首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trigger factor (TF) is the first protein-folding chaperone to interact with a nascent peptide chain as it emerges from the ribosome. Here, we have used a spin down assay to estimate the affinities for the binding of TF to ribosome nascent chain complexes (RNCs) with peptides of varying lengths and sequences. An in vitro system for protein synthesis assembled from purified Escherichia coli components was used to produce RNCs stalled on truncated mRNAs. The affinity of TF to RNCs exposing RNA polymerase sequences increased with the length of the nascent peptides. TF bound to RNA polymerase RNCs with significantly higher affinity than to inner membrane protein leader peptidase and bacterioopsin RNCs. The latter two RNCs are substrates for signal recognition particle, suggesting complementary affinities of TF and signal recognition particle to nascent peptides targeted for cytoplasm and membrane.  相似文献   

2.
The signal recognition particle (SRP) is a unique moiety in living cells, which has been conserved during evolution for protein targeting and translocation across membranes in collaboration with its receptor (SR). The structural and functional features of its components, (six polypeptides and RNA) are being rapidly elucidated. We have endeavored in this review to epitomize most recent advances in this field. Its two domains (S and Alu) play important roles in signal recognition, elongation arrest and protein targeting of the polypeptide being synthesized in the cytoplasm. SRP14 and SRP9 help in the elongation arrest by interacting with signal peptide. GTPase activity of SRP54 releases SRP from SR. In addition, alpha and beta subunits of SR also possess GTPase activities and the three GTPases help in docking of nascent peptide chain-ribosome complex to the translocation site. Further strides in proteomics employing mass spectrometry and X-ray crystallography are expected to throw more light on the molecular events occurring during protein targeting and translocation.  相似文献   

3.
The beta-subunit of the signal recognition particle receptor (SRbeta), a member of the Ras family of small molecular weight GTPases, is involved in the targeting of nascent polypeptide chains to the protein translocation machinery in the endoplasmic reticulum membrane. We purified SRbeta from an expressing strain of Escherichia coli and investigated the properties of the isolated GTPase. We find that, unlike other Ras family GTPases, most SRbeta purifies bound to GTP, and SRbeta-bound GTP is not easily exchanged with solution GTP. SRbeta possesses no detectable GTPase activity. Although a stable interaction between SRbeta and ribosomes is observed, SRbeta is not stimulated to hydrolyze GTP when incubated with ribosomes or ribosome-nascent chains. A GTPase mutant harboring a mutation in a region predicted to be functionally important, based on observations made in related GTPases, binds GTP with faster kinetics and appears to be a less stable protein but otherwise displays similar properties to the wild-type SRbeta GTPase. Our results demonstrate that as an isolated GTPase, SRbeta functions differently from the Arf- and Ras-type GTPases that it is most closely related to by sequence.  相似文献   

4.
In all organisms the Signal Recognition Particle (SRP), binds to signal sequences of proteins destined for secretion or membrane insertion as they emerge from translating ribosomes. In Archaea and Eucarya, the conserved ribonucleoproteic core is composed of two proteins, the accessory protein SRP19, the essential GTPase SRP54, and an evolutionarily conserved and essential SRP RNA. Through the GTP-dependent interaction between the SRP and its cognate receptor SR, ribosomes harboring nascent polypeptidic chains destined for secretion are dynamically transferred to the protein translocation apparatus at the membrane. We present here high-resolution X-ray structures of SRP54 and SRP19, the two RNA binding components forming the core of the signal recognition particle from the hyper-thermophilic archaeon Pyrococcus furiosus (Pfu). The 2.5 A resolution structure of free Pfu-SRP54 is the first showing the complete domain organization of a GDP bound full-length SRP54 subunit. In its ras-like GTPase domain, GDP is found tightly associated with the protein. The flexible linker that separates the GTPase core from the hydrophobic signal sequence binding M domain, adopts a purely alpha-helical structure and acts as an articulated arm allowing the M domain to explore multiple regions as it scans for signal peptides as they emerge from the ribosomal tunnel. This linker is structurally coupled to the GTPase catalytic site and likely to propagate conformational changes occurring in the M domain through the SRP RNA upon signal sequence binding. Two different 1.8 A resolution crystal structures of free Pfu-SRP19 reveal a compact, rigid and well-folded protein even in absence of its obligate SRP RNA partner. Comparison with other SRP19*SRP RNA structures suggests the rearrangement of a disordered loop upon binding with the RNA through a reciprocal induced-fit mechanism and supports the idea that SRP19 acts as a molecular scaffold and a chaperone, assisting the SRP RNA in adopting the conformation required for its optimal interaction with the essential subunit SRP54, and proper assembly of a functional SRP.  相似文献   

5.
Signal peptides that direct protein export in Bacillus subtilis are overall more hydrophobic than signal peptides in Escherichia coli. To study the importance of signal peptide hydrophobicity for protein export in both organisms, the alpha-amylase AmyQ was provided with leucine-rich (high hydrophobicity) or alanine-rich (low hydrophobicity) signal peptides. AmyQ export was most efficiently directed by the authentic signal peptide, both in E. coli and B. subtilis. The leucine-rich signal peptide directed AmyQ export less efficiently in both organisms, as judged from pulse-chase labelling experiments. Remarkably, the alanine-rich signal peptide was functional in protein translocation only in E. coli. Cross-linking of in vitro synthesized ribosome nascent chain complexes (RNCs) to cytoplasmic proteins showed that signal peptide hydrophobicity is a critical determinant for signal peptide binding to the Ffh component of the signal recognition particle (SRP) or to trigger factor, not only in E. coli, but also in B. subtilis. The results show that B. subtilis SRP can discriminate between signal peptides with relatively high hydrophobicities. Interestingly, the B. subtilis protein export machinery seems to be poorly adapted to handle alanine-rich signal peptides with a low hydrophobicity. Thus, signal peptide hydrophobicity appears to be more critical for the efficiency of early stages in protein export in B. subtilis than in E. coli.  相似文献   

6.
The signal recognition particle (SRP) targets nascent proteins to cellular membranes for insertion or secretion by recognizing polypeptides containing an N-terminal signal sequence as they emerge from the ribosome. GTP-dependent binding of SRP to its receptor protein leads to controlled release of the nascent chain into a membrane-spanning translocon pore. Here we show that the association of the SRP with its receptor triggers a marked conformational change in the complex, localizing the SRP RNA and the adjacent signal peptide-binding site at the SRP-receptor heterodimer interface. The orientation of the RNA suggests how peptide binding and GTP hydrolysis can be coupled through direct structural contact during cycles of SRP-directed protein translocation.  相似文献   

7.
The role of SecA in selecting bacterial proteins for export was examined using a heterologous system that lacks endogenous SecA and other bacterial proteins. This approach allowed us to assess the interaction of SecA with ribosome-bound photoreactive nascent chains in the absence of trigger factor, SecB, Ffh (the bacterial protein component of the signal recognition particle), and the SecYEG translocon in the bacterial plasma membrane. In the absence of membranes, SecA photocross-linked efficiently to nascent translocation substrate OmpA in ribosome-nascent chain (RNC) complexes in an interaction that was independent of both ATP and SecB. However, no photocross-linking to a nascent membrane protein that is normally targeted by a signal recognition particle was observed. Modification of the signal sequence revealed that its affinity for SecA and Ffh varied inversely. Gel filtration showed that SecA binds tightly to both translating and non-translating ribosomes. When purified SecA.RNC complexes containing nascent OmpA were exposed to inner membrane vesicles lacking functional SecA, the nascent chains were successfully targeted to SecYEG translocons. However, purified RNCs lacking SecA were unable to target to the same membranes. Taken together, these data strongly suggest that cytosolic SecA participates in the selection of proteins for export by co-translationally binding to the signal sequences of non-membrane proteins and directing those nascent chains to the translocon.  相似文献   

8.
9.
Lin KF  Sun CS  Huang YC  Chan SI  Koubek J  Wu TH  Huang JJ 《Biophysical journal》2012,102(12):2818-2827
In recent years, various folding zones within the ribosome tunnel have been identified and explored through x-ray, cryo-electron microscopy (cryo-EM), and molecular biology studies. Here, we generated ribosome-bound nascent polypeptide complexes (RNCs) with different polyalanine (poly-A) inserts or signal peptides from membrane/secretory proteins to explore the influence of nascent chain compaction in the Escherichia coli ribosome tunnel on chaperone recruitment. By employing time-resolved fluorescence resonance energy transfer and immunoblotting, we were able to show that the poly-A inserts embedded in the passage tunnel can form a compacted structure (presumably helix) and reduce the recruitment of Trigger Factor (TF) when the helical motif is located in the region near the tunnel exit. Similar experiments on nascent chains containing signal sequences that may form compacted structural motifs within the ribosome tunnel and lure the signal recognition particle (SRP) to the ribosome, provided additional evidence that short, compacted nascent chains interfere with TF binding. These findings shed light on the possible controlling mechanism of nascent chains within the tunnel that leads to chaperone recruitment, as well as the function of L23, the ribosomal protein that serves as docking sites for both TF and SRP, in cotranslational protein targeting.  相似文献   

10.
11.
Ribosomal progression through the open reading frames within mRNAs is frequently considered as uneventful when compared with the highly regulated initiation step. However, both RNA and nascent peptide can interact with the ribosome to influence how translation proceeds and can modify gene expression in several ways. 2A peptides are a class of sequences that, as nascent chains, pause ribosomes and drive a translation-termination reaction on a sense (proline) codon, followed by continued downstream translation. In the present paper, what is known about the 2A reaction is discussed, and 2A is compared with other sequences that, as nascent peptides, pause or stall translation.  相似文献   

12.
Different from cytoplasmic membrane proteins, presecretory proteins of bacteria usually do not require the signal recognition particle for targeting to the Sec translocon. Nevertheless signal sequences of presecretory proteins have been found in close proximity to signal recognition particle immediately after they have emerged from the ribosome. We show here that at the ribosome, the molecular environment of a signal sequence depends on the nature of downstream sequence elements that can cause an alternate recruitment of signal recognition particle and the ribosome-associated chaperone Trigger factor to a growing nascent chain. While signal recognition particle and Trigger factor might remain bound to the same ribosome, both ligands are clearly able to displace each other from a nascent chain. The data also imply that a signal sequence owes its molecular environment to the fact that it remains closely apposed to the ribosomal exit site during growth of a nascent secretory protein.  相似文献   

13.
The prokaryotic signal recognition particle (SRP) targeting system is a complex of two proteins, FtsY and Ffh, and a 4.5S RNA that targets a subset of proteins to the cytoplasmic membrane cotranslationally. We previously showed that Neisseria gonorrhoeae PilA is the gonococcal FtsY homolog. In this work, we isolated the other two components of the gonococcal SRP, Ffh and 4.5S RNA, and characterized the interactions among the three SRP components by using gel retardation and nitrocellulose filter-binding assays and enzymatic analyses of the two proteins. In the current model of prokaryotic SRP function, based on studies of the Escherichia coli and mammalian systems, Ffh binds to 4.5S RNA and the Ffh-4.5S RNA complex binds to the signal sequence of nascent peptides and then docks with FtsY at the membrane. GTP is hydrolyzed by both proteins synergistically, and the nascent peptide is transferred to the translocon. We present evidence that the in vitro properties of the gonococcal SRP differ from those of previously described systems. GTP hydrolysis by PilA, but not that by Ffh, was stimulated by 4.5S RNA, suggesting a direct interaction between PilA and 4.5S RNA that has not been reported in other systems. This interaction was confirmed by gel retardation analyses in which PilA and Ffh, both alone and together, bound to 4.5S RNA. An additional novel finding was that P(pilE) DNA, previously shown by us to bind PilA in vitro, also stimulates PilA GTP hydrolysis. On the basis of these data, we hypothesize that DNA may play a role in targeting proteins via the SRP.  相似文献   

14.
We present evidence that the signal recognition particle (SRP) recognizes signal sequences via the NG domain on the SRP54 protein subunit. Using a recently developed cross-linking method (Fancy, D. A., and Kodadek, T. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 6020-6024; Correction (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 1317), we find that signal peptides cross-link to the Escherichia coli SRP protein Ffh (the homologue of the mammalian SRP54 subunit) via the NG domain. Within the NG domain, the cross-linking site maps to the ras-like C-terminal subdomain termed the G domain. This result stands in contrast to previous studies, which concluded based on nascent chain cross-linking that the signal sequence bound to the adjacent M domain. As independent evidence of a direct binding interaction between the NG domain and the signal sequence, we find that the NG domain of Ffh binds signal peptides as an isolated entity. Our results suggest that the NG domain forms a substantial part of the binding site for the signal sequence.  相似文献   

15.
16.
The 54 kDa subunit of the signal recognition particle (SRP54) binds to the signal sequences of nascent secretory and membrane proteins and it contributes to the targeting of these precursors to the membrane of the endoplasmic reticulum (ER). At the ER membrane, the binding of the signal recognition particle (SRP) to its receptor triggers the release of SRP54 from its bound signal sequence and the nascent polypeptide is transferred to the Sec61 translocon for insertion into, or translocation across, the ER membrane. In the current article, we have characterized the specificity of anti-SRP54 autoantibodies, which are highly characteristic of polymyositis patients, and investigated the effect of these autoantibodies on the SRP function in vitro. We found that the anti-SRP54 autoantibodies had a pronounced and specific inhibitory effect upon the translocation of the secretory protein preprolactin when analysed using a cell-free system. Our mapping studies showed that the anti-SRP54 autoantibodies bind to the amino-terminal SRP54 N-domain and to the central SRP54 G-domain, but do not bind to the carboxy-terminal M-domain that is known to bind ER signal sequences. Nevertheless, anti-SRP54 autoantibodies interfere with signal-sequence binding to SRP54, most probably by steric hindrance. When the effect of anti-SRP autoantibodies on protein targeting the ER membrane was further investigated, we found that the autoantibodies prevent the SRP receptor-mediated release of ER signal sequences from the SRP54 subunit. This observation supports a model where the binding of the homologous GTPase domains of SRP54 and the α-subunit of the SRP receptor to each other regulates the release of ER signal sequences from the SRP54 M-domain.  相似文献   

17.
We have studied the interaction between the signal sequence of nascent preprolactin and the signal recognition particle (SRP) during the initial events in protein translocation across the endoplasmic reticulum membrane. A new method of affinity labeling was used, whereby lysine residues, carrying the photoreactive group 4-(3-trifluoromethyldiazirino) benzoic acid in their side chains, are incorporated into a protein by means of modified lysyl-tRNA, and cross-linking to the interacting component is induced by irradiation. SRP interacts through its Mr 54,000 polypeptide component with the signal sequences of nascent preprolactin chains containing about 70 residues, and with decreasing affinity with longer chains as well; it causes inhibition of elongation. Binding of SRP is reversible and requires the nascent chain to be bound to a functional ribosome. SRP cross-linked to the signal sequence still inhibits elongation but does not prevent it completely. We conclude that SRP does not block the exit site of the polypeptide chain on the ribosome. The SRP receptor of the endoplasmic reticulum membrane displaces the signal sequence from SRP and, even if SRP is cross-linked, releases elongation arrest.  相似文献   

18.
Signal sequences function in protein targeting to and translocation across the endoplasmic reticulum membrane. To investigate the structural requirements for signal sequence function, chimeras of the Escherichia coli LamB signal peptide and prolactin were prepared. The LamB signal peptide was chosen by virtue of the extensive biophysical and biological characterization of its activity. In vitro, nascent prolactin chains bearing the LamB signal peptide (LamB) were targeted in a signal recognition particle (SRP)-dependent manner to rough microsomes but remained protease- and salt-sensitive and translocated at low efficiency. Full translocation activity was obtained in a gain of function mutant (LamB*) in which three hydrophobic residues in the LamB hydrophobic core were converted to leucine residues. Cross-linking studies demonstrated that the LamB* signal sequence displayed markedly enhanced interactions with SRP and integral membrane proteins. In contrast, chemically denatured LamB and LamB*-precursors bound with identical efficiencies and in a salt-resistant manner to rough microsomes, suggesting that during de novo synthesis the signal sequence of LamB-bearing precursors assumes a conformation refractory to translocation. These data indicate that a leucine-rich signal sequence is necessary for optimal interaction with SRP and suggest that SRP, by maintaining the signal sequence in a conformation suitable for membrane binding, performs a chaperone function.  相似文献   

19.
Role of SRP RNA in the GTPase cycles of Ffh and FtsY.   总被引:7,自引:0,他引:7  
P Peluso  S O Shan  S Nock  D Herschlag  P Walter 《Biochemistry》2001,40(50):15224-15233
The bacterial homologues of the signal recognition particle (SRP) and its receptor, the Ffh*4.5S RNA ribonucleoprotein complex and the FtsY protein, respectively, form a unique complex in which both Ffh and FtsY act as GTPase activating proteins for one another, resulting in the mutual stimulation of GTP hydrolysis by both proteins. Previous work showed that 4.5S RNA enhances the GTPase activity in the presence of both Ffh and FtsY, but it was not clear how this was accomplished. In this work, kinetic and thermodynamic analyses of the GTPase reactions of Ffh and FtsY have provided insights into the role of 4.5S RNA in the GTPase cycles of Ffh and FtsY. We found that 4.5S RNA accelerates the association between Ffh and FtsY 400-fold in their GTP-bound form, analogous to its 200-fold catalytic effect on Ffh*FtsY association previously observed with the GppNHp-bound form [Peluso, P., et al. (2000) Science 288, 1640-1643]. Further, Ffh-FtsY association is rate-limiting for the observed GTPase reaction with subsaturating Ffh and FtsY, thereby accounting for the apparent stimulatory effect of 4.5S RNA on the GTPase activity observed previously. An additional step, GTP hydrolysis from the Ffh*FtsY complex, is also moderately facilitated by 4.5S RNA. These results suggest that 4.5S RNA modulates the conformation of the Ffh*FtsY complex and may, in turn, regulate its GTPase activity during the SRP functional cycle.  相似文献   

20.
F Bovia  N Bui    K Strub 《Nucleic acids research》1994,22(11):2028-2035
The targeting of nascent polypeptide chains to the endoplasmic reticulum is mediated by a cytoplasmic ribonucleoprotein, the signal recognition particle (SRP). The 9 kD (SRP9) and the 14 kD (SRP14) subunits of SRP are required to confer elongation arrest activity to the particle. SRP9 and SRP14 form a heterodimer which specifically binds to SRP RNA. We have constructed cDNAs that encode single polypeptide chains comprising SRP9 and SRP14 sequences in the two possible permutations linked by a 17 amino acid peptide. We found that both fusion proteins specifically bound to SRP RNA as monomeric molecules folded into a heterodimer-like structure. Our results corroborate the previous hypothesis that the authentic heterodimer binds to SRP RNA in equimolar ratio. In addition, both fusion proteins conferred elongation arrest activity to SRP(-9/14), which lacks this function, and one fusion protein could functionally replace the heterodimer in the translocation assay. Thus, the normal N-and C-termini of both proteins have no essential role in folding, RNA-binding and in mediating the biological activities. The possibility to express the heterodimeric complex as a single polypeptide chain facilitates the analysis of its functions and its structure in vivo and in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号