首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellulolytic activity of the contents of the intestinal tract of populations of roach and rudd in four Tyrolean lakes was studied. Much of the activity was taken up with the diet. In fish feeding on plants and detritus a lower cellulolytic activity was found than in fish feeding on zooplankton or on arthropods. A seasonal pattern of cellulolytic activity was demonstrated with a peak in the autumn. It is assumed that the cellulolytic activity found in the intestinal contents of cyprinids is insufficient for the digestion of fibre, but that is suffices—particularly in omnivorous species—to support the breakdown of cell walls.  相似文献   

2.
Summary Twelve fungal cultures belonging to the genera ofAspergillus, Tricboderma, Chaetomium, Stachybotrys, andHypocrea were screened for the production of cellulolytic activity. All twelve were found to degrade xylan, avicel, and carboxymethylcellulose, More cellulolytic activity was obtained with shaken cultures than with still cultures and the addition of citrate-phosphate buffer to the media greatly depressed the levels of cellulolytic activity. Varying the composition of the mineral salts in the medium had no effect on the cellulolytic activity.The growth ofAspergillus wentii under controlled conditions in a bioreactor showed that the cellulolytic activity was not affected by the aeration rate or the type of stirrer. The rate of stirring, however, did effect the cellulolytic activity, as at lower stirring speeds considerable wall growth occurred which resulted in low levels of cellulolytic activity.Culture supernatant fromAspergillus wentii was found to hydrolyze from 30–32% of Solka-Floc and from 2–10% of corn cobs, wheat straw, and newsprint. The extensive hydrolysis of the Solka-Floc indicates that with suitably treated cellulosic wastes and appropriate enzymes, appreciable amounts of sugars could be obtained.  相似文献   

3.
The effect of glycerol on the growth, adhesion, and cellulolytic activity of two rumen cellulolytic bacterial species,Ruminococcus flavefaciens andFibrobacter succinogenes subsp.succinogenes, and of an anaerobic fungal species,Neocallimastix frontalis, was studied. At low concentrations (0.1–1%), glycerol had no effect on the growth, adhesion, and cellulolytic activity of the two bacterial species. However, at a concentration of 5%, it greatly inhibited their growth and cellulolytic activity. Glycerol did not affect the adhesion of bacteria to cellulose. The growth and cellulolytic activity ofN. frontalis were inhibited by glycerol, increasingly so at higher concentrations. At a concentration of 5%, glycerol totally inhibited the cellulolytic activity of the fungus. Thus, glycerol can be added to animal feed at low concentrations.  相似文献   

4.
A group I Bacillus strain, DLG, was isolated and characterized as being most closely related to Bacillus subtilis. When grown on any of a variety of sugars, the culture supernatant of this isolate was found to possess cellulolytic activity, as demonstrated by degradation of trinitrophenyl-carboxymethyl cellulose. Growth in medium containing cellobiose or glucose resulted in the greatest production of cellulolytic activity. The cellulolytic activity was not produced until the stationary phase of growth, and the addition of glucose or cellobiose to a culture in this phase had no apparent effect on enzyme production. Fractionation of the culture supernatant showed that the molecular weight of the enzymatic activity was less than 100,000. Maximum cellulolytic activity in assays was observed at pH 4.8 and at 58C, although maximum thermal stability of the activity. Kinetic experiments suggested that more than one enzyme was acting upon trinitrophenyl-carboxymethyl cellulose. Exocellular protein produced by this Bacillus isolate showed roughly one-fifth the cellulolytic activity displayed by Trichoderma reesei C30 on noncrystalline, cellulosic substrates. In contrast to T. reesei cellulase, the Bacillus enzymatic activity showed no ability to degrade crystalline forms of cellulose, nor was cellobiase activity detectable.  相似文献   

5.
A group I Bacillus strain, DLG, was isolated and characterized as being most closely related to Bacillus subtilis. When grown on any of a variety of sugars, the culture supernatant of this isolate was found to possess cellulolytic activity, as demonstrated by degradation of trinitrophenyl-carboxymethyl cellulose. Growth in medium containing cellobiose or glucose resulted in the greatest production of cellulolytic activity. The cellulolytic activity was not produced until the stationary phase of growth, and the addition of glucose or cellobiose to a culture in this phase had no apparent effect on enzyme production. Fractionation of the culture supernatant showed that the molecular weight of the enzymatic activity was less than 100,000. Maximum cellulolytic activity in assays was observed at pH 4.8 and at 58C, although maximum thermal stability of the activity. Kinetic experiments suggested that more than one enzyme was acting upon trinitrophenyl-carboxymethyl cellulose. Exocellular protein produced by this Bacillus isolate showed roughly one-fifth the cellulolytic activity displayed by Trichoderma reesei C30 on noncrystalline, cellulosic substrates. In contrast to T. reesei cellulase, the Bacillus enzymatic activity showed no ability to degrade crystalline forms of cellulose, nor was cellobiase activity detectable.  相似文献   

6.
Efficient cellulolytic enzymes are needed to degrade recalcitrant plant biomass during ethanol purification and make lignocellulosic biofuels a cost-effective alternative to fossil fuels. Despite the large number of insect species that feed on lignocellulosic material, limited availability of quantitative studies comparing cellulase activity among insect taxa constrains identification of candidate species for more targeted identification of effective cellulolytic systems. We describe quantitative determinations of the cellulolytic activity in gut or head-derived fluids from 68 phytophagous or xylophagous insect species belonging to eight different taxonomic orders. Enzymatic activity was determined for two different substrates, carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC), approximating endo-β-1,4-glucanase and complete cellulolytic activity, respectively. Highest CMC gut fluid activities were found in Dictyoptera, Coleoptera, Isoptera, and Orthoptera, while highest MCC gut fluid activities were found in Coleoptera, Hymenoptera, Lepidoptera, and Orthoptera. In most cases, gut fluid activities were greater with CMC compared to MCC substrate, except in Diptera, Hymenoptera, and Lepidoptera. In contrast, cellulolytic activity levels in most head fluids were greater on the MCC substrate. Our data suggests that a phylogenetic relationship may exist for the origin of cellulolytic enzymes in insects, and that cellulase activity levels correlate with taxonomic classification, probably reflecting differences in plant host or feeding strategies.  相似文献   

7.
Summary A bioassay is developed for testing growth factors present in fungal extracts and acting on a consortium of cellulolytic bacteria produced in a continuous anaerobic digester inoculated with rumen liquor and fed with carboxymethylcellulose. Fungal extracts stimulated overall biomass production of the cellulolytic bacterial consortium without changing specific cellulolytic activity.  相似文献   

8.
In studies on cellulolytic and pectolytic activity of C. destructans, it was found that only one of the twenty isolates studied exhibited cellulolytic activity. The total activity of this isolate was similar in media with CMC and powdered cellulose. The specific activity was, however, two times higher with powdered cellulose. All isolates identified as pathogenic to fir and to pine produced pectolytic enzymes. Not all of them, however, exhibited exo- and endo-PMG activity. In general, an increase of total activity of exo-PMG was accompanied by an increase in the specific, activity. Of the non-pathogenic isolates, only one did not show pectolytic activity. The results of our studies have revealed that there exist no significant differences in pectolytic activity between the isolates pathogenic and non-pathogenic to fir and pine. Also, the isolates belonging to both groups were not cellulolytic except one non-pathogenic.  相似文献   

9.
Summary The cellulolytic activity of the culture filtrates of two strong cellulose decomposers namely Penicillium oxalicum and Helminthosporium cyclops was studied. The culture age influenced markedly the cellulolytic activity and two weeks of growth were found to establish the highest activity. The highest activity was recorded at pH 4 and pH 5 in case of Penicillium oxalicum and Helminthosporium cyclops respectively. In both experimental fungi, 40° C was the most suitable temperature for the cellulolytic action. The cellulase activity of the filtrate was found to be comparatively stable for a long time. The cellulase enzymes of both organisms were found to be strongly adaptive.  相似文献   

10.
In studies on the effect of pH and temperature on cellulolytic and pectolytic activity of C. destructans, it was found that the isolates used produced only endoglucanases. The temperature and pH affected the synthesis of these enzymes. Fungi cultured at 26°C produced more of these enzymes than those grown at the two other temperatures. At 10°C, only one isolate produced minute amounts of endoglucanases. None of fungi studied exhibited cellulolytic activity in cultures grown at 20°C. Cellulolytic activity was found only in acidic media (pH 5.0). The fungi studied exhibited higher pectolytic than cellulolytic activity. In the post culture liquids of these organisms, both types of pectolytic enzymes (exo- and endo-PMG) were detected. Different temperature and pH values affected the production of these enzymes differently in various isolates.  相似文献   

11.
Complexes of cellulolytic enzymes and xylanase were precipitated and concentrated by various methods from post-culture liquids of Aspergillus terreus F-143, containing cellucotton as carbon source. The best results in regard to the specific activity of the preparations were obtained by precipitation of enzymes with acetone-denatured ethanol. Besides high cellulolytic and xylanase activity the crude enzyme preparation showed the presence of small amounts of amylase, protease and polygalacturonase.  相似文献   

12.
A genomic bank of Cellulomonas flavigena was constructed in E. coli using the pUC18 vector, and over 14000 clones screened for cellulolytic activity. Three different cellulolytic enzyme genes were cloned, one coding for an endo-β-glucanase (pJS10, CMC activity) and two coding for β-glucosidases, each with a distinct substrate specificity (pJS3, X-glu, and pJS4, X-glu and MUC activities). These three inserts have different restriction patterns to each other and the previously isolated cellulolytic enzyme genes from C. fimi and C. uda.  相似文献   

13.
Simple cultural test for relative cellulolytic activity of fungi   总被引:1,自引:4,他引:1       下载免费PDF全文
A simple method is described for determining the relative cellulolytic activity of fungi. Opaque columns of an agar medium containing a partially crystalline cellulose preparation were inoculated with the fungi. Depth of the clear zone that developed beneath the growing cultures provided a visual measure of cellulolytic activity on a continuous, cumulative basis. Depth of clearing (DC) was determined for 25 species of fungi differing widely in cellulolytic activity, and compared by correlation analysis with results of three other methods for measuring cellulolytic activity. Relatively high coefficients of correlation (greater than 0.6) were obtained between DC and weight loss of cotton sliver, loss in tensile strength of cotton duck, and carboxymethyl cellulase activity in culture filtrates. In comparison with conventional assay procedures, the clearing method offered several advantages: (i) results were at least as well correlated with the capacity to utilize native cellulose as a substrate; (ii) the method measured activity of growing cultures rather than culture filtrates, thus involving less risk of losses due to product inhibition, binding, or denaturation of enzymes; (iii) repeated measurements were made on the same experimental set up, so that errors due to arbitrarily selected times of harvest were avoided conveniently; and (iv) the method required less working time and very simple equipment, making it convenient for large-scale screening tests.  相似文献   

14.
Cellulase production by Aureobasidium pullulans from the temperate regions has remained speculative, with most studies reporting no activity at all. In the current study, tropical isolates from diverse sources were screened for cellulase production. Isolates were grown on a synthetic medium containing cell walls of Msasa tree (Brachystegia sp.) as the sole carbon source, and their cellulolytic activities were measured using carboxymethyl cellulose and alpha-cellulose as substrates. All isolates studied produced carboxymethyl cellulase (endoglucanase) and alpha-cellulase (exoglucanase) activity. Endoglucanase-specific activities of ten selected isolates ranged from 2.375 to 12.884 micromol glucose.(mg protein)-1.h-1, while activities on alpha-cellulose (exoglucanase activity) ranged from 0.293 to 22.442 micromol glucose.(mg protein)-1.day-1. Carboxymethyl cellulose induced the highest cellulase activity in the selected isolates, while the isolates showed variable responses to nitrogen sources. The current study indicates that some isolates of A. pullulans of tropical origin produce significant extracellular cellulolytic activity and that crude cell walls may be good inducers of cellulolytic activity in A. pullulans.  相似文献   

15.
Cellulolytic activities of three bacterial consortia derived from a forest soil sample from Chaco region, Argentina, were characterized. The phylogenetic analysis of consortia revealed two main highly supported groups including Achromobacter and Pseudomonas genera. All three consortia presented cellulolytic activity. The carboxymethylcellulase (CMCase) and total cellulase activities were studied both quantitatively and qualitatively and optimal enzymatic conditions were characterized and compared among the three consortia. Thermal and pH stability were analyzed. Based on its cellulolytic activity, one consortium was selected for further characterization by zymography. We detected a specific protein of 55 kDa with CMCase activity. In this study, we have shown that these consortia encode for cellulolytic enzymes. These enzymes could be useful for lignocellulosic biomass degradation into simple components and for different industrial applications.  相似文献   

16.
Unlike lower termites, xylophagous higher termites thrive on wood without the aid of symbiotic protists. In the higher termite Nasutitermes takasagoensis, both endogenous endo-β-1,4-glucanase and β-glucosidase genes are expressed in the midgut, which is believed to be the main site of cellulose digestion. To further explore the detailed cellulolytic system in the midgut of N. takasagoensis, we performed immunohistochemistry and digital light microscopy to determine distributions of cellulolytic enzymes in the salivary glands and the midgut as well as the total cellulolytic activity in the midgut. Although cellulolytic enzymes were uniformly produced in the midgut epithelium, the concentration of endo-β-1,4-glucanase activity and luminal volume in the midgut were comparable to those of the wood-feeding lower termite Coptotermes formosanus, which digests cellulose with the aid of hindgut protists. However, the size of ingested wood particles was considerably larger in N. takasagoensis than that in C. formosanus. Nevertheless, it is possible that the cellulolytic system in the midgut of N. takasagoensis hydrolyzes highly crystalline cellulose to a certain extent. The glucose produced did not accumulate in the midgut lumen. Therefore, the present study suggests that the midgut of the higher termite provides the necessary conditions for cellulolysis.  相似文献   

17.
18.
A microbial consortium with a high cellulolytic activity was enriched to degrade raw corn stover powder (RCSP). This consortium degraded more than 51% of non-sterilized RCSP or 81% of non-sterilized filter paper within 8 days at 40 °C under facultative anoxic conditions. Cellulosome-like structures were observed in scanning electron micrographs (SEM) of RCSP degradation residue. The high cellulolytic activity was maintained during 40 subcultures in a medium containing cellulosic substrate. Small ribosomal gene sequence analyses showed the consortium contains uncultured and cultured bacteria with or without cellulolytic activities. Among these bacteria, some are anaerobic others aerobic. Analyses of the culture filtrate showed a typical anoxic polysaccharide fermentation during the culturing process. Reducing sugar concentration increased at early stage followed by various fermentation products that were consumed at the late stage.  相似文献   

19.
A mixed inoculum of cellulolytic rumen bacteria depressed straw degradation by a mixed culture of cellulolytic fungi grown in the presence of Methanobrevibacter smithii. The inhibitory effect appeared to be caused by Ruminococcus albus strain JI and R. flavefaciens strain 007. Ruminococcus albus strain J1 also depressed straw degradation by the fungi, but R. albus strain SY3 and three strains of Bacteroides (Fibrobacter) succinogenes tested showed little or no inhibitory activity. It seems that some ruminococci show competitive or antagonistic activity towards certain rumen fungi.  相似文献   

20.
Nine thermophilic cellulolytic clostridial isolates and four other noncellulolytic bacterial isolates were isolated from self-heated biocompost via preliminary enrichment culture on microcrystalline cellulose. All cellulolytic isolates grew vigorously on cellulose, with the formation of either ethanol and acetate or acetate and formate as principal fermentation products as well as lactate and glycerol as minor products. In addition, two out of nine cellulolytic strains were able to utilize xylan and pretreated wood with roughly the same efficiency as for cellulose. The major products of xylan fermentation were acetate and formate, with minor contributions of lactate and ethanol. Phylogenetic analyses of 16S rRNA and glycosyl hydrolase family 48 (GH48) gene sequences revealed that two xylan-utilizing isolates were related to a Clostridium clariflavum strain and represent a distinct novel branch within the GH48 family. Both isolates possessed high cellulase and xylanase activity induced independently by either cellulose or xylan. Enzymatic activity decayed after growth cessation, with more-rapid disappearance of cellulase activity than of xylanase activity. A mixture of xylan and cellulose was utilized simultaneously, with a significant synergistic effect observed as a reduction of lag phase in cellulose degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号