首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The TEC-family protein tyrosine kinases ITK, RLK and TEC have been identified as key components of T-cell-receptor signalling that contribute to the regulation of phospholipase C-gamma, the mobilization of Ca(2+) and the activation of mitogen-activated protein kinases. Recent data also show that TEC kinases contribute to T-cell-receptor-driven actin reorganization and cell polarization, which are required for productive T-cell activation. Functional studies have implicated TEC kinases as important mediators of pathways that control the differentiation of CD4(+) T helper cells. Here, we review studies of signalling pathways that involve TEC kinases and how these pathways might contribute to the regulation of T-helper-cell differentiation and function.  相似文献   

2.
Directing both innate and adaptive immune responses against foreign pathogens with correct timing, location and specificity is a fundamental objective for the immune system. Full activation of CD4+ T cells requires the binding of peptide-MHC complexes coupled with accessory signals provided by the antigen-presenting cell. However, aberrant activation of the T-cell receptor alone in mature T cells can produce a long-lived state of functional unresponsiveness, known as anergy. Recent studies probing both immune signalling pathways and the ubiquitin-proteasome system have helped to refine and elaborate current models for the molecular mechanisms underlying T-cell anergy. Controlling anergy induction and maintenance will be a key component in the future to mitigate unwanted T-cell activation that leads to autoimmune disease.  相似文献   

3.
SOCS proteins, cytokine signalling and immune regulation   总被引:1,自引:0,他引:1  
Suppressor of cytokine signalling (SOCS) proteins are inhibitors of cytokine signalling pathways. Studies have shown that SOCS proteins are key physiological regulators of both innate and adaptive immunity. These molecules positively and negatively regulate macrophage and dendritic-cell activation and are essential for T-cell development and differentiation. Evidence is also emerging of the involvement of SOCS proteins in diseases of the immune system. In this Review we bring together data from recent studies on SOCS proteins and their role in immunity, and propose a cohesive model of how cytokine signalling regulates immune-cell function.  相似文献   

4.
Binding of inflammatory cytokines to their receptors, stimulation of pathogen recognition receptors by pathogen-associated molecular patterns, and DNA damage induce specific signalling events. A cell that is exposed to these signals can respond by activation of NF-kappaB, mitogen-activated protein kinases and interferon regulatory factors, resulting in the upregulation of antiapoptotic proteins and of several cytokines. The consequent survival may or may not be accompanied by an inflammatory response. Alternatively, a cell can also activate death-signalling pathways, resulting in apoptosis or alternative cell death such as necrosis or autophagic cell death. Interplay between survival and death-promoting complexes continues as they compete with each other until one eventually dominates and determines the cell's fate. RIP1 is a crucial adaptor kinase on the crossroad of these stress-induced signalling pathways and a cell's decision to live or die. Following different upstream signals, particular RIP1-containing complexes are formed; these initiate only a limited number of cellular responses. In this review, we describe how RIP1 acts as a key integrator of signalling pathways initiated by stimulation of death receptors, bacterial or viral infection, genotoxic stress and T-cell homeostasis.  相似文献   

5.
Integrin-mediated cell adhesion regulates a multitude of cellular responses, including proliferation, survival and cross-talk between different cellular signalling pathways. So far, integrins have been mainly shown to convey permissive signals enabling anchorage-dependent receptor tyrosine kinase signalling. Here we show that a collagen-binding integrin alpha(1)beta(1) functions as a negative regulator of epidermal growth factor receptor (EGFR) signalling through the activation of a protein tyrosine phosphatase. The cytoplasmic tail of alpha(1) integrin selectively interacts with a ubiquitously expressed protein tyrosine phosphatase TCPTP (T-cell protein tyrosine phosphatase) and activates it after cell adhesion to collagen. The activation results in reduced EGFR phosphorylation after EGF stimulation. Introduction of the alpha(1) cytoplasmic domain peptide into cells induces phosphatase activation and inhibits EGF-induced cell proliferation and anchorage-independent growth of malignant cells. These data are the first demonstration of the regulation of TCPTP activity in vivo and represent a new molecular paradigm of integrin-mediated negative regulation of receptor tyrosine kinase signalling.  相似文献   

6.
Our understanding of the key players involved in the differential regulation of T-cell responses during inflammation, infection and auto-immunity is fundamental for designing efficient therapeutic strategies against immune diseases. With respect to this, the inhibitory role of the lipid mediator prostaglandin E(2) (PGE(2)) in T-cell immunity has been documented since the 1970s. Studies that ensued investigating the underlying mechanisms substantiated the suppressive function of micromolar concentrations of PGE(2) in T-cell activation, proliferation, differentiation and migration. However, the past decade has seen a revolution in this perspective, since nanomolar concentrations of PGE(2) have been shown to potentiate Th1 and Th17 responses and aid in T-cell proliferation. The understanding of concentration-specific effects of PGE(2) in other cell types, the development of mice deficient in each subtype of the PGE(2) receptors (EP receptors) and the delineation of signalling pathways mediated by the EP receptors have enhanced our understanding of PGE(2) as an immune-stimulator. PGE(2) regulates a multitude of functions in T-cell activation and differentiation and these effects vary depending on the micro-environment of the cell, maturation and activation state of the cell, type of EP receptor involved, local concentration of PGE(2) and whether it is a homeostatic or inflammatory scenario. In this review, we compartmentalize the various aspects of this complex relationship of PGE(2) with T lymphocytes. Given the importance of this molecule in T-cell activation, we also address the possibility of using EP receptor antagonism as a potential therapeutic approach for some immune disorders.  相似文献   

7.
Feedback control of T-cell receptor activation   总被引:5,自引:0,他引:5  
The specificity and sensitivity of T-cell recognition is vital to the immune response. Ligand engagement with the T-cell receptor (TCR) results in the activation of a complex sequence of signalling events, both on the cell membrane and intracellularly. Feedback is an integral part of these signalling pathways, yet is often ignored in standard accounts of T-cell signalling. Here we show, using a mathematical model, that these feedback loops can explain the ability of the TCR to discriminate between ligands with high specificity and sensitivity, as well as provide a mechanism for sustained signalling. The model also explains the recent counter-intuitive observation that endogenous 'null' ligands can significantly enhance T-cell signalling. Finally, the model may provide an archetype for receptor switching based on kinase-phosphatase switches, and thus be of interest to the wider signalling community.  相似文献   

8.
The paracaspase mucosa-associated lymphoid tissue 1 (MALT1) is central to lymphocyte activation and lymphomagenesis. MALT1 mediates antigen receptor signalling to NF-κB by acting as a scaffold protein. Furthermore, MALT1 has proteolytic activity that contributes to optimal NF-κB activation by cleaving the NF-κB inhibitor A20. Whether MALT1 protease activity is involved in other signalling pathways, and the identity of the relevant substrates, is unknown. Here, we show that T-cell receptors (TCR) activation, as well as overexpression of the oncogenic API2-MALT1 fusion protein, results in proteolytic inactivation of CYLD by MALT1, which is specifically required for c-jun N-terminal kinase (JNK) activation and the inducible expression of a subset of genes. These results indicate a novel role for MALT1 proteolytic activity in TCR-induced JNK activation and reveal CYLD cleavage as the underlying mechanism.  相似文献   

9.
The activation of leukocyte integrins through diverse receptors results in transformation of the integrin from a bent, resting form to an extended conformation, which has at least two states of ligand-binding activity. This highly regulated activation process is essential for T cell migration and the formation of an immunological synapse. The signalling events that drive integrin activation are complex. Some key players have been well-characterized, but other aspects of the signalling mechanisms involved are still unclear. This Review focuses on the integrin lymphocyte function-associated antigen 1 (LFA1; also known as αLβ2 integrin), which is expressed by T cells, and explores how disparate signalling pathways synergize to regulate LFA1 activity.  相似文献   

10.
Intracellular signalling controlling integrin activation in lymphocytes   总被引:1,自引:0,他引:1  
Since the discovery that integrins at the surface of lymphocytes undergo dynamic changes in their adhesive activity after stimulation through the T-cell receptor or stimulation with chemokines, intensive research has been carried out in an attempt to clarify the signalling events that lead to the activation of integrins. Whereas structural studies have provided us with a vivid picture of the conformational flexibility of integrins, the signalling pathways that regulate these conformational changes (known as inside-out signalling) have been elusive. However, as I discuss here, recent studies have provided new insight into the pathways that control the regulation of integrin activity and the coordination of complex cellular functions, such as the homing of lymphocytes and the formation of an immunological synapse.  相似文献   

11.
The mTOR (mammalian target of rapamycin) signalling pathway is a key regulator of cell growth and is controlled by growth factors and nutrients such as amino acids. Although signalling pathways from growth factor receptors to mTOR have been elucidated, the pathways mediating signalling by nutrients are poorly characterized. Through a screen for protein kinases active in the mTOR signalling pathway in Drosophila we have identified a Ste20 family member (MAP4K3) that is required for maximal S6K (S6 kinase)/4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] phosphorylation and regulates cell growth. Importantly, MAP4K3 activity is regulated by amino acids, but not the growth factor insulin and is not regulated by the mTORC1 inhibitor rapamycin. Our results therefore suggest a model whereby nutrients signal to mTORC1 via activation of MAP4K3.  相似文献   

12.
HIV-1 viral proteins, particularly the env protein, are homologous to 22 AIDS autoantigens, suggesting their creation by antiviral antibodies subsequently targeting human homologues. They include antibodies to T-cell receptors, CD4 and CD95, complement components, IgG, TNF and other immune-related proteins. Autoantibodies may compromise the immune system via knockdown of these key proteins, and autoimmune attack on the immune system itself, as supported by immune activation in early stages of infection and during the transition to AIDS. Over 500 human proteins contain pentapeptides or longer consensi, identical to viral peptides. Such homology explains the extensive viral/human interactome, likely related to the ability of viral homologues to compete with human counterparts as binding partners. Pathway analysis of these homologous proteins revealed their involvement in immune-related networks (e.g. natural killer cell toxicity/toll, T-cell/B-cell receptor signalling/antigen processing) and viral and bacterial entry and defence pathways (phagosome/lysosome pathways, DNA sensing/NOD/RIG-1 pathways) relevant to AIDS pathogenesis. At its inception, AIDS may have an autoimmune component selectively targeting the immune system. Immunosuppressive therapy or antibody removal, which has already achieved some success, might be therapeutically beneficial, particularly if targeted at removal of the culpable antibodies, via affinity dialysis.  相似文献   

13.
While much is known about the signalling pathways within lymphocytes that are triggered during activation, much less is known about how the various cell surface molecules on T cells initiate these events. To address this, we have focused on the primary interaction that drives T-cell activation, namely the binding of a particular T-cell receptor (TCR) to peptide-MHC ligands, and find a close correlation between biological activity and off-rate; that is, the most stimulatory TCR ligands have the slowest dissociation rates. In general, TCRs from multiple histocompatibility complex (MHC) class-II-restricted T cells have half-lives of 1-11s at 25 degrees C, a much narrower range than found with antibodies and suggesting a strong selection for an optimum dissociation rate. TCR ligands with even faster dissociation rates tend to be antagonists. To observe the effects of these different ligands in their physiological setting, we made gene fusions of various molecules with green fluorescent protein (GFP), transfected them into the relevant lymphocytes, and observed their movements during T-cell recognition using multicolour video microscopy. We find that clustering of CD3zeta-GFP and CD4-GFP on the Tcell occurs concomitantly or slightly before the first rise in calcium by the T cell, and that various GFP-labelled molecules on the B-cell side cluster shortly thereafter (ICAM-1, class II MHC, CD48), apparently driven byT-cell molecules. Most of this movement towards the interface is mediated by signals through the co-stimulatory receptors, CD28 and LFA-1, and involves myosin motors and the cortical actin cytoskeleton. Thus, we have proposed that the principal mechanism by which co-stimulation enhances T-cell responsiveness is by increasing the local density of T-cell activation molecules, their ligands and their attendant signalling apparatus. In collaboration with Michael Dustin and colleagues, we have also found that the formation and stability of the TCR-peptide-MHC cluster at the centre of the interaction cap between T and B cells is highly dependent on the dissociation rate of the TCR and its ligand. Thus, we are able to link this kinetic parameter to the formation of a cell surface structure that is linked to and probably causal with respect to T-cell activation.  相似文献   

14.
Phosphoinositide 3-kinases (PI3Ks) regulate numerous biological processes, including cell growth, differentiation, survival, proliferation, migration and metabolism. In the immune system, impaired PI3K signalling leads to immunodeficiency, whereas unrestrained PI3K signalling contributes to autoimmunity and leukaemia. New insights into the role of PI3Ks in lymphocyte biology have been derived from gene-targeting studies, which have identified the PI3K subunits that are involved in B-cell and T-cell signalling. In particular, the catalytic subunit p110delta seems to be adapted to transmit antigen-receptor signalling in B and T cells. Additional recent work has provided new insights into the molecular interactions that lead to PI3K activation and the signalling pathways that are regulated by PI3K.  相似文献   

15.
Cope AP 《Arthritis research》2002,4(Z3):S197-S211
The strong association between specific alleles encoded within the MHC class II region and the development of rheumatoid arthritis (RA) has provided the best evidence to date that CD4+ T cells play a role in the pathogenesis of this chronic inflammatory disease. However, the unusual phenotype of synovial T cells, including their profound proliferative hyporesponsiveness to TCR ligation, has challenged the notion that T-cell effector responses are driven by cognate cartilage antigens in inflamed synovial joints. The hierarchy of T-cell dysfunction from peripheral blood to inflamed joint suggests that these defects are acquired through prolonged exposure to proinflammatory cytokines such as tumour necrosis factor (TNF)-alpha. Indeed, there are now compelling data to suggest that chronic cytokine activation may contribute substantially to the phenotype and effector function of synovial T cells. Studies reveal that chronic exposure of T cells to TNF uncouples TCR signal transduction pathways by impairing the assembly and stability of the TCR/CD3 complex at the cell surface. Despite this membrane-proximal effect, TNF selectively uncouples downstream signalling pathways, as is shown by the dramatic suppression of calcium signalling responses, while Ras/ERK activation is spared. On the basis of these data, it is proposed that T-cell survival and effector responses are driven by antigen-independent, cytokine-dependent mechanisms, and that therapeutic strategies that seek to restore T-cell homeostasis rather than further depress T-cell function should be explored in the future.  相似文献   

16.
Adiponectin is an abundantly circulating adipokine, orchestrating its effects through two 7-transmembrane receptors (AdipoR1 and AdipoR2). Steroidogenesis is regulated by a variety of neuropeptides and adipokines. Earlier studies have reported adipokine mediated steroid production. A key rate-limiting step in steroidogenesis is cholesterol transportation across the mitochondrial membrane by steroidogenic acute regulatory protein (StAR). Several signalling pathways regulate StAR expression. The actions of adiponectin and its role in human adrenocortical steroid biosynthesis are not fully understood. The aim of this study was to investigate the effects of adiponectin on StAR protein expression, steroidogenic genes, and cortisol production and to dissect the signalling cascades involved in the activation of StAR expression. Using qRT-PCR, Western blot analysis and ELISA, we have demonstrated that stimulation of human adrenocortical H295R cells with adiponectin results in increased cortisol secretion. This effect is accompanied by increased expression of key steroidogenic pathway genes including StAR protein expression via ERK1/2 and AMPK-dependent pathways. This has implications for our understanding of adiponectin receptor activation and peripheral steroidogenesis. Finally, our study aims to emphasise the key role of adipokines in the integration of metabolic activity and energy balance partly via the regulation of adrenal steroid production.  相似文献   

17.
Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation   总被引:17,自引:0,他引:17  
Sphingosine kinase 1 is an agonist-activated signalling enzyme that catalyses the formation of sphingosine 1-phosphate, a lipid second messenger that has been implicated in a number of agonist-driven cellular responses, including stimulation of cell proliferation, inhibition of apoptosis and expression of inflammatory molecules. Although agonist-induced stimulation of sphingosine kinase activity is critical in a number of signalling pathways, nothing has been known of the molecular mechanism of this activation. Here we show that this activation results directly from phosphorylation of sphingosine kinase 1 at Ser225, and present several lines of evidence to show compellingly that the activating kinase is ERK1/2 or a close relative. Furthermore, we show that phosphorylation of sphingosine kinase 1 at Ser225 results not only in an increase in enzyme activity, but is also necessary for translocation of the enzyme from the cytosol to the plasma membrane. Thus, these studies have elucidated the mechanism of agonist-mediated sphingosine kinase activation, and represent a key finding in understanding the regulation of sphingosine kinase/sphingosine 1-phosphate-controlled signalling pathways.  相似文献   

18.
Steroid hormones are known to mediate rapid non-genomic effects occurring within minutes, besides the classical genomic actions mediated by the nuclear translocation of the cytoplasmic glucocorticoid receptor (GR). The glucocorticoid hormone (GC) has significant role in the regulation of T-cell activation; however, the cross-talk between the GC and T-cell receptor (TcR) signal transducing pathways are still to be elucidated. We examined the rapid effects of GC exposure on in vitro cultured human T-cells. Our results showed that Dexamethasone (DX), a GC analogue, when applied at high dose (10 microM), induced rapid (within 5 min) tyrosine-phosphorylation events in Jurkat cells. Short DX pre-treatment strongly inhibited the tyrosine-phosphorylation stimulated by CD3 cross-linking. Furthermore, we also investigated the phosphorylation status of ZAP-70, an important member of tyrosine kinase mediated signalling pathway of TcR-elicited T-cell activation. Here, we demonstrate that high dose DX induced a rapid ZAP-70 tyrosine-phosphorylation in Jurkat T-cells. DX-induced ZAP-70 phosphorylation could be inhibited by RU486 (GR antagonist), suggesting that this process was GR mediated. DX-induced ZAP-70 phosphorylation did not occur in the absence of active p56-lck as examined in the p56-lck kinase-deficient Jurkat cell line JCaM1.6. Our results show that DX, at a high dose, can rapidly influence the initial tyrosine-phosphorylation events of the CD3 signalling pathway in Jurkat cells, thereby modifying TcR-derived signals. Lck and ZAP-70 represent an important molecular link between the TcR and GC signalling pathways.  相似文献   

19.
20.
In the past decade, advances in genetic engineering and mouse knockout technology have transformed our understanding of the immune system. In particular, new perspectives on T-cell development, co-stimulation and activation have emerged from the study of single and multiple gene-knockout animals, as well as from conditional knockout and 'knock-in' mutants. Analysis of these animals has clarified important intracellular signalling pathways and has shed light on the regulatory mechanisms that govern normal immune responses and autoimmunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号