首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipopolysaccharide (LPS) antigenic epitopes of natural virulent and isogenic avirulent Francisella tularensis strains and other species of the Francisella genus (F. novicida, F. novicida-like, and F. philomiragia) were studied by dot and immunoblotting. Polyclonal rabbit and human sera to virulent F. tularensis strains and monoclonal antibodies to F. tularensis LPS O-side chain were used for detecting species- and genus-specific LPS epitopes. Typical virulent F. tularensis strains produce two types of S-LPS with different antigenic specificity simultaneously. Antigenic determinants of two LPS types were located in LPS O-polysaccharide but not in the core oligosaccharide. The epitopes of the first LPS type were characterized by species specificity for F. tularensis in contrast to determinants of the second LPS type, which had epitopes common with F. novicida. Cross exhaustion of human and rabbit antitularemic sera by F. tularensis and F. novicida LPS showed that F. novicida LPS molecules contained at least two epitopes--highly specific for F. novicida and common with the second type of F. tularensis LPS. The immune response of rabbits and humans to F. tularensis LPS epitopes was different in principle. Sera from rabbits immunized with vaccine and virulent F. tularensis strains contained antibodies "recognizing" antigenic epitopes of two S-LPS forms of the bacterium: type 1 species-specific (in high titers) and type 2 epitopes common with F. novicida LPS (in low titers). In addition to these, sera from patients with tularemia contain immunoglobulins to species-specific epitopes of F. novicida LPS in high titers. Experiments on avirulent mutants showed that in some cases attenuation of F. tularensis can involve loss of species-specific LPS form, while S-LPS with epitopes common with F. novicida LPS will be retained. The difference in specificity of human and rabbit antitularemic antibodies is due to individual features in the host immune system.  相似文献   

2.
To determine antitularemia antibodies in the sera of humans and animale, the possibility of using dot immunoassay with the use of F. tularensis lipopolysaccharide (LPS) as antigen-containing preparation was ascertained. Experiments demonstrated that this method made it possible to determine specific antitularemia antibodies in the sera of sick and immunized humans and animals. Investigetions carried out with the use of heterologous antisera to F. novicida, F. novicida-like and F. philomiragia, as well as Brucellf abortus, Vibrio cholerae and Yersinia enterocolitica, revealed that F. tularensis S-LPS was highly specific. The results obtained in this investigation are indicative of good prospects of using F. tularensis LPS in dot blotting for the laboratory diagnostics of tularemia in humans.  相似文献   

3.
Serum antibodies were analyzed in rabbits immunized with live and formalin-killed Francisella (F. tularensis, F. novicida, F. novicida-like, and F. philomiragia). Passive hemagglutination test with erythrocytes sensitized by these bacteria' LPS showed much higher titers of species-specific antibodies in all sera to live microorganisms than sera to killed bacteria. The results of immunoblotting with purified LPS and bacterial lysates indicate that sera to live bacteria contained mainly immunoglobulins to species-specific antigenic epitopes of LPS O-polysaccharide chain and few antibodies to the protein component of the cell. By contrast, killed bacterial cells induced weak production of antibodies to S-LPS and a pronounced antibody response to protein antigens. Besides the quantitative differences, live and killed bacteria differed by the qualitative spectrum of immunodominant proteins. Serum to live F. tularensis 15/10 contained antibodies to at least 3 immunodominant antigens of the cell, while serum to killed bacteria contained antibodies to only two of these. Immunoglobulins to protein antigens, absent in homologous sera to live bacteria, were detected in the sera to killed F. novicida and F. novicida-like bacteria. Both sera to F. philomiragia had antibodies reacting with LPS epitopes and immunodominant complex containing protein. In contrast to other Francisella, F. philomiragia was found to synthesize an uncommon LPS representing two major lipooligosaccharides with different molecular weights and antigenic specificity. Therefore, immune response of the host to live and killed Francisella is different: live cells more effectively induce the production of antibodies to S-LPS epitopes, while killed ones to protein antigens.  相似文献   

4.
5.
Investigation of ability of Francisella tularensis S- and R-lypopolysaccharide (LPS) preparations as well as the live bacteria with different chemotypes to interact with human lypopolysaccharide-binding protein (LBP) was carried out. It was found that LPS preparations derived from virulent(S-LPS) or isogenic avirulent mutant (R-LPS) strains of F. tularensis had markedly lower affinity to LBP as compared with typical S-LPS of Salmonella abortus and R-LPS of Yersinia pestis. It was shown that R-LPS preparation from avirulent mutant binds LPB more effectively than S-LPS from F. tularensis virulent strain. Differences in S- and R-LPS affinity were also confirmed for LPS represented by the live cells. Thus, bacteria with S-chemotype of LPS (F. tularensis 15/10) bound only 20.3% of LBP, whereas cells with R-LPS (F. tularensis 543 cap(-)) bound 39.9%. Such pattern was observed in experiments with both normal non-immune human serum and sera from people immunized with live tularemia vaccine. The latter indicates that opsonization of LPS by specific antibodies does not change its affinity to LBP. The observed more efficient binding of avirulent strain R-LPS to LBP is likely determines the more intensive host response directed to destruction and rapid elimination of the causative agent. At the same time, weak affinity of the vaccine and virulent strains S-LPS to LBP probably allows the bacterium to avoid activation of host defense mechanisms thus contributing to its long-term persistence in microorganism and development of specific immunity against tularemia.  相似文献   

6.
To further understand the role of LPS in the pathogenesis of Francisella infection, we characterized murine infection with F. novicida, and compared immunobiological activities of F. novicida LPS and the LPS from F. tularensis live vaccine strain (LVS). F. novicida had a lower intradermal LD(50) in BALB/cByJ mice than F. tularensis LVS, and mice given a lethal F. novicida dose intraperitoneally died faster than those given the same lethal F. tularensis LVS dose. However, the pattern of in vivo dissemination was similar, and in vitro growth of both bacteria in bone marrow-derived macrophages was comparable. F. novicida LPS stimulated very modest in vitro proliferation of mouse splenocytes at high doses, but F. tularensis LVS LPS did not. Murine bone marrow macrophages treated in vitro with F. novicida LPS produced IL12 and TNF-alpha, but did not produce detectable interferon-gamma, IL10, or nitric oxide; in contrast, murine macrophages treated with F. tularensis LVS LPS produced none of these mediators. In contrast to clear differences in stimulation of proliferation and especially cytokines, both types of purified LPS stimulated early protection against lethal challenge of mice with F. tularensis LVS, but not against lethal challenge with F. novicida. Thus, although LPS recognition may not be a major factor in engendering protection, the ability of F. novicida LPS to stimulate the production of proinflammatory cytokines including TNF-alpha likely contributes to the increased virulence for mice of F. novicida compared to F. tularensis LVS.  相似文献   

7.
Francisella tularensis is a Gram-negative intracellular pathogen that causes the zoonosis tularemia. Because F. tularensis LPS causes weak TLR4 activation, we hypothesized that administration of a synthetic TLR4 agonist, aminoalkyl glucosaminide phosphate (AGP), would boost the innate immune system and compensate for reduced TLR4 stimulation. Intranasal administration of AGPs induced intrapulmonary production of proinflammatory cytokines and chemokines. Mice treated with AGPs before and after inhalation of Francisella novicida exhibited augmented cytokine and inflammatory responses to infection; reduced bacterial replication in lung, liver, and spleen; and increased survival, whereas all PBS-treated control mice died within 4 days of infection, all AGP-treated mice showed prolonged time-to-death, and 30-60% of AGP-treated mice survived. The protective effect of AGP was lost in mice lacking IFN-gamma. Long-term survivors developed specific Th1 splenocyte responses and specific Abs dominated by IgG2 isotypes. Survivors were fully protected from rechallenge with aerosolized F. novicida. Thus, preventive administration of AGP successfully modulated innate immune responses to aerosolized F. novicida, leading to protective immunity to pneumonic tularemia. This is the first report of the protective effect of a TLR ligand on resistance to F. novicida-induced pneumonic tularemia.  相似文献   

8.
Francisella tularensis is a highly virulent facultative intracellular pathogen that has been categorized as a class A bioterrorism agent, and is classified into four subsp, tularensis, holarctica, mediasiatica and novicida. Although the ability of F. tularensis subsp. novicida to cause tularemia in mice is similar to the virulent subsp. tularensis and holarctica, it is attenuated in humans. It is not known whether attenuation of F. tularensis subsp. novicida in humans is resulting from a different route of trafficking within human macrophages, compared with the tularensis or holarctica subsp. Here we show that in quiescent human monocytes-derived macrophages (hMDMs), the F. tularensis subsp. novicida containing phagosome (FCP) matures into a late endosome-like stage that acquires the late endosomal marker LAMP-2 but does not fuse to lysosomes. This modulation of phagosome biogenesis by F. tularensis is followed by disruption of the phagosome at 4-12 h and subsequent bacterial escape into cytoplasm where the organism replicates. In IFN-gamma-activated hMDMs, intracellular replication of F. tularensis is completely inhibited, and is associated with failure of the organism to escape from the phagosome into the cytoplasm for up to 24 h after infection. In IFN-gamma-activated hMDMs, the FCPs acquire the lysosomal enzymes Cathepsin D, which is excluded in quiescent hMDMs. When the lysosomes of IFN-gamma-activated hMDMs are preload with Texas Red Ovalbumin or BSA-gold, the FCPs acquire both lysosomal tracers. In contrast, both lysosomal tracers are excluded from the FCPs within quiescent hMDMs. We conclude that although F. tularensis subsp. novicida is attenuated in humans, it modulates biogenesis of its phagosome into a late endosome-like compartment followed by bacterial escape into the cytoplasm within quiescent hMDMs, similar to the virulent subsp. tularensis. In IFN-gamma-activated hMDMs, the organism fails to escape into the cytoplasm and its phagosome fuses to lysosomes, similar to inert particles.  相似文献   

9.
Liu J  Zogaj X  Barker JR  Klose KE 《BioTechniques》2007,43(4):487-90, 492
Francisella tularensis is one of the most deadly bacterial agents, yet most of the genetic determinants of pathogenesis are still unknown. We have developed an efficient targeted mutagenesis strategy in the model organism F. tularensis subsp. novicida by utilizing universal priming of optimized antibiotic resistance cassettes and splicing by overlap extension (SOE). This process enables fast and efficient construction of targeted insertion mutations in F. tularensis subsp. novicida that have characteristics of nonpolar mutations; optimized targeted mutagenesis strategies will promote the study of this mysterious bacterium and facilitate vaccine development against tularemia. Moreover the general strategy of gene disruption by PCR-based antibiotic resistance cassette insertion is broadly applicable to many bacterial species.  相似文献   

10.
Studies of the molecular mechanisms of pathogenesis of Francisella tularensis, the causative agent of tularemia, have been hampered by a lack of genetic techniques for rapid targeted gene disruption in the most virulent subspecies. Here we describe efficient targeted gene disruption in F. tularensis utilizing mobile group II introns (targetrons) specifically optimized for F. tularensis. Utilizing a targetron targeted to blaB, which encodes ampicillin resistance, we showed that the system works at high efficiency in three different subspecies: F. tularensis subsp. tularensis, F. tularensis subsp. holarctica, and "F. tularensis subsp. novicida." A targetron was also utilized to inactivate F. tularensis subsp. holarctica iglC, a gene required for virulence. The iglC gene is located within the Francisella pathogenicity island (FPI), which has been duplicated in the most virulent subspecies. Importantly, the iglC targetron targeted both copies simultaneously, resulting in a strain mutated in both iglC genes in a single step. This system will help illuminate the contributions of specific genes, and especially those within the FPI, to the pathogenesis of this poorly studied organism.  相似文献   

11.
The study of the biological properties of lipopolysaccharides (LPS) of bacteria of the genus Francisella (F. tularensis, F. novicida, F. novicida-like, F. philomiragia) revealed that the preparation of Francisella LPS possessed immunomodulating and antitoxic properties in the absence of toxicity. At the same time the structure of LPS (S or R) was found to produce an essential effect of the immunobiological activity of this molecule. Thus, the S-forms of LPS proved to be more effective as immunomodulators and the R-forms of LPS, as antagonists of classical endotoxins.  相似文献   

12.
13.
Francisella novicida (U112), a close relative of the highly virulent bacterium F. tularensis, is known to produce a lipopolysaccharide that is significantly different in biological properties from the LPS of F. tularensis. Here we present the results of the structural analysis of the F. novicida LPS core part, which is found to be similar to that of F. tularensis, differing only by one additional alpha-Glc residue:where R is an O-chain, linked via a beta-bacillosamine (2,4-diamino-2,4,6-trideoxyglucose) residue. The lipid part of F. novicida LPS contains no phosphate substituent and apparently has a free reducing end, a feature also noted in F. tularensis LPS.  相似文献   

14.
It was demonstrated that the lipopolysaccharides (LPS) preparations, which were isolated from all representatives of Francisella Genus bacteria, i.e. F. tularensis, F. novicida, F. novicida-like and F. philomiragia by using the method of R.P. Darveau, R.E. Hancock (1983), were not toxic for white rats and white mice. A comparative study of toxicity of live F. tularensis bacteria (both wild and LPS-defective strains) made it possible to establish a direct correlation between the toxicity of microbes and LPS chemotype. It was found that only typical strains, which synthesize the wild-type S-LPS, caused the death of white rats and white mice in 24 hours after intraperitoneal contamination (10(9), 10(10) CFU/animal). Live bacteria of F tularensis R-mutants were not able to induce a lethal infection of rats and retained only residual virulence for mice. Other representatives of Francissela genus possessed less pronounced pathogenic properties. Thus, the toxic effect was registered, in case of white rats, only for F. novicida but not for F. novicida-like or F. philomiragia. At the same time, the two last mentioned species displayed a certain degree of virulence at high challenge doses (10(9), 10(10) CFU/animal) in respect to white mice. F. philomiragia, which generated lipoolygosaccharide (LOS) with an unusual structure, was found to be least pathogenic (25-75% of dead mice). The toxicity of bacteria, killed experimentally by different means (heating, UV-light, chloroform, acetone and formalin), was studied to define the role of bacterial proteins in the realisation of F. tularensis toxic potential in vivo. No lethal effect was exerted on experimental animals by killed microbes or purified LPS preparations. Finally, the study results show a priority role of the LPS molecule in the toxic effect of F. tularensis, which is possible in vivo only if structurally valuable molecules of live bacterial cells are available.  相似文献   

15.
Francisella tularensis causes the zoonosis tularemia in humans and is one of the most virulent bacterial pathogens. We utilized a global proteomic approach to characterize protein changes in bronchoalveolar lavage fluid from mice exposed to one of three organisms, F. tularensis ssp. novicida, an avirulent mutant of F. tularensis ssp. novicida (F.t. novicida-ΔmglA), and Pseudomonas aeruginosa. The composition of bronchoalveolar lavage fluid (BALF) proteins was altered following infection, including proteins involved in neutrophil activation, oxidative stress, and inflammatory responses. Components of the innate immune response were induced including the acute phase response and the complement system; however, the timing of their induction varied. F. tularensis ssp. novicida infected mice do not appear to have an effective innate immune response in the first hours of infection; however, within 24 h, they show an upregulation of innate immune response proteins. This delayed response is in contrast to P. aeruginosa infected animals which show an early innate immune response. Likewise, F.t. novicida-ΔmglA infection initiates an early innate immune response; however, this response is diminished by 24 h. Finally, this study identifies several candidate biomarkers, including Chitinase 3-like-1 (CHI3L1 or YKL-40) and peroxiredoxin 1, that are associated with F. tularensis ssp. novicida but not P. aeruginosa infection.  相似文献   

16.
Francisella novicida is a gram-negative pathogen that can induce disease in mice that mimics human tularemia, and is nearly identical to Francisella tularensis at the genomic level. In this work a number of antibiotic marker cassettes that incorporate a strong F. novicida promoter is constructed, which greatly enhances selection in F. novicida and F. tularensis. Two low-copy plasmid vectors based on a broad-host-range plasmid, and an integrating vector have also been made, and these can be used for genetic complementation. Two general approaches to deletion mutagenesis in F. novicida is also described.  相似文献   

17.
18.
19.
We have sequenced fragments of five metabolic housekeeping genes and two genes encoding outer membrane proteins from 81 isolates of Francisella tularensis, representing all four subspecies. Phylogenetic clustering of gene sequences from F. tularensis subsp. tularensis and F. tularensis subsp. holarctica aligned well with subspecies affiliations. In contrast, F. tularensis subsp. novicida and F. tularensis subsp. mediasiatica were indicated to be phylogenetically incoherent taxa. Incongruent gene trees and mosaic structures of housekeeping genes provided evidence for genetic recombination in F. tularensis.  相似文献   

20.
Taurine: new implications for an old amino acid   总被引:2,自引:0,他引:2  
We describe here a technique for allelic exchange in Francisella tularensis subsp. novicida utilizing polymerase chain reaction (PCR) products. Linear PCR fragments containing gene deletions with an erythromycin resistance cassette insertion were transformed into F. tularensis. The subsequent ErmR progeny were found to have undergone allelic exchange at the correct location in the genome; the minimum flanking homology necessary was 500 bp. This technique was used to create mglA, iglC, bla, and tul4 mutants in F. tularensis subsp. novicida strains. The mglA and iglC mutants were defective for intramacrophage growth, and the tul4 mutant lacked detectable Tul4 by Western immunoblot, as expected. Interestingly, the bla mutant maintained resistance to ampicillin, indicating the presence of multiple ampicillin resistance genes in F. tularensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号