首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca(v)beta subunits of voltage-gated calcium channels contain two conserved domains, a src-homology-3 (SH3)-domain and a guanylate kinase-like (GK)-domain. The SH3-domain is split, with its final (fifth) beta-strand separated from the rest of the domain by an intervening sequence termed the HOOK-domain, whose sequence varies between Ca(v)beta subunits. Here we have been guided by the recent structural studies of Ca(v)beta subunits in the design of specific truncated constructs, with the goal of investigating the role of the HOOK-domain of Ca(v)beta subunits in the modulation of inactivation of N-type calcium channels. We have coexpressed the beta subunit constructs with Ca(v)2.2 and alpha(2)delta-2, using the N-terminally palmitoylated beta(2a) subunit, because it supports very little voltage-dependent inactivation, and made comparisons with beta(1b) domains. Deletion of the variable region of the beta(2a) HOOK-domain resulted in currents with a rapidly inactivating component, and additional mutation of the beta(2a) palmitoylation motif further enhanced inactivation. The isolated GK-domain of beta(2a) alone enhanced current amplitude, but the currents were rapidly and completely inactivating. When the beta(2a)-GK-domain construct was extended proximally, by including the HOOK-domain and the epsilon-strand of the SH3-domain, inactivation was about four-fold slower than in the absence of the HOOK domain. When the SH3-domain of beta(2a) truncated prior to the HOOK-domain was coexpressed with the (HOOK+epsilonSH3+GK)-domain of beta(2a), all the properties of beta(2a) were restored, in terms of loss of inactivation. Furthermore, removal of the HOOK sequence from the (HOOK+epsilonSH3+GK)-beta(2a) construct increased inactivation. Together, these results provide evidence that the HOOK domain is an important determinant of inactivation.  相似文献   

2.
High voltage-activated Ca(2+) channel expression and gating is controlled by their beta subunits. Although the sites of interaction are known at the atomic level, how beta modulates gating remains to be determined. Using a chimeric approach, beta subunit regulation was conferred to a low voltage-activated channel. Regulation was dependent on a rigid linker connecting the alpha(1) interaction domain to IS6. Chimeric channels also revealed a role for IS6 in channel gating. Taken together, these results support a direct coupling model where beta subunits alter movements in IS6 that occur as the channel transits between closed, open, and inactivated states.  相似文献   

3.
Voltage-gated calcium channels are multiprotein complexes that regulate calcium influx and are important contributors to cardiac excitability and contractility. The auxiliary beta-subunit (CaV beta) binds a conserved domain (the alpha-interaction domain (AID)) of the pore-forming CaV alpha1 subunit to modulate channel gating properties and promote cell surface trafficking. Recently, members of the RGK family of small GTPases (Rem, Rem2, Rad, Gem/Kir) have been identified as novel contributors to the regulation of L-type calcium channel activity. Here, we describe the Rem-association domain within CaV beta2a. The Rem interaction module is located in a approximately 130-residue region within the highly conserved guanylate kinase domain that also directs AID binding. Importantly, CaV beta mutants were identified that lost the ability to bind AID but retained their association with Rem, indicating that the AID and Rem association sites of CaV beta2a are structurally distinct. In vitro binding studies indicate that the affinity of Rem for CaV beta2a interaction is lower than that of AID for CaV beta2a. Furthermore, in vitro binding studies indicate that Rem association does not inhibit the interaction of CaV beta2a with AID. Instead, CaV beta can simultaneously associate with both Rem and CaV alpha1-AID. Previous studies had suggested that RGK proteins may regulate Ca2+ channel activity by blocking the association of CaV beta subunits with CaV alpha1 to inhibit plasma membrane trafficking. However, surface biotinylation studies in HIT-T15 cells indicate that Rem can acutely modulate channel function without decreasing the density of L-type channels at the plasma membrane. Together these data suggest that Rem-dependent Ca2+ channel modulation involves formation of a Rem x CaV beta x AID regulatory complex without the need to disrupt CaV alpha1 x CaV beta association or alter CaV alpha1 expression at the plasma membrane.  相似文献   

4.
In the present study, two-electrode voltage-clamp techniques have been used to assess the interaction between the MVIIA omega-conotoxin and an isoform of the N-type Ca(2+) channel alpha subunit (alpha(1B-d)). Cloned alpha(1B-d) Ca(2+) channels were expressed in Xenopus laevis oocytes in the presence and absence of the beta(3) subunit. Coexpression of the beta(3) subunit significantly shifted the IC(50) value for MVIIA inhibition of central N-type Ca(2+) channel current. Analysis of the peak conductance vs. depolarising voltage dependence suggested that the beta(3) subunit has no apparent effect on the gating charge which accompanies the closed-open transition of the channels. Instead, coexpression of the beta(3) subunit led to an approx. 10 mV shift to more hyperpolarised potentials in the voltage-dependent activation of N-type Ca(2+) channels. We conclude that MVIIA alters the surface charge on the N-type Ca(2+) channels and might induce allosteric changes on the structure of the channel, leading to an increase in the dissociation constant of MVIIA binding.  相似文献   

5.
Effector molecules such as calmodulin modulate the interactions of membrane-associated guanylate kinase homologs (MAGUKs) and other scaffolding proteins of the membrane cytoskeleton by binding to the Src homology 3 (SH3) domain, the guanylate kinase (GK) domain, or the connecting HOOK region of MAGUKs. Using surface plasmon resonance, we studied the interaction of members of all four MAGUK subfamilies--synapse-associated protein 97 (SAP97), calcium/calmodulin-dependent serine protein kinase (CASK), membrane palmitoylated protein 2 (MPP2), and zona occludens (ZO) 1--and calmodulin to determine interaction affinities and localize the binding site. The SH3-GK domains of the proteins and derivatives thereof were expressed in E. coli and purified. In all four proteins, high-affinity calmodulin binding was identified. CASK was shown to contain a Ca2+-dependent calmodulin binding site within the HOOK region, overlapping with a protein 4.1 binding site. In ZO1, a Ca2+-dependent calmodulin binding site was detected within the GK domain. The equilibrium dissociation constants for MAGUK-calmodulin interaction were found to range from 50 nM to 180 nM. Sequence analyses suggest that binding sites for calmodulin have evolved independently in at least three subfamilies. For ZO1, pulldown of GST-calmodulin was shown to occur in a calcium-dependent manner; moreover, molecular modeling and sequence analyses predict conserved basic residues to be exposed on one side of a helix. Thus, calmodulin binding appears to be a common feature of MAGUKs, and Ca2+-activated calmodulin may serve as a general regulator to affect the interactions of MAGUKs and various components of the cytoskeleton.  相似文献   

6.
Recently, we showed that the HOOK region of the β2 subunit electrostatically interacts with the plasma membrane and regulates the current inactivation and phosphatidylinositol 4,5-bisphosphate (PIP2) sensitivity of voltage-gated Ca2+ (CaV) 2.2 channels. Here, we report that voltage-dependent gating and current density of the CaV2.2 channels are also regulated by the HOOK region of the β2 subunit. The HOOK region can be divided into 3 domains: S (polyserine), A (polyacidic), and B (polybasic). We found that the A domain shifted the voltage-dependent inactivation and activation of CaV2.2 channels to more hyperpolarized and depolarized voltages, respectively, whereas the B domain evoked these responses in the opposite directions. In addition, the A domain decreased the current density of the CaV2.2 channels, while the B domain increased it. Together, our data demonstrate that the flexible HOOK region of the β2 subunit plays an important role in determining the overall CaV channel gating properties.  相似文献   

7.
Calcium channel beta subunits are essential regulatory elements of the gating properties of high voltage-activated calcium channels. Co-expression with beta(3) subunits typically accelerates inactivation, whereas co-expression with beta(4) subunits results in a slowly inactivating phenotype. Here, we have examined the molecular basis of the differential effect of these two subunits on the inactivation characteristics of Ca(v)2.2 + alpha(2)-delta(1) N-type calcium channels by creating a series of 22 chimeric beta subunits that are based on various combinations of variable and conserved regions of the parent beta subunit isoforms. Our data show that replacement of the N terminus region of beta(4) with a corresponding 14-amino acid stretch of beta(3) sequence accelerates the inactivation kinetics to levels seen with wild type beta(3). A similar kinetic speeding is observed by a concomitant substitution of the second conserved and variable regions, but not when these regions are substituted individually, suggesting that 1) the second variable and conserved regions cooperatively regulate N-type calcium channel inactivation and 2) that there are two redundant mechanisms that allow the beta(3) subunit to accelerate N-type channel inactivation. In contrast with previous reports in Ca(v)2.1 calcium channels, deletion of the C-terminal region of Ca(v)2.2 did not alter the regulation of the channel by wild type and chimeric beta subunits. Hence, the molecular underpinnings of beta subunit regulation of voltage-gated calcium channels appear to vary with calcium channel subtype.  相似文献   

8.
G-protein-mediated inhibition of presynaptic voltage-dependent Ca(2+) channels is comprised of voltage-dependent and -resistant components. The former is caused by a direct interaction of Ca(2+) channel alpha(1) subunits with G beta gamma, whereas the latter has not been characterized well. Here, we show that the N terminus of G alpha(o) is critical for the interaction with the C terminus of the alpha(1A) channel subunit, and that the binding induces the voltage-resistant inhibition. An alpha(1A) C-terminal peptide, an antiserum raised against G alpha(o) N terminus, and a G alpha(o) N-terminal peptide all attenuated the voltage-resistant inhibition of alpha(1A) currents. Furthermore, the N terminus of G alpha(o) bound to the C terminus of alpha(1A) in vitro, which was prevented either by the alpha(1A) channel C-terminal or G alpha(o) N-terminal peptide. Although the C-terminal domain of the alpha(1B) channel showed similar ability in the binding with G alpha(o) N terminus, the above mentioned treatments were ineffective in the alpha(1B) channel current. These findings demonstrate that the voltage-resistant inhibition of the P/Q-type, alpha(1A) channel is caused by the interaction between the C-terminal domain of Ca(2+) channel alpha(1A) subunit and the N-terminal region of G alpha(o).  相似文献   

9.
The auxiliary beta subunit importantly regulates voltage-dependent Ca(2+) channel activity through an interaction with the AID domain, a binding site located in the cytoplasmic I-II linker of the ion-conducting alpha(1) subunit. In the present study, we used two synthetic peptides corresponding to partial sequences of the I-II linker of alpha(1A) (AID(A)-peptides) as tools to disrupt the alpha(1)-beta interaction. In vitro binding experiments confirmed that these peptides exhibit a reasonable affinity to the neuronal beta(3) subunit to serve this purpose, although they failed to prevent immunoprecipitation of native N- and P/Q-type channels by anti-beta(3) antibodies. Together, our results (i) provide evidence for the reversibility of channel subunit association suggesting that the disruption of the alpha(1)-beta interaction may be a possible mechanism for Ca(2+) channel regulation in vivo, and (ii) support a model whereby the alpha(1)-beta association is based on multiple interaction sites.  相似文献   

10.
Although inhibition of voltage-gated calcium channels by RGK GTPases (RGKs) represents an important mode of regulation to control Ca(2+) influx in excitable cells, their exact mechanism of inhibition remains controversial. This has prevented an understanding of how RGK regulation can be significant in a physiological context. Here we show that RGKs-Gem, Rem, and Rem2-decreased Ca(V)1.2 Ca(2+) current amplitude in a dose-dependent manner. Moreover, Rem2, but not Rem or Gem, produced dose-dependent alterations on gating kinetics, uncovering a new mode by which certain RGKs can precisely modulate Ca(2+) currents and affect Ca(2+) influx during action potentials. To explore how RGKs influence gating kinetics, we separated the roles mediated by the Ca(2+) channel accessory beta subunit's interaction with its high affinity binding site in the pore-forming alpha(1C) subunit (AID) from its other putative contact sites by utilizing an alpha(1C)*beta3 concatemer in which the AID was mutated to prevent beta subunit interaction. This mutant concatemer generated currents with all the hallmarks of beta subunit modulation, demonstrating that AID-beta-independent interactions are sufficient for beta subunit modulation. Using this construct we found that although inhibition of current amplitude was still partially sensitive to RGKs, Rem2 no longer altered gating kinetics, implicating different determinants for this specific mode of Rem2-mediated regulation. Together, these results offer new insights into the molecular mechanism of RGK-mediated Ca(2+) channel current modulation.  相似文献   

11.
Calmodulin, bound to the alpha(1) subunit of the cardiac L-type calcium channel, is required for calcium-dependent inactivation of this channel. Several laboratories have suggested that the site of interaction of calmodulin with the channel is an IQ-like motif in the carboxyl-terminal region of the alpha(1) subunit. Mutations in this IQ motif are linked to L-type Ca(2+) current (I(Ca)) facilitation and inactivation. IQ peptides from L, P/Q, N, and R channels all bind Ca(2+)calmodulin but not Ca(2+)-free calmodulin. Another peptide representing a carboxyl-terminal sequence found only in L-type channels (designated the CB domain) binds Ca(2+)calmodulin and enhances Ca(2+)-dependent I(Ca) facilitation in cardiac myocytes, suggesting the CB domain is functionally important. Calmodulin blocks the binding of an antibody specific for the CB sequence to the skeletal muscle L-type Ca(2+) channel, suggesting that this is a calmodulin binding site on the intact protein. The binding of the IQ and CB peptides to calmodulin appears to be competitive, signifying that the two sequences represent either independent or alternative binding sites for calmodulin rather than both sequences contributing to a single binding site.  相似文献   

12.
Ca(v)beta subunits support voltage gating of Ca(v)1.2 calcium channels and play important role in excitation-contraction coupling. The common central membrane-associated guanylate kinase (MAGUK) region of Ca(v)beta binds to the alpha-interaction domain (AID) and the IQ motif of the pore-forming alpha(1C) subunit, but these two interactions do not explain why the cardiac Ca(v)beta(2) subunit splice variants differentially modulate inactivation of Ca(2+) currents (I(Ca)). Previously we described beta(2Deltag), a functionally active splice variant of human Ca(v)beta(2) lacking MAGUK. By deletion analysis of beta(2Deltag), we have now identified a 41-amino acid C-terminal essential determinant (beta(2)CED) that stimulates I(Ca) in the absence of Ca(v)beta subunits and conveys a +20-mV shift in the peak of the I(Ca)-voltage relationship. The beta(2)CED is targeted by alpha(1C) to the plasma membrane, forms a complex with alpha(1C) but does not bind to AID. Electrophysiology and binding studies point to the calmodulin-interacting LA/IQ region in the alpha(1C) subunit C terminus as a functionally relevant beta(2)CED binding site. The beta(2)CED interacts with LA/IQ in a Ca(2+)- and calmodulin-independent manner and need LA, but not IQ, to activate the channel. Deletion/mutation analyses indicated that each of the three Ca(v)beta(2)/alpha(1C) interactions is sufficient to support I(Ca). However, beta(2)CED does not support Ca(2+)-dependent inactivation, suggesting that interactions of MAGUK with AID and IQ are crucial for Ca(2+)-induced inactivation. The beta(2)CED is conserved only in Ca(v)beta(2) subunits. Thus, beta(2)CED constitutes a previously unknown integrative part of the multifactorial mechanism of Ca(v)beta(2)-subunit differential modulation of the Ca(v)1.2 calcium channel that in beta(2Deltag) occurs without MAGUK.  相似文献   

13.
We have previously demonstrated that formation of a complex between L-type calcium (Ca(2+)) channel alpha(1C) (Ca(V)1.2) and beta subunits was necessary to target the channels to the plasma membrane when expressed in tsA201 cells. In the present study, we identified a region in the C terminus of the alpha(1C) subunit that was required for membrane targeting. Using a series of C-terminal deletion mutants of the alpha(1C) subunit, a domain consisting of amino acid residues 1623-1666 ("targeting domain") in the C terminus of the alpha(1C) subunit has been identified to be important for correct targeting of L-type Ca(2+) channel complexes to the plasma membrane. Although cells expressing the wild-type alpha(1C) and beta(2a) subunits exhibited punctate clusters of channel complexes along the plasma membrane with little intracellular staining, co-expression of deletion mutants of the alpha(1C) subunit that lack the targeting domain with the beta(2a) subunit resulted in an intracellular localization of the channels. In addition, three other regions in the C terminus of the alpha(1C) subunit that were downstream of residues 1623-1666 were found to contribute to membrane targeting of the L-type channels. Deletion of these domains in the alpha(1C) subunit resulted in a reduction of plasma membrane-localized channels, and a concomitant increase in channels localized intracellularly. Taken together, these results have demonstrated that a targeting domain in the C terminus of the alpha(1C) subunit was required for proper plasma membrane localization of the L-type Ca(2+) channels.  相似文献   

14.
CaVβ subunits of voltage-gated calcium channels contain two conserved domains, a src-homology-3 (SH3)-domain and a guanylate kinase-like (GK)-domain. The SH3-domain is split, with its final (5th) β-strand separated from the rest of the domain by an intervening sequence termed the HOOK-domain, whose sequence varies between CaVβ subunits. Here we have been guided by the recent structural studies of CaVβ subunits in the design of specific truncated constructs, with the goal of investigating the role of the HOOK-domain of CaVβ subunits in the modulation of inactivation of N-type calcium channels. We have co-expressed the β subunit constructs with CaV2.2 and α2δ-2, using the N-terminally palmitoylated β2a subunit, because it supports very little voltage-dependent inactivation, and making comparisons with β1b domains. Deletion of the variable region of the β2a HOOK-domain resulted in currents with a rapidly inactivating component, and additional mutation of the β2a palmitoylation motif further enhanced inactivation. The isolated GK-domain of β2a alone enhanced current amplitude, but the currents were rapidly and completely inactivating. When the β2a-GK-domain construct was extended proximally, by including the HOOK-domain and the ε-strand of the SH3-domain, inactivation was about 4 fold slower than in the absence of the HOOK domain. When the SH3-domain of β2a truncated prior to the HOOK-domain was co-expressed with the (HOOK+εSH3+GK)-domain of β2a, all the properties of β2a were restored, in terms of loss of inactivation. Furthermore, removal of the HOOK sequence from the (HOOK+εSH3+GK)-β2a construct increased inactivation. Together, these results provide evidence that the HOOK domain is an important determinant of inactivation.  相似文献   

15.
The structural determinant of the permeation and selectivity properties of high voltage-activated (HVA) Ca(2+) channels is a locus formed by four glutamate residues (EEEE), one in each P-region of the domains I-IV of the alpha(1) subunit. We tested whether the divergent aspartate residues of the EEDD locus of low voltage-activated (LVA or T-type) Ca(2+) channels account for the distinctive permeation and selectivity features of these channels. Using the whole-cell patch-clamp technique in the HEK293 expression system, we studied the properties of the alpha(1G) T-type, the alpha(1C) L-type Ca(2+) channel subunits, and alpha(1G) pore mutants, containing aspartate-to-glutamate conversions in domain III, domain IV, or both. Three characteristic features of HVA Ca(2+) channel permeation, i.e. (a) Ba(2+) over Ca(2+) permeability, (b) Ca(2+)/Ba(2+) anomalous mole fraction effect (AMFE), and (c) high Cd(2+) sensitivity, were conferred on the domain III mutant (EEED) of alpha(1G). In contrast, the relative Ca(2+)/Ba(2+) permeability and the lack of AMFE of the alpha(1G) wild type channel were retained in the domain IV mutant (EEDE). The double mutant (EEEE) displayed AMFE and a Cd(2+) sensitivity similar to that of alpha(1C), but currents were larger in Ca(2+)- than in Ba(2+)-containing solutions. The mutation in domain III, but not that in domain IV, consistently displayed outward fluxes of monovalent cations. H(+) blocked Ca(2+) currents in all mutants more efficiently than in alpha(1G). In addition, activation curves of all mutants were displaced to more positive voltages and had a larger slope factor than in alpha(1G) wild type. We conclude that the aspartate residues of the EEDD locus of the alpha(1G) Ca(2+) channel subunit not only control its permeation properties, but also affect its activation curve. The mutation of both divergent aspartates only partially confers HVA channel permeation properties to the alpha(1G) Ca(2+) channel subunit.  相似文献   

16.
Voltage-dependent calcium channels consist of a pore-forming subunit (Ca(V)alpha(1)) that includes all the molecular determinants of a voltage-gated channel, and several accessory subunits. The ancillary beta-subunit (Ca(V)beta) is a potent activator of voltage-dependent calcium channels, but the mechanisms and structural bases of this regulation remain elusive. Ca(V)beta binds reversibly to a conserved consensus sequence in Ca(V)alpha(1), the alpha(1)-interaction domain (AID), which forms an alpha-helix when complexed with Ca(V)beta. Conserved aromatic residues face to one side of the helix and strongly interact with a hydrophobic pocket on Ca(V)beta. Here, we studied the effect of mutating residues located opposite to the AID-Ca(V)beta contact surface in Ca(V)1.2. Substitution of AID-exposed residues by the corresponding amino acids present in other Ca(V)alpha(1) subunits (E462R, K465N, D469S, and Q473K) hinders Ca(V)beta's ability to increase ionic-current to charge-movement ratio (I/Q) without changing the apparent affinity for Ca(V)beta. At the single channel level, these Ca(V)1.2 mutants coexpressed with Ca(V)beta(2a) visit high open probability mode less frequently than wild-type channels. On the other hand, Ca(V)1.2 carrying either a mutation in the conserved tryptophan residue (W470S, which impairs Ca(V)beta binding), or a deletion of the whole AID sequence, does not exhibit Ca(V)beta-induced increase in I/Q. In addition, we observed a shift in the voltage dependence of activation by +12 mV in the AID-deleted channel in the absence of Ca(V)beta, suggesting a direct participation of these residues in the modulation of channel activation. Our results show that Ca(V)beta-dependent potentiation arises primarily from changes in the modal gating behavior. We envision that Ca(V)beta spatially reorients AID residues that influence the channel gate. These findings provide a new framework for understanding modulation of VDCC gating by Ca(V)beta.  相似文献   

17.
Store-operated Ca(2+) entry is controlled by the interaction of stromal interaction molecules (STIMs) acting as endoplasmic reticulum ER Ca(2+) sensors with calcium release-activated calcium (CRAC) channels (CRACM1/2/3 or Orai1/2/3) in the plasma membrane. Here, we report structural requirements of STIM1-mediated activation of CRACM1 and CRACM3 using truncations, point mutations, and CRACM1/CRACM3 chimeras. In accordance with previous studies, truncating the N-terminal region of CRACM1 or CRACM3 revealed a 20-amino acid stretch close to the plasma membrane important for channel gating. Exchanging the N-terminal region of CRACM3 with that of CRACM1 (CRACM3-N(M1)) results in accelerated kinetics and enhanced current amplitudes. Conversely, transplanting the N-terminal region of CRACM3 into CRACM1 (CRACM1-N(M3)) leads to severely reduced store-operated currents. Highly conserved amino acids (K85 in CRACM1 and K60 in CRACM3) in the N-terminal region close to the first transmembrane domain are crucial for STIM1-dependent gating of CRAC channels. Single-point mutations of this residue (K85E and K60E) eliminate store-operated currents induced by inositol 1,4,5-trisphosphate and reduce store-independent gating by 2-aminoethoxydiphenyl borate. However, short fragments of these mutant channels are still able to communicate with the CRAC-activating domain of STIM1. Collectively, these findings identify a single amino acid in the N terminus of CRAC channels as a critical element for store-operated gating of CRAC channels.  相似文献   

18.
Upon stimulation by odorants, Ca(2+) and Na(+) enter the cilia of olfactory sensory neurons through channels directly gated by cAMP. Cyclic nucleotide-gated channels have been found in a variety of cells and extensively investigated in the past few years. Glutamate residues at position 363 of the alpha subunit of the bovine retinal rod channel have previously been shown to constitute a cation-binding site important for blockage by external divalent cations and to control single-channel properties. It has therefore been assumed, but not proven, that glutamate residues at the corresponding position of the other cyclic nucleotide-gated channels play a similar role. We studied the corresponding glutamate (E340) of the alpha subunit of the bovine olfactory channel to determine its role in channel gating and in permeation and blockage by Ca(2+) and Mg(2+). E340 was mutated into either an aspartate, glycine, glutamine, or asparagine residue and properties of mutant channels expressed in Xenopus laevis oocytes were measured in excised patches. By single-channel recordings, we demonstrated that the open probabilities in the presence of cGMP or cAMP were decreased by the mutations, with a larger decrease observed on gating by cAMP. Moreover, we observed that the mutant E340N presented two conductance levels. We found that both external Ca(2+) and Mg(2+) powerfully blocked the current in wild-type and E340D mutants, whereas their blockage efficacy was drastically reduced when the glutamate charge was neutralized. The inward current carried by external Ca(2+) relative to Na(+) was larger in the E340G mutant compared with wild-type channels. In conclusion, we have confirmed that the residue at position E340 of the bovine olfactory CNG channel is in the pore region, controls permeation and blockage by external Ca(2+) and Mg(2+), and affects channel gating by cAMP more than by cGMP.  相似文献   

19.
Coexpression of the beta(1) subunit with the alpha subunit (mSlo) of BK channels increases the apparent Ca(2+) sensitivity of the channel. This study investigates whether the mechanism underlying the increased Ca(2+) sensitivity requires Ca(2+), by comparing the gating in 0 Ca(2+)(i) of BK channels composed of alpha subunits to those composed of alpha+beta(1) subunits. The beta(1) subunit increased burst duration approximately 20-fold and the duration of gaps between bursts approximately 3-fold, giving an approximately 10-fold increase in open probability (P(o)) in 0 Ca(2+)(i). The effect of the beta(1) subunit on increasing burst duration was little changed over a wide range of P(o) achieved by varying either Ca(2+)(i) or depolarization. The effect of the beta(1) subunit on increasing the durations of the gaps between bursts in 0 Ca(2+)(i) was preserved over a range of voltage, but was switched off as Ca(2+)(i) was increased into the activation range. The Ca(2+)-independent, beta(1) subunit-induced increase in burst duration accounted for 80% of the leftward shift in the P(o) vs. Ca(2+)(i) curve that reflects the increased Ca(2+) sensitivity induced by the beta(1) subunit. The Ca(2+)-dependent effect of the beta(1) subunit on the gaps between bursts accounted for the remaining 20% of the leftward shift. Our observation that the major effects of the beta(1) subunit are independent of Ca(2+)(i) suggests that the beta(1) subunit mainly alters the energy barriers of Ca(2+)-independent transitions. The changes in gating induced by the beta(1) subunit differ from those induced by depolarization, as increasing P(o) by depolarization or by the beta(1) subunit gave different gating kinetics. The complex gating kinetics for both alpha and alpha+beta(1) channels in 0 Ca(2+)(i) arise from transitions among two to three open and three to five closed states and are inconsistent with Monod-Wyman-Changeux type models, which predict gating among only one open and one closed state in 0 Ca(2+)(i).  相似文献   

20.
Large-conductance (BK-type) Ca(2+)-activated potassium channels are activated by membrane depolarization and cytoplasmic Ca(2+). BK channels are expressed in a broad variety of cells and have a corresponding diversity in properties. Underlying much of the functional diversity is a family of four tissue-specific accessory subunits (beta1-beta4). Biophysical characterization has shown that the beta4 subunit confers properties of the so-called "type II" BK channel isotypes seen in brain. These properties include slow gating kinetics and resistance to iberiotoxin and charybdotoxin blockade. In addition, the beta4 subunit reduces the apparent voltage sensitivity of channel activation and has complex effects on apparent Ca(2+) sensitivity. Specifically, channel activity at low Ca(2+) is inhibited, while at high Ca(2+), activity is enhanced. The goal of this study is to understand the mechanism underlying beta4 subunit action in the context of a dual allosteric model for BK channel gating. We observed that beta4's most profound effect is a decrease in P(o) (at least 11-fold) in the absence of calcium binding and voltage sensor activation. However, beta4 promotes channel opening by increasing voltage dependence of P(o)-V relations at negative membrane potentials. In the context of the dual allosteric model for BK channels, we find these properties are explained by distinct and opposing actions of beta4 on BK channels. beta4 reduces channel opening by decreasing the intrinsic gating equilibrium (L(0)), and decreasing the allosteric coupling between calcium binding and voltage sensor activation (E). However, beta4 has a compensatory effect on channel opening following depolarization by shifting open channel voltage sensor activation (Vh(o)) to more negative membrane potentials. The consequence is that beta4 causes a net positive shift of the G-V relationship (relative to alpha subunit alone) at low calcium. At higher calcium, the contribution by Vh(o) and an increase in allosteric coupling to Ca(2+) binding (C) promotes a negative G-V shift of alpha+beta4 channels as compared to alpha subunits alone. This manner of modulation predicts that type II BK channels are downregulated by beta4 at resting voltages through effects on L(0). However, beta4 confers a compensatory effect on voltage sensor activation that increases channel opening during depolarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号