首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Stem cell factor (SCF) is essential to the migration and differentiation of melanocytes during embryogenesis because mutations in either the SCF gene, or its ligand, KIT, result in defects in coat pigmentation in mice. Using a neural crest cell (NCC) primary culture system from wild‐type mice, we previously demonstrated that KIT‐positive and/or L ‐3, 4‐dihydroxyphenylalanine (DOPA)‐positive melanocyte precursors proliferate following the addition of SCF to the culture medium. Extracellular matrix (ECM) proteins are considered to play a role in the migration and differentiation of various cells including melanocytes. We cultured mouse NCCs in the presence of SCF in individual wells coated with ECM; fibronectin (FN), collagen I (CLI), chondroitin sulphate, or dermatan sulphate. More KIT‐positive cells and DOPA‐positive cells were detected in the presence of SCF on ECM‐coated wells than on non‐coated wells. A statistically significant increase in DOPA‐positive cells was evident in FN and CLI wells. In contrast, in the absence of SCF, few DOPA‐positive cells and KIT‐positive cells were detected on either the ECM‐coated or non‐coated wells. We concluded that ECM affect melanocyte proliferation and development in the presence of SCF. To determine the key site of FN function, RGDS peptides in the FN sequence, which supports spreading of NCCs, were added to the NCC culture. The number of DOPA‐positive cells decreased with RGDS concentration in a dose‐dependent fashion. Immunohistochemical staining revealed the presence of integrin a5, a receptor of RGDS, in NCCs. These results suggest the RGDS domain of FN plays a contributory role as an active site in the induction of FN function in NCCs. In addition, we examined the effect of FN with SCF on the NCC migration by measuring cluster size, and found an increase in size following treatment with FN.  相似文献   

2.
Stem cell factor (SCF) is hypothesized to play a critical role in the migration of melanocytes during embryogenesis because mutations in either the SCF gene, or its ligand, c-kit, result in defects in coat pigmentation in mice and in skin pigmentation in humans. In this report we directly show that SCF alters the adhesion and migration of human melanocytes to extracellular matrix (ECM) ligands and regulates integrin expression at the protein level. SCF decreased adhesion of neonatal and fetal cells to collagen IV, and increased attachment of fetal cells to laminin. Attachment of fetal cells to fibronectin was decreased, but was unchanged in neonatal cells. Flow cytometry analysis of neonatal melanocytes showed that SCF down-regulated the expression of the α2 receptor, and up-regulated the expression of the α3, α5 and β1 integrin receptors. SCF down-regulated expression of α2, α5 and β1 integrins by fetal melanocytes, and up-regulated expression of the αv and α3 integrin receptors. Analysis of melanocyte migration using time-lapse videomicroscopy showed that SCF significantly increased migration of neonatal, but not fetal, melanocytes on fibronectin (FN). We conclude that SCF regulates integrin expression at the protein level and that SCF has pleiotropic effects on melanocyte attachment and migration on ECM ligands. We suggest that this may be one mechanism by which SCF regulates melanocyte migration during development of the skin.  相似文献   

3.
Normal human epidermal melanocytes are attached to a basement membrane, a specialized form of extracellular matrix (ECM), located between the epithelium and underlying dermal tissues. To determine whether ECM influences pigmented cell behavior in vitro, human epidermal melanocytes and melanoma cells were cultured on uncoated or ECM-coated plastic culture surfaces, and a comparison was made between growth and function in the presence or absence of ECM. Melanocytes cultured on ECM-coated surfaces developed flatter and larger cell bodies and produced more melanin than melanocytes cultured on uncoated surfaces. In the presence of phorbol-myristate-acetate and cholera toxin, the rate of melanocyte replication was increased by ECM. In the absence of these mitogens, ECM significantly enhanced the adhesiveness of nonproliferating melanocytes. ECM had little or no effect on these parameters (morphology, tyrosinase activity, replication) in a pigmented human malignant melanoma cell line. These findings indicate that normal human epidermal pigment cells have the ability to recognize and respond to matrix signals, whereas this capacity appears to be absent in melanoma cells.  相似文献   

4.
The extracellular environment through which neural crest cells (NCCs) translocate and differentiate plays a crucial role in the determination of cell migration and homing. In the trunk, NCC-derived melanocyte precursor cells (MPCs) take the dorsolateral pathway and colonize the skin, where they differentiate into pigment cells (PCs). Our hypothesis was that the skin, the MPCs' target tissue, may induce a directional response of NCCs toward diffusible factor(s). We show that the treatment of in vitro NCCs with skin extract (SE) or Stem Cell Factor (SCF) contributes to maintaining proliferative activity, accelerates melanocyte differentiation, and guides a subpopulation of NCCs by chemotaxis toward the gradient source of these factors, suggesting that they may represent the MPCs' subpopulation. Current data on stimulated directional persistence of NCCs supports the participation of diffusible molecules in the target colonization mechanism, guiding MPCs to migrate and invade the skin. Our results show similar effects of SE and SCF on NCC growth, proliferation and pigment cell differentiation. Also, the use of a proven real-time directionality-based objective assay shows the directional migration of NCCs toward SE and SCF, indicating that the epidermal SCF molecule may be involved in the chemotactic guidance mechanism of in vivo NCCs. Although SCF is the strongest candidate to account for these phenomena, the nature of other factor(s) affecting NCC-oriented migration remains to be investigated. This data amplifies the functional scope of trophic factors by involving them in new cell behaviors such as molecular guidance in the colonization mechanism of embryonic cells.  相似文献   

5.
Neural crest motility on fibronectin is regulated by integrin activation   总被引:2,自引:0,他引:2  
Cell migration is essential for proper development of numerous structures derived from embryonic neural crest cells (NCCs). Although recent work has shown that receptor recycling plays an important role in NCC motility on laminin, the molecular mechanisms regulating NCC motility on fibronectin remain unclear. One mechanism by which cells regulate motility is by modulating the affinity of integrin receptors. Here, we provide evidence that cranial and trunk NCCs rely on functional regulation of integrins to migrate efficiently on fibronectin (FN) in vitro. For NCCs cultured on fibronectin, velocity decreases after Mn2+ application (a treatment that activates all surface integrins) while velocity on laminin (LM) is not affected. The distribution of activated integrin beta 1 receptors on the surface of NCCs is also substratum-dependent. Integrin activation affects cranial and trunk NCCs differently when cultured on different concentrations of FN substrata; only cranial NCCs slow in a FN concentration-dependent manner. Furthermore, Mn2+ treatment alters the distribution and number of activated integrin beta 1 receptors on the surface of cranial and trunk NCCs in different ways. We provide a hypothesis whereby a combination of activated surface integrin levels and the degree to which those receptors are clustered determines NCC motility on fibronectin.  相似文献   

6.
Stem cell factor (SCF) and endothelin 3 (EDN3) are both necessary for melanocyte development. We have established an immortal cell population of neural crest cells from C57BL/6 mice, cultivating them with SCF, EDN3 and 15% fetal calf serum without feeder cells, and have designated that line as C57NCC SE. C57NCC SE consists of a population of melanocytes in various stages of differentiation. We used a single-cell cloning method, in which only one cell is transferred to each new culture plate, and succeeded in establishing an immortal cell line named NCCmelan5. All NCCmelan5 cells were positive for KIT (SCF receptor), HMB45 (human melanosomal antigen), tyrosinase-related protein-1 (TYRP1), tyrosinase-related protein-2 (TYRP2), tyrosinase and endothelin receptor B (EDNRB) and all could oxidize 3,4-dihydroxyphenylalanine (DOPA) to form melanin. Measurement of their DNA content revealed that 88.6% of the cells were in the G0-G1 phase, suggesting that they retained normal DNA ploidy. Thus, NCCmelan5 cells have the characteristics of mature melanocytes except that they are immortal; these cells may prove useful to study factors that directly affect melanogenesis and melanocyte development without the influence of feeder cells. It is clear that our attempt to establish immortal cell lines from murine neural crest cells would have never been successful without the addition of SCF and EDN3, since C57NCC SE and NCCmelan5 cells require those factors to proliferate.  相似文献   

7.
Endothelin receptors B (Ednrb) are involved in the development of the enteric and melanocytic lineages, which originate from neural crest cells (NCCs). In mice, trunk NCCs and their derivatives express only one Ednrb. In quail, trunk NCCs express two Ednrb: Ednrb and Ednrb2. Quail Ednrb is expressed in NCCs migrating along the ventral pathway, which gives rise to the peripheral nervous system, including enteric ganglia. Ednrb2 is upregulated in NCCs before these cells enter the dorsolateral pathway. The NCCs migrating along the dorsolateral pathway are melanocyte precursors. We analyzed the in vitro differentiation and in ovo migration of mouse embryonic stem (ES) cells expressing and not expressing Ednrb2. We generated a series of transfected ES cell lines expressing Ednrb2. This receptor, like Ednrb, oriented genuine ES cells towards melanocyte lineage differentiation in vitro. The in ovo migration of Ednrb2-expressing ES cells was massively oriented towards the dorsolateral pathway, unlike that of WT or Ednrb-expressing ES cells. Thus, Ednrb2 is involved in melanoblast differentiation and migration.  相似文献   

8.
9.
To evaluate the etiologic role of ultraviolet (UV) radiation in acquired dermal melanocytosis (ADM), we investigated the effects of UVA and UVB irradiation on the development and differentiation of melanocytes in primary cultures of mouse neural crest cells (NCC) by counting the numbers of cells positive for KIT (the receptor for stem cell factor) and for the L-3,4-dihydroxyphenylalanine (DOPA) oxidase reaction. No significant differences were found in the number of KIT- or DOPA-positive cells between the UV-irradiated cultures and the non-irradiated cultures. We then examined the effects of UV light on KIT-positive cell lines derived from mouse NCC cultures. Irradiation with UVA but not with UVB inhibited the tyrosinase activity in a tyrosinase-positive cell line (NCCmelan5). Tyrosinase activity in the cells was markedly enhanced by treatment with alpha-melanocyte-stimulating hormone (alpha-MSH), but that stimulation was inhibited by UVA or by UVB irradiation. Irradiation with UVA or UVB did not induce tyrosinase activity in a tyrosinase-negative cell line (NCCmelb4). Levels of KIT expression in NCCmelan5 cells and in NCCmelb4 cells were significantly decreased after UV irradiation. Phosphorylation levels of extracellular signal-regulated kinase 1/2 in cells stimulated with stem cell factor were also diminished after UV irradiation. These results suggest that UV irradiation does not stimulate but rather suppresses mouse NCC. Thus if UV irradiation is a causative factor for ADM lesions, it would not act directly on dermal melanocytes but may act in indirect manners, for instance, via the overproduction of melanogenic cytokines such as alpha-MSH and/or endothelin-1.  相似文献   

10.
Cell migration is essential for proper development of numerous structures derived from embryonic neural crest cells (NCCs). Although the migratory pathways of NCCs have been determined, the molecular mechanisms regulating NCC motility remain unclear. NCC migration is integrin dependent, and recent work has shown that surface expression levels of particular integrin alpha subunits are important determinants of NCC motility in vitro. Here, we provide evidence that rapid cranial NCC motility on laminin requires integrin recycling. NCCs showed both ligand- and receptor-specific integrin regulation in vitro. On laminin, NCCs accumulated internalized laminin but not fibronectin receptors over 20 min, whereas on fibronectin neither type of receptor accumulated internally beyond 2 min. Internalized laminin receptors colocalized with receptor recycling vesicles and were subsequently recycled back to the cell surface. Blocking receptor recycling with bafilomycin A inhibited NCC motility on laminin, indicating that substratum-dependent integrin recycling is essential for rapid cranial neural crest migration.  相似文献   

11.
蒋卓远  查艳  石小峰  张永彪 《遗传》2022,(2):117-134
神经嵴细胞(neural crest cells,NCCs)是一类脊椎动物特有的可迁移的多能干细胞,其可分化为软骨细胞、神经元和黑色素细胞等多种类型细胞。NCCs的形成、迁移和分化受到严格调控,任何扰乱NCCs发育的因素都可导致胚胎发育畸形。由神经嵴细胞发育异常所导致的一系列疾病统称为神经嵴病(neurocristopathies,NCPs)。NCPs种类繁多且表型复杂,可累及人体多个部位(颅面部、心脏、肠胃和皮肤等),严重危害患者的身体机能和心理健康。NCPs占所有出生缺陷患儿的1/3,遗传因素是导致NCPs的主要风险因素,但环境风险因子以及基因–环境交互作用异常也可导致NCPs。本文对神经嵴细胞和神经嵴病及其致病机制进行综述,为系统认知神经嵴细胞发育以及神经嵴病提供参考,为了解神经嵴病的病因以及开展有效防控提供科学支撑。  相似文献   

12.
13.
Parrots have developed unique jaw muscles in their evolutionary history. The M. pseudomasseter, which completely covers the lateral side of the jugal bar, is regarded as a jaw muscle unique to parrots. In a previous study, I presented a hypothesis on the relevance of modifications in the regulation of cranial neural crest cell (NCC) development to the generation of this novel jaw muscle based on histological analyses (Tokita [2004] J Morphol 259:69-81). In the present study, I investigated distribution and migration patterns of cranial neural crest cells (NCCs) through parrot embryogenesis with immunohistochemical techniques to further understand the role of cranial NCCs in the evolution of the M. pseudomasseter, and to provide new information on the relative plasticity in cranial NCC migration at early stages of avian development. The basic nature of cranial NCC development was mostly conserved between chick and parrot. In both, cranial NCCs migrated from the dorsal tip of the neural tube in a ventral direction. Three major populations were identified in their cranial NCCs. Migration pathways of these cells were almost identical between chick and parrot. The principal difference was seen in the relative timing of cranial NCC migration. In the parrot, cranial NCC migration into the first pharyngeal arch was more advanced than in the chick at early stages of development. Such a temporal shift in cranial NCC migration might influence architectural patterning of parrot jaw muscles that generates new muscle like M. pseudomasseter.  相似文献   

14.
The majority of melanocytes originate from the neural crest cells (NCC) that migrate, spread on the whole embryo’s body to form elements of the nervous system and skeleton, endocrinal glands, muscles and melanocytes. Human melanocytes differentiate mainly from the cranial and trunk NCC. Although melanocyte development has traditionally been associated with the dorsally migrating trunk NCC, there is evidence that a part of melanocytes arise from cells migrating ventrally. The ventral NCC differentiate into neurons and glia of the ganglia or Schwann cells. It has been suggested that the precursors for Schwann cells differentiate into melanocytes. As melanoblasts travel through the dermis, they multiply, follow the process of differentiation and invade the forming human fetal epidermis up to third month. After birth, melanocytes lose the ability to proliferate, except the hair melanocytes that renew during the hair cycle. The localization of neural crest-derived melanocytes in non-cutaneous places e.g. eye (the choroid and stroma of the iris and the ciliary body), ear (cells of the vestibular organ, cochlear stria vascularis), meninges of the brain, heart seems to indicate that repertoire of melanocyte functions is much wider than we expected e.g. the protection of tissues from potentially harmful factors (e.g. free radicals, binding toxins), storage ions, and anti-inflammatory action.  相似文献   

15.
This is a semi-biographical review describing my research on melanocyte development and related personal experiences. Having been educated and trained as a dermatologist, I have been involved in many clinically-oriented studies, however, what has always interested me the most is pigment cell biology. Since I started working at St Marianna University in 1991, I have been undertaking research on melanocyte development and relevant growth factors using mice as models. My research in this field was inspired by my collaborations with various scientists, mostly from the field of biology. Many of these specialists I have met at meetings of the Societies of Pigment Cell Research (PCR). Stem cell factor (SCF, Kitl) and endothelin 3 (EDN3) have been identified as indispensable factors regulating the development of melanocytes. Mice mutant at loci encoding those factors (or their receptors) such as Sl/Sl (receptors W/W) and ls/ls (receptors s/s) have white coat colors and white patches, respectively. Our murine neural crest cell (NCC) primary cultures derived from Sl/Sl embryos showed that EDN3 cannot develop melanocyte precursors without SCF and that EDN3 can elicit proliferation and differentiation in the presence of SCF. These results suggest that without EDN3 and the endothelin type B receptor (EDNRB), melanocytes can not fully increase in number, which could well be the cause of the partial white coat color of ls/ls and s/s mice. Contamination with factors derived from the serum in medium or in feeder cells sometimes causes experimental errors, and therefore we established three immortal cell lines derived from NCC in different developmental stages and designated them as NCCmelb4, NCCmelb4M5 and NCCmelan5, all of which can survive without feeder cells. Using these cell lines and NCC primary cultures, we studied the effect of many factors related to melanocyte development. From the results, it has become evident that Vitamin D3 induces EDNRB expression by NCCmelb4 cells. In addition to the International Pigment Cell Conference (IPCC), I have also taken part in many annual meetings of the Japanese Society for Pigment Cell Research (JSPCR), Pan American Society for Pigment Cell Research (PASPCR) and European Society for Pigment Cell Research (ESPCR). Not only have I learned a great deal, I have enjoyed myself immensely at those meetings. Moreover, I have made many good friends there, some of whom I have collaborated with in my research. To conclude, I would like to give my message 'be ambitious' to young scientists, especially young women.  相似文献   

16.
Neural crest cells (NCCs) are a transient population of cells present in vertebrate development that emigrate from the dorsal neural tube (NT) after undergoing an epithelial-mesenchymal transition 1,2. Following EMT, NCCs migrate large distances along stereotypic pathways until they reach their targets. NCCs differentiate into a vast array of cell types including neurons, glia, melanocytes, and chromaffin cells 1-3. The ability of NCCs to reach and recognize their proper target locations is foundational for the appropriate formation of all structures containing trunk NCC-derived components 3. Elucidating the mechanisms of guidance for trunk NCC migration has therefore been a matter of great significance. Numerous molecules have been demonstrated to guide NCC migration 4. For instance, trunk NCCs are known to be repelled by negative guidance cues such as Semaphorin, Ephrin, and Slit ligands 5-8. However, not until recently have any chemoattractants of trunk NCCs been identified 9. Conventional in vitro approaches to studying the chemotactic behavior of adherent cells work best with immortalized, homogenously distributed cells, but are more challenging to apply to certain primary stem cell cultures that initially lack a homogenous distribution and rapidly differentiate (such as NCCs). One approach to homogenize the distribution of trunk NCCs for chemotaxis studies is to isolate trunk NCCs from primary NT explant cultures, then lift and replate them to be almost 100% confluent. However, this plating approach requires substantial amounts of time and effort to explant enough cells, is harsh, and distributes trunk NCCs in a dissimilar manner to that found in in vivo conditions. Here, we report an in vitro approach that is able to evaluate chemotaxis and other migratory responses of trunk NCCs without requiring a homogenous cell distribution. This technique utilizes time-lapse imaging of primary, unperturbed trunk NCCs inside a modified Zigmond chamber (a standard Zigmond chamber is described elsewhere10). By exposing trunk NCCs at the periphery of the culture to a chemotactant gradient that is perpendicular to their predicted natural directionality, alterations in migratory polarity induced by the applied chemotactant gradient can be detected. This technique is inexpensive, requires the culturing of only two NT explants per replicate treatment, avoids harsh cell lifting (such as trypsinization), leaves trunk NCCs in a more similar distribution to in vivo conditions, cuts down the amount of time between explantation and experimentation (which likely reduces the risk of differentiation), and allows time-lapse evaluation of numerous migratory characteristics.  相似文献   

17.
Stem cell factor (SCF) activates a variety of signals associated with stimulation of proliferation, differentiation, migration, and survival in melanocytes. However, the molecular mechanisms by which SCF and its receptor Kit activates these signaling pathways simultaneously and independently are still poorly defined. Here, we examined whether SCF induces ezrin/radixin/moesin (ERM) proteins phosphorylation as a downstream target of PI3K in melanocytes. ERM proteins are cross-linkers between the plasma membrane and the actin cytoskeleton and are activated by phosphorylation of a C-terminal threonine residue. Our results demonstrated that SCF-induced ERM proteins phosphorylation on threonine residue and Rac1 activation in cultured normal human melanocytes through the activation of PI3K. The functional role of phosphorylated-ERM proteins was examined using melanocytes infected with adenovirus carrying a dominant negative mutant (Ala-558, TA) or wild type of moesin. In the TA moesin-overexpressing melanocytes, SCF-induced cell proliferation and migration were inhibited. Thus, our results indicate that phosphorylation of ERM proteins plays an important role in the regulation of SCF-induced melanocyte proliferation and migration.  相似文献   

18.
Epidermal melanocytes play an important role in protecting the skin from UV rays, and their functional impairment results in pigment disorders. Additionally, melanomas are considered to arise from mutations that accumulate in melanocyte stem cells. The mechanisms underlying melanocyte differentiation and the defining characteristics of melanocyte stem cells in humans are, however, largely unknown. In the present study, we set out to generate melanocytes from human iPS cells in vitro, leading to a preliminary investigation of the mechanisms of human melanocyte differentiation. We generated iPS cell lines from human dermal fibroblasts using the Yamanaka factors (SOX2, OCT3/4, and KLF4, with or without c-MYC). These iPS cell lines were subsequently used to form embryoid bodies (EBs) and then differentiated into melanocytes via culture supplementation with Wnt3a, SCF, and ET-3. Seven weeks after inducing differentiation, pigmented cells expressing melanocyte markers such as MITF, tyrosinase, SILV, and TYRP1, were detected. Melanosomes were identified in these pigmented cells by electron microscopy, and global gene expression profiling of the pigmented cells showed a high similarity to that of human primary foreskin-derived melanocytes, suggesting the successful generation of melanocytes from iPS cells. This in vitro differentiation system should prove useful for understanding human melanocyte biology and revealing the mechanism of various pigment cell disorders, including melanoma.  相似文献   

19.
Neural crest cells (NCCs) are physically responsible for craniofacial skeleton formation, pharyngeal arch artery remodeling and cardiac outflow tract septation during vertebrate development. Cdc42 (cell division cycle 42) is a Rho family small GTP-binding protein that works as a molecular switch to regulate cytoskeleton remodeling and the establishment of cell polarity. To investigate the role of Cdc42 in NCCs during embryonic development, we deleted Cdc42 in NCCs by crossing Cdc42 flox mice with Wnt1-cre mice. We found that the inactivation of Cdc42 in NCCs caused embryonic lethality with craniofacial deformities and cardiovascular developmental defects. Specifically, Cdc42 NCC knockout embryos showed fully penetrant cleft lips and short snouts. Alcian Blue and Alizarin Red staining of the cranium exhibited an unfused nasal capsule and palatine in the mutant embryos. India ink intracardiac injection analysis displayed a spectrum of cardiovascular developmental defects, including persistent truncus arteriosus, hypomorphic pulmonary arteries, interrupted aortic arches, and right-sided aortic arches. To explore the underlying mechanisms of Cdc42 in the formation of the great blood vessels, we generated Wnt1Cre-Cdc42-Rosa26 reporter mice. By beta-galactosidase staining, a subpopulation of Cdc42-null NCCs was observed halting in their migration midway from the pharyngeal arches to the conotruncal cushions. Phalloidin staining revealed dispersed, shorter and disoriented stress fibers in Cdc42-null NCCs. Finally, we demonstrated that the inactivation of Cdc42 in NCCs impaired bone morphogenetic protein 2 (BMP2)-induced NCC cytoskeleton remodeling and migration. In summary, our results demonstrate that Cdc42 plays an essential role in NCC migration, and inactivation of Cdc42 in NCCs impairs craniofacial and cardiovascular development in mice.  相似文献   

20.
Neural crest cells (NCCs) are a remarkable, dynamic group of cells that travel long distances in the embryo to reach their target sites. They are responsible for the formation of craniofacial bones and cartilage, neurons and glia in the peripheral nervous system and pigment cells. Live imaging of NCCs as they traverse the embryo has been critical to increasing our knowledge of their biology. NCCs exhibit multiple behaviors and communicate with each other and their environment along each step of their journey. Imaging combined with molecular manipulations has led to insights into the mechanisms controlling these behaviors. In this Review, we highlight studies that have used live imaging to provide novel insight into NCC migration and discuss how continued use of such techniques can advance our understanding of NCC biology.Key words: live imaging, neural crest, EMT, Rho GTPase, ephrin, PCP signaling, cadherin, VEGFNeural crest cells (NCCs) are a pluripotent population of cells that migrate from the dorsal neuroepithelium and give rise to multiple cell types including neurons and glia of the peripheral nervous system, pigment cells and craniofacial bone and cartilage.1 An important hallmark of NCCs is their remarkable ability to migrate over long distances and along specific pathways through the embryo. NCC migration begins with an epithelial to mesenchymal transition (EMT), in which NCCs lose adhesions with their neighbors and segregate from the neuroepithelium.2,3 Following EMT, NCCs acquire a polarized morphology and initiate directed migration away from the neural tube. While migrating along their pathways to their target tissues, NCCs are guided by extensive communication with one another and by other cues from the extracellular environment. Each of these aspects of NCC migration requires precise regulation of cell motile behaviors, although the mechanisms controlling them are still not well understood. A critical step toward understanding the molecular control of NCC motility is characterization of NCC behaviors as they migrate in their native environment. In the past 15 years, multiple studies have analyzed specific behaviors associated with NCCs along the various stages of their journey and have begun to identify molecules controlling these behaviors. In this review we will focus specifically on these studies that employ live imaging and will highlight the strength of live imaging to reveal mechanisms regulating NCC motility and migration pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号