significant elevations of k*. Arecoline increased k* significantly in COX-2+/+ mice compared with saline controls in 72 of 81 brain regions, but had no significant effect on k* in any region in COX-2–/– mice. These findings, when related to net incorporation rates of AA from brain into plasma, demonstrate enhanced baseline brain metabolic loss of AA in COX-2–/– compared with COX-2+/+ mice, and an absence of a normal k* response to muscarinic receptor activation. This response likely reflects selective COX-2-mediated conversion of PLA2-released AA to prostanoids.  相似文献   

2.
Aim:  To compare caecal microbiota from mdr1a –/– and wild type (FVB) mice to identify differences in the bacterial community that could influence the intestinal inflammation.
Methods and Results:  Caecal microbiota of mdr1a –/– and FVB mice were evaluated at 12 and 25 weeks of age using denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR. DGGE fingerprints of FVB and mdr1a –/– mice (with no intestinal inflammation) at 12 weeks revealed differences in the presence of DNA fragments identified as Bacteroides fragilis , B. thetaiotaomicron , B. vulgatus and an uncultured alphaproteobacterium. Escherichia coli and Acinetobacter sp. were only identified in DGGE profiles of mdr1a –/– mice at 25 weeks (with severe intestinal inflammation), which also had a lower number of total bacteria in the caecum compared with FVB mice at same age.
Conclusions:  Differences found in the caecal microbiota of FVB and mdr1a –/– mice (12 weeks) suggest that the lack of Abcb1 transporters in intestinal cells due to the disruption of the mdr1a gene might lead to changes in the caecal microbiota. The altered microbiota along with the genetic defect could contribute to the development of intestinal inflammation in mdr1a –/– mice.
Significance and Impact of the Study:  Differences in caecal microbiota of mdr1a –/– and FVB mice (12 weeks) suggest genotype specific colonization. The results provide evidence that Abcb1 transporters may regulate host interactions with commensal bacteria. Future work is needed to identify the mechanisms involved in this possible cross-talk between the host intestinal cells and microbiota.  相似文献   

3.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. In the yeast Saccharomyces cerevisiae, the UBR1-encoded ubiquitin ligase (E3) of the N-end rule pathway mediates the targeting of substrate proteins in part through binding to their destabilizing N-terminal residues. The functions of the yeast N-end rule pathway include fidelity of chromosome segregation and the regulation of peptide import. Our previous work described the cloning of cDNA and a gene encoding the 200-kDa mouse UBR1 (E3alpha). Here we show that mouse UBR1, in the presence of a cognate mouse ubiquitin-conjugating (E2) enzyme, can rescue the N-end rule pathway in ubr1Delta S. cerevisiae. We also constructed UBR1(-/-) mouse strains that lacked the UBR1 protein. UBR1(-/-) mice were viable and fertile but weighed significantly less than congenic +/+ mice. The decreased mass of UBR1(-/-) mice stemmed at least in part from smaller amounts of the skeletal muscle and adipose tissues. The skeletal muscle of UBR1(-/-) mice apparently lacked the N-end rule pathway and exhibited abnormal regulation of fatty acid synthase upon starvation. By contrast, and despite the absence of the UBR1 protein, UBR1(-/-) fibroblasts contained the N-end rule pathway. Thus, UBR1(-/-) mice are mosaics in regard to the activity of this pathway, owing to differential expression of proteins that can substitute for the ubiquitin ligase UBR1 (E3alpha). We consider these UBR1-like proteins and discuss the functions of the mammalian N-end rule pathway.  相似文献   

4.
We investigated the involvement of the 65 kDa isoform of glutamic acid decarboxylase (GAD65) and GAD65-mediated γ-aminobutyric acid (GABA) synthesis in the formation and expression of Pavlovian fear memory. To this end, behavioral, endocrine and autonomic parameters were examined during conditioned fear retrieval of mice with targeted ablation of the GAD65 gene (GAD65–/– mice). These mutant mice were found to display specific fear behavior (freezing, escape), as well as autonomic (increased defecation) and endocrine activation (increased plasma corticosterone) during fear memory retrieval. However, freezing was reduced and flight and escape behavior were increased in GAD65–/– mice compared to their wild type and heterozygous littermates, while corticosterone levels and defecation rates did not differ between genotypes. Active defensive behavior of GAD65–/– mice was observed during both auditory cued and contextual retrieval of fear memory, as well as immediately after conditioning. These data indicate a selectively altered behavioral fear response in GAD65–/– mice, most likely due to deficits in threat estimation or the elicitation of appropriate conditioned fear behavior, and suggest that GAD65 is a genetic determinant of conditioned fear behavior. GAD65–/– mice provide a valuable tool to further dissect the GABAergic mechanisms involved in fear and anxiety and to model GABA-related neurological and psychiatric disorders.  相似文献   

5.
Cadmium was found to be lethal to sticklebacks at all concentrations from 100.0 to 0.001 mg Cd 1–1, in water of 103–111 mg 1–1 hardness as CaCO3. The pattern of mortality as shown by the time-concentration curve suggests that toxicity is not due to a single mechanism but changes with concentration. Fish were found to accumulate cadmium, the whole body levels increasing from 0.90 μg/g fresh weight at 0.001 mg Cd 1–1 exposure concentration to 51.0 μg/g at 100 mg Cd 1–1. The concentration factor was shown to decrease with increasing exposure concentration from 0.51 at 100 mg Cd 1–1 to 511 at 0.001 mg Cd 1–1. The plerocercoid parasite Schistocephalus solidus in the host's perivisceral cavity contained less cadmium than the tissues of its host.  相似文献   

6.
Substrates of the ubiquitin-dependent N-end rule pathway include proteins with destabilizing N-terminal residues. UBR1(-/-) mice, which lacked the pathway's ubiquitin ligase E3alpha, were viable and retained the N-end rule pathway. The present work describes the identification and analysis of mouse UBR2, a homolog of UBR1. We demonstrate that the substrate-binding properties of UBR2 are highly similar to those of UBR1, identifying UBR2 as the second E3 of the mammalian N-end rule pathway. UBR2(-/-) mouse strains were constructed, and their viability was found to be dependent on both gender and genetic background. In the strain 129 (inbred) background, the UBR2(-/-) genotype was lethal to most embryos of either gender. In the 129/B6 (mixed) background, most UBR2(-/-) females died as embryos, whereas UBR2(-/-) males were viable but infertile, owing to the postnatal degeneration of the testes. The gross architecture of UBR2(-/-) testes was normal and spermatogonia were intact as well, but UBR2(-/-) spermatocytes were arrested between leptotene/zygotene and pachytene and died through apoptosis. A conspicuous defect of UBR2(-/-) spermatocytes was the absence of intact synaptonemal complexes. We conclude that the UBR2 ubiquitin ligase and, hence, the N-end rule pathway are required for male meiosis and spermatogenesis and for an essential aspect of female embryonic development.  相似文献   

7.
Our previous work identified E3 ubiquitin ligases, termed UBR1-UBR7, that contain the approximately 70-residue UBR box, a motif important for the targeting of N-end rule substrates. In this pathway, specific N-terminal residues of substrates are recognized as degradation signals by UBR box-containing E3s that include UBR1, UBR2, UBR4, and UBR5. The other E3s of this set, UBR3, UBR6, and UBR7, remained uncharacterized. Here we describe the cloning and analyses of mouse UBR3. The similarities of UBR3 to the UBR1 and UBR2 E3s of the N-end rule pathway include the RING and UBR domains. We show that HR6A and HR6B, the E2 enzymes that bind to UBR1 and UBR2, also interact with UBR3. However, in contrast to UBR1 and UBR2, UBR3 does not recognize N-end rule substrates. We also constructed UBR3-lacking mouse strains. In the 129SvImJ background, UBR3-/- mice died during embryogenesis, whereas the C57BL/6 background UBR3-/- mice exhibited neonatal lethality and suckling impairment that could be partially rescued by litter size reduction. The adult UBR3-/- mice had female-specific behavioral anosmia. Cells of the olfactory pathway were found to express beta-galactosidase (LacZ) that marked the deletion/disruption UBR3- allele. The UBR3-specific LacZ expression was also prominent in cells of the touch, vision, hearing, and taste systems, suggesting a regulatory role of UBR3 in sensory pathways, including olfaction. By analogy with functions of the UBR domain in the N-end rule pathway, we propose that the UBR box of UBR3 may recognize small compounds that modulate the targeting, by this E3, of its currently unknown substrates.  相似文献   

8.
A subset of proteins targeted by the N-end rule pathway bear degradation signals called N-degrons, whose determinants include destabilizing N-terminal residues. Our previous work identified mouse UBR1 and UBR2 as E3 ubiquitin ligases that recognize N-degrons. Such E3s are called N-recognins. We report here that while double-mutant UBR1(-/-) UBR2(-/-) mice die as early embryos, the rescued UBR1(-/-) UBR2(-/-) fibroblasts still retain the N-end rule pathway, albeit of lower activity than that of wild-type fibroblasts. An affinity assay for proteins that bind to destabilizing N-terminal residues has identified, in addition to UBR1 and UBR2, a huge (570 kDa) mouse protein, termed UBR4, and also the 300-kDa UBR5, a previously characterized mammalian E3 known as EDD/hHYD. UBR1, UBR2, UBR4, and UBR5 shared a approximately 70-amino-acid zinc finger-like domain termed the UBR box. The mammalian genome encodes at least seven UBR box-containing proteins, which we propose to call UBR1 to UBR7. UBR1(-/-) UBR2(-/-) fibroblasts that have been made deficient in UBR4 as well (through RNA interference) were significantly impaired in the degradation of N-end rule substrates such as the Sindbis virus RNA polymerase nsP4 (bearing N-terminal Tyr) and the human immunodeficiency virus type 1 integrase (bearing N-terminal Phe). Our results establish the UBR box family as a unique class of E3 proteins that recognize N-degrons or structurally related determinants for ubiquitin-dependent proteolysis and perhaps other processes as well.  相似文献   

9.
The standard metabolic rate of dolphin fish   总被引:1,自引:0,他引:1  
The standard metabolic rates (SMRs) of 11 (1.395–4.125 kg) dolphin fish (mahimahi or dorado, Coryphaena hippurus ) were measured at 25°± 0.5°C. Fish were prevented from swimming with neuromuscular blocking agents and force ventilated. Heart rates were determined simultaneously. SMRs (358–726 mg O2 h –1) were several times those of other similarly sized active teleosts such as salmonids, but close to those of tunas. Heart rates (84–161 beats min –1) were also high, but alike those of tunas under similar circumstances. As in tunas, the high SMR of dolphin fish may result from high osmoregulatory costs engendered by their large gill surface areas and/or other adaptations necessary for achieving exceptionally high maximum metabolic rates.  相似文献   

10.
PINK1, a mitochondrial serine/threonine kinase, is the product of a gene mutated in an autosomal recessive form of Parkinson disease. PINK1 is constitutively degraded by an unknown mechanism and stabilized selectively on damaged mitochondria where it can recruit the E3 ligase PARK2/PARKIN to induce mitophagy. Here, we show that, under steady-state conditions, endogenous PINK1 is constitutively and rapidly degraded by E3 ubiquitin ligases UBR1, UBR2 and UBR4 through the N-end rule pathway. Following precursor import into mitochondria, PINK1 is cleaved in the transmembrane segment by a mitochondrial intramembrane protease PARL generating an N-terminal destabilizing amino acid and then retrotranslocates from mitochondria to the cytosol for N-end recognition and proteasomal degradation. Thus, sequential actions of mitochondrial import, PARL-processing, retrotranslocation and recognition by N-end rule E3 enzymes for the ubiquitin proteosomal degradation defines the rapid PINK1 turnover. PINK1 steady-state elimination by the N-end rule identifies a novel organelle to cytoplasm turnover pathway that yields a mechanism to flag damaged mitochondria for autophagic elimination.  相似文献   

11.
Cantor JR  Stone EM  Georgiou G 《Biochemistry》2011,50(14):3025-3033
The enzymatic deamidation of N-terminal L-Asn by N-terminal asparagine amidohydrolase (NTAN1) is a feature of the ubiquitin-dependent N-end rule pathway of protein degradation, which relates the in vivo half-life of a protein to the identity of its N-terminal residue. Herein, we report the bacterial expression, purification, and biochemical characterization of human NTAN1 (hNTAN1). We show here that hNTAN1 is highly selective for the hydrolysis of N-terminal peptidyl L-Asn but fails to deamidate free L-Asn or L-Gln, N-terminal peptidyl L-Gln, or acetylated N-terminal peptidyl L-Asn. Similar to other N-terminal deamidases, hNTAN1 is shown to possess a critical Cys residue that is absolutely required for catalysis, corroborated in part by abolishment of activity through the Cys75Ala point mutation. We also present evidence that the exposure of a conserved L-Pro at the N-terminus of hNTAN1 following removal of the initiating L-Met is important for the function of the enzyme. The results presented here should assist in the elucidation of molecular mechanisms underlying the neurological defects of NTAN1-deficient mice observed in other studies, and in the discovery of potential physiological substrates targeted by the enzyme in the modulation of protein turnover via the N-end rule pathway.  相似文献   

12.
Seasonal patterns of nitrogen fixation in termites   总被引:2,自引:0,他引:2  
1. Termite nitrogenase activity was highest in autumn and spring (≈ 3 μg N2 fixed termite fresh mass (g)–1 day–1) and lowest in winter and summer (≈ 0·8 μg N2 fixed termite fresh mass (g)–1 day–1).
2. The nitrogenase activity of worker termites was significantly higher than all other castes (1·58 ± 0·27 μg N2 fixed termite fresh mass (g)–1 day–1).
3. Worker termites constituted the largest proportion of all the castes throughout the study period (≈ 90%).
4. The localized input of fixed nitrogen by termites may reach 15·3 mg N log–1 day–1 and 5·6 g N log–1 year–1.  相似文献   

13.
During embryogenesis of Chanos chanos , more than half of the yolk was consumed and the majority of it was converted into larval tissue. Salinity affected both yolk absorption and embryonic and larval growth. Larvae hatched in 20% had larger yolk reserves but were smaller and grew more slowly than larvae in 35 and 50%. Larvae hatched in 35 and 50% had equal amounts of yolk but those from 35% were larger. Oxygen consumption rates increased during development (from 0.06 ± 0.01 μl O2 egg–1 h–1 by blastulae to 0.37 ± 0-01 μl O2 egg–1 h–1 by prehatch embryos and 0–43 ± 0–03 μl O2 larva –1 h –1 by newly-hatched larvae) and were significantly affected by salinity. Eggs and yolk-sac larvae incubated in 35% consumed more oxygen than those in the low and high salinities. Salinity affected both the rate and pattern of yolk utilization but salinity-related differences in metabolism, yolk absorption, and growth were not related directly to the osmotic gradient. Low salinity retarded yolk absorption while high salinity reduced yolk utilization efficiencies. Differences in oxygen consumption rates were probably related to variations in the relative amounts of metabolically active embryonic and larval tissue and/or higher activity levels rather than differential osmoregulatory costs. 35% is probably the most suitable salinity for incubation and larval rearing of milkfish.  相似文献   

14.
The recognition component of the N-end rule pathway.   总被引:42,自引:10,他引:32       下载免费PDF全文
B Bartel  I Wünning    A Varshavsky 《The EMBO journal》1990,9(10):3179-3189
The N-end rule-based degradation signal, which targets a protein for ubiquitin-dependent proteolysis, comprises a destabilizing amino-terminal residue and a specific internal lysine residue. We report the isolation and functional analysis of a gene (UBR1) for the N-end recognizing protein of the yeast Saccharomyces cerevisiae. UBR1 encodes a approximately 225 kd protein with no significant sequence similarities to other known proteins. Null ubr1 mutants are viable but are unable to degrade the substrates of the N-end rule pathway. These mutants are partially defective in sporulation and grow slightly more slowly than their wild-type counterparts. The UBR1 protein specifically binds in vitro to proteins bearing amino-terminal residues that are destabilizing according to the N-end rule, but does not bind to otherwise identical proteins bearing stabilizing amino-terminal residues.  相似文献   

15.
The chelating agents, EDDHA, its iron salt, EDTA, and salicylic acid enhance bud formation in Bartramidula bartramioides (Griff.) Wijk & Marg. Salicylic acid elicits optimal response at 10–4 M , whereas the other substances do so at 10–7 M . Increased concentration of ferric citrate and cupric sulphate also stimulate bud induction. The accumulation of Fe3+ and Cu2+ is facilitated by chelators. The endogenous iron content is maximum at 10–7 M EDDHA or EDTA, which is also the concentration optimal for bud induction.  相似文献   

16.
Estimating the cost of flowering in a grapefruit tree   总被引:1,自引:0,他引:1  
The objective of the present study is to evaluate a Citrus tree's investment in the flowering process in relation to its photoassimilate resources, as a part of its annual reproductive effort. The overall requirement for carbohydrate of a single flower of grapefruit ( Citrus paradisi Macf. cv. 'Marsh seedless') is evaluated as 8·33 × 10–3 mol C over 3 weeks. The direct cost of production of a single flower is estimated to be 5·75 × 10–3 mol C, most of which is allocated to the petals, anthers and style — organs designated to abscise. About 2·58 × 10–3 mol C is consumed by respiration not associated with growth processes. Growth respiration ( R g) occurs mostly during early stages of flower growth and development. However, the total respiration rate increases sharply during anthesis, when growth processes have almost ceased. Ethylene evolution also reaches remarkably high rates during anthesis. High temperatures increase the rate of flower respiration ( Q 10 = 2·12) but shorten the duration of flowering. A grapefruit tree may bear each year 20 000–50 000 flowers, only 0·5–2·5% of which develop into mature fruit. The amount of carbohydrate invested each year in bloom at the whole-tree level is 166–400 mol C per tree (depending on the number of flowers), amounting to 10–20% of the carbohydrate consumed for fruit growth. The overall daily demand for carbohydrate by the flowers of a grapefruit tree during anthesis may exceed the daily carbohydrate production by the leaves. High temperatures lead to a further increase in the daily demand for carbohydrate. In such cases, the management of flowering must rely on carbohydrate reserves recruited from other tree organs. The ecophysiological and evolutionary aspects of Citrus flowering are discussed.  相似文献   

17.
18.
The Scn8a gene encodes the α-subunit of Nav1.6, a neuronal voltage-gated sodium channel. Mice homozygous for mutations in the Scn8a gene exhibit motor impairments. Recently, we described a human family with a heterozygous protein truncation mutation in SCN8A . Rather than motor impairment, neuropsychological abnormalities were more common, suggesting a role for Scn8a in a more diverse range of behaviors. Here, we characterize mice heterozygous for a null mutation of Scn8a ( Scn8a+/− mice) in a number of behavioral paradigms. We show that Scn8a+/− mice exhibit greater conditioned freezing in the Pavlovian fear conditioning paradigm but no apparent abnormalities in other learning and memory paradigms including the Morris water maze and conditioned taste avoidance paradigm. Furthermore, we find that Scn8a+/− mice exhibit more pronounced avoidance of well-lit, open environments as well as more stress-induced coping behavior. Together, these data suggest that Scn8a plays a critical role in emotional behavior in mice. Although the behavioral phenotype observed in the Scn8a+/− mice only partially models the abnormalities in the human family, we anticipate that the Scn8a+/− mice will serve as a valuable tool for understanding the biological basis of emotion and the human diseases in which abnormal emotional behavior is a primary component.  相似文献   

19.
Abstract: To study the involvement of the xeroderma pigmentosum group A gene ( XPA ) in neuronal apoptosis, we cultured cerebellar neurons from mice lacking XPA gene ( XPA −/−) and induced apoptosis by exposure to UV irradiation or medium containing a low concentration of potassium (low-K+ medium). When cerebellar neurons from postnatal days 15–16 wild-type mice were treated with UV irradiation, apoptotic neuronal death was observed after 24–48 h. About 60% of neurons survived 48 h after UV irradiation at a dose of 5 J/m2. On the other hand, neurons from XPA −/− mice showed a significantly increased vulnerability to UV irradiation, and >90% of neurons died 48 h after UV irradiation at a dose of 5 J/m2. In contrast, low-K+ medium induced apoptosis of neurons from mice of each genotype with the same kinetics. These results suggest that the XPA gene is involved in neuronal DNA repair and that it thereby influences apoptosis induced by DNA damage in cultured cerebellar neurons.  相似文献   

20.
Commensal bacteria play a role in the aetiology of inflammatory bowel diseases (IBD). High intestinal numbers of Escherichia coli in IBD patients suggest a role of this organism in the initiation or progression of chronic gut inflammation. In addition, some E. coli genotypes are more frequently detected in IBD patients than others. We aimed to find out whether gut inflammation in an IBD mouse model is associated with a particular E. coli strain. Intestinal contents and tissue material were taken from 1-, 8-, 16- and 24-week-old interleukin 10-deficient (IL-10–/–) mice and the respective wild-type animals. Caecal and colonic inflammation was observed in IL-10–/– animals from the 8 weeks of life on accompanied by a lower intestinal microbial diversity than in the respective wild-type animals. Culture- based and molecular approaches revealed that animals with gut inflammation harboured significantly higher numbers of E. coli than healthy controls. Phylogenetic grouping according to the E. coli Reference Collection (ECOR) system and strain typing by random-amplified polymorphic DNA and pulsed-field gel electrophoresis revealed that all mice were colonized by one single E. coli strain. The strain was shown to have the O7:H7:K1 serotype and to belong to the virulence-associated phylogenetic group B2. In a co-association experiment with gnotobiotic mice, the strain outnumbered E. coli ECOR strains belonging to the phylogenetic group A and B2 respectively. A high number of virulence- and fitness-associated genes were detected in the strain's genome possibly involved in the bacterial adaptation to the murine intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号