首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim, Scope and Background  When materials are recycled they are made available for use for several future life cycles and can therefore replace virgin material more than just once. In order to analyse the optimal waste management system for a given material, the authors have analysed the material flows in a life cycle perspective. It is important to distinguish this approach for material flow analysis for a given material from life cycle analysis of products. A product life cycle analysis analyses the product system from cradle to grave, but uses some form of allocation in order to separate the life cycle of one product from another in cases where component materials are recycled. This paper does not address allocation of burdens between different product systems, but rather focuses on methodology for decision making for waste management systems where the optimal waste management system for a given material is analysed. The focus here is the flow of the given material from cradle (raw material extraction) to grave (the material, or its inherent energy, is no longer available for use). The limitation on the number of times materials can be recycled is set by either the recycling rate, or the technical properties of the recycled material. Main Features  This article describes a mathematical geometric progression approach that can be used to expand the system boundaries and allow for recycling a given number of times. Case studies for polyethylene and paperboard are used to illustrate the importance of including these aspects when part of the Goal and Scope for the LCA study is to identify which waste management treatment options are best for a given material. The results and discussion examine the different conclusions that can be reached about which waste management option is most environmentally beneficial when the higher burdens and benefits of recycling several times are taken into account. Results  In order to assess the complete picture of the burdens and benefits arising from recycling the system boundaries must be expanded to allow for recycling many times. A mathematical geometric progression approach manages to take into account the higher burdens and benefits arising from recycling several times. If one compares different waste management systems, e.g. energy recovery with recycling, without expanding the system to include the complete effects of material recycling one can reach a different conclusion about which waste management option is preferred. Conclusions  When the purpose of the study is to compare different waste management options, it is important that the system boundaries are expanded in order to include several recycling loops where this is a physical reality. The equations given in this article can be used to include these recycling loops. The error introduced by not expanding the system boundaries can be significant. This error can be large enough to change the conclusions of a comparative study, such that material recycling followed by incineration is a much better option than waste incineration directly. Recommendations and Outlook  When comparing waste management solutions, where material recycling is a feasible option, it is important to include the relevant number of recycling loops to ensure that the benefits of material recycling are not underestimated. The methodology presented in this article should be used in future comparative studies for strategic decision-making for waste management. The approach should not be used for LCAs for product systems without due care, as this could lead to double counting of the benefits of recycling (depending on the goal and scope of the analysis). For materials where the material cycle is more of a closed loop and one cannot truly say that recycled materials replace virgin materials, a more sophisticated approach will be required, taking into account the fact that recycled materials will only replace a certain proportion of virgin materials.  相似文献   

2.
Background, aims and scope  The environmental aspects of companies and their products are becoming more significant in delivering competitive advantage. Formway Furniture, a designer and manufacturer of office furniture products, is a New Zealand-based company that is committed to sustainable development. It manufactures two models of the light, intuitive, flexible and environmental (LIFE) office chair: one with an aluminium base and one with a glass-filled nylon (GFN) base. It was decided to undertake a life cycle assessment (LCA) study of these two models in order to: (1) determine environmental hotspots in the life cycle of the two chairs (goal 1); (2) compare the life cycle impacts of the two chairs (goal 2); and (3) compare alternative potential waste-management scenarios (goal 3). The study also included sensitivity analysis with respect to recycled content of aluminium in the product. Materials and methods  The LIFE chair models consist of a mix of metal and plastic components manufactured by selected Formway suppliers according to design criteria. Hence, the research methodology included determining the specific material composition of the two chair models and acquisition of manufacturing data from individual suppliers. These data were compiled and used in conjunction with pre-existing data, specifically from the ecoinvent database purchased in conjunction with the SimaPro7 LCA software, to develop the life cycle inventory of the two chair models. The life cycle stages included in the study extended from raw-material extraction through to waste management. Impact assessment was carried out using CML 2 baseline 2000, the methodology developed by Leiden University’s Institute for Environmental Sciences. Results  This paper presents results for global warming potential (GWP100). The study showed a significant impact contribution from the raw-material extraction/refinement stage for both chair models; aluminium extraction and refining made the greatest contribution to GWP100. The comparison of the two LIFE chair models showed that the model with the aluminium base had a higher GWP100 impact than the model with the GFN base. The waste-management scenario compared the GWP100 result when (1) both chair models were sent to landfill and (2) steel and aluminium components were recycled with the remainder of the chair sent to landfill. The results showed that the recycling scenario contributed to a reduced GWP100 result. Since production and processing of aluminium was found to be significant, a sensitivity analysis was carried out to determine the impact of using aluminium with different recycled contents (0%, 34% and 100%) in both waste-management scenarios; this showed that increased use of recycled aluminium was beneficial. The recycling at end-of-life scenarios was modelled using two different end-of-life allocation approaches, i.e. consequential and attributional, in order to illustrate the variation in results caused by choice of allocation approach. The results using the consequential approach showed that recycling at end-of-life was beneficial, while use of the attributional method led to a similar GWP100 as that seen for the landfill scenario. Discussion  The results show that the main hotspot in the life cycle is the raw-material extraction/refinement stage. This can be attributed to the extraction and processing of aluminium, a material that is energy intensive. The LIFE chair model with the aluminium base has a higher GWP100 as it contains more aluminium. Sensitivity analysis pertaining to the recycled content of aluminium showed that use of aluminium with high recycled content was beneficial; this is because production of recycled aluminium is less energy intensive than production of primary aluminium. The waste-management scenario showed that recycling at end-of-life resulted in a significantly lower GWP100 than landfilling at end-of-life. However, this result is dependent upon the modelling approach used for recycling. Conclusions  With respect to goal 1, the study found that the raw-material extraction/refinement stage of the life cycle was a significant factor for both LIFE chair models. This was largely due to the use of aluminium in the product. For goal 2, it was found that the LIFE chair model with the aluminium base had a higher GWP100 than the GFN model, again due to the material content of the two models. Results for goal 3 illustrated that recycling at end-of-life is beneficial when using a system expansion (consequential) approach to model recycling; if an attributional ‘cut-off’ approach is used to model recycling at end-of-life, there is virtually no difference in the results between landfilling and recycling. Sensitivity analysis pertaining to the recycled content of aluminium showed that use of higher recycled contents leads to a lower GWP100 impact. Recommendation and perspectives  Most of the GWP100 impact was contributed during the raw-material extraction/refinement stage of the life cycle; thus, the overall impact of both LIFE chair models may be reduced through engaging in material choice and supply chain environmental management with respect to environmental requirements. The study identified aluminium components as a major contributor to GWP100 for both LIFE chair models and also highlighted the sensitivity of the results to its recycled content. Thus, it is recommended that the use of aluminium in future product designs be limited unless it is possible to use aluminium with a high recycled content. With respect to waste management, it was found that a substantial reduction in the GWP100 impact would occur if the chairs are recycled rather than landfilled, assuming an expanding market for aluminium. Thus, recycling the two LIFE chair models at end-of-life is highly recommended.  相似文献   

3.
Recycling of a product can lead to the same product or to other products. Within the Inventory Analysis of LCA, the first process is called closed-loop recycling and poses relatively small methodological problems, whereas the second, open-loop recycling, involves major allocation problems. Basically, open-loop recycling creates a new, larger system which should be treated as one system in the inventory analysis from a scientific point of view. Since this is frequently not possible, allocation rules have to be applied in order to treat one of the subsystems separately. In this review, the different allocation rules proposed are presented and discussed with respect to the criteria of mathematical neatness, feasibility and justice/incentive for both producers and users of secondary raw materials.  相似文献   

4.

Purpose

A set of comparative life cycle assessment case studies were undertaken to explore key issues relating to the environmental impacts of building materials. The case studies explore modeling practice for long-life components by investigating (1) recycled content and end-of-life recycling scenarios and (2) service life and maintenance scenarios. The study uses a window unit frames as the object of comparison, allowing for exploration of multiple materials and assembly techniques.

Methods

Four window frame types were compared: aluminum, wood, aluminum-clad wood, and unplasticized PVC (PVCu). These used existing product life cycle inventory data which included primary frame material, coatings, weather stripping sealants, but not glazing. The functional unit was a window frame required to produce 1 m2 of visible glazing, with similar thermal performance over a building lifespan of 80 years. The frames were compared using both the end-of-life and recycled content methods for end-of-life scenarios. The models were also tested using custom-use scenarios.

Results and discussion

Well-maintained aluminum window frames proved to be the least impactful option across all categories, in large part due to the credits delivered from recycling and expectations of long-life. Wood window frames had the least variability associated with maintenance and durability. The global warming potential (GWP) of a moderately maintained aluminum assembly was found to be 68 % less than PVCu and 50 % less than aluminum-clad wood. Using a long-life scenario, wood windows were found to have a 7 % lower GWP than the long-life scenario for aluminum-clad woods. Moderately and well-maintained aluminum windows require less energy to be produced and maintained over their lifetime than any of the wood scenarios. Expectations of service life proved to be the most important factor in considering environmental impact of frame materials.

Conclusions

The research shows significant gaps in available data—such as average realized life expectancies of common building components—while further underscoring that recycling rates are a driving factor in the environmental impact of aluminum building products. A modeling shift from the recycled content method to the end-of-life recycling method should promote goals of material recovery over pursuit of material with high recycled content. Hybrid methods, such as the use of Module D, may bridge the divide between these two approaches by providing due credit for use of recycled material, while supporting a design for recycling ethos. Further research is needed on how design and construction decisions affect collection and recovery rates in practice.
  相似文献   

5.
Life cycle assessment practitioners struggle to accurately allocate environmental burdens of metals recycling, including the temporal dimension of environmental impacts. We analyze four approaches for calculating aluminum greenhouse gas emissions: the recycled content (RC) or cut‐off approach, which assumes that demand for recycled content displaces primary production; end‐of‐life recycling (EOLR), which assumes that postuse recycling displaces primary production; market‐based (MB) approaches, which estimate changes in supply and demand using price elasticities; and value‐corrected substitution (VCS), which allocates impact based on price differences between primary and recycled material. Our analysis suggests that applications of the VCS approach do not adequately account for the changing scrap to virgin material price ratio over time, whereas MB approaches do not address stock accumulation and depletion. The EOLR and RC approaches were analyzed using two case studies: U.S. aluminum beverage cans and vehicle engine blocks. These approaches produced similar results for beverage cans, which have a closed material loop system and a short product life. With longer product lifetimes, as noted with the engine blocks, the magnitude and timing of the emissions differs greatly between the RC and EOLR approaches. The EOLR approach indicates increased impacts at the time of production, offset by negative impacts in future years, whereas the RC approach assumes benefits to increased recycled content at the time of production. For vehicle engine blocks, emissions using EOLR are 140% higher than with RC. Results are highly sensitive to recycled content and future recycling rates, and the choice of allocation methods can have significant implications for life cycle studies.  相似文献   

6.
Background, Aims and Scope The interest in recycling materials at the end of their life is growing in the industry in general. As regards the Wastes of Electrical and Electronic Equipment (WEEE), an appreciable increase of these materials has been noticed in the last decades, 117 · 103 tons of WEEE have been produced in Italy in 2002 according to Ecohitech [1] and the increase in this kind of waste is three times higher than that of the municipal waste according to the FISE ASSOAMBIENTE report [2]. Within WEEE, End-of-Life Cathode Ray Tube (EOL CRT) glass, the main part of TV sets and PC monitors, is here analysed using both a technical approach to establish a possible reuse of the glass in a open-loop recycling field (ceramic industry) and a methodology (LCA) capable of providing environmental evaluations. Methods The technological characterization was performed by chemical resistance tests (UNI EN ISO 10545-13), staining tests (UNI EN ISO 10545-14) with blue methylene and potassium permanganate (KMnO4), and surface abrasion tests (UNI EN ISO 10545-7). The LCA study was conducted using the SimaPro 5.0 software and Eco-Indicator 99 as an evaluation method. Results and Discussion The good technical results, reached by using cleaned EOL CRT panel glass inside a ceramic glaze formulation instead of a commercial frit, are supported by the environmental impact evaluation, which shows a decrease of the overall potential damage (measured in Points) of 36% and, in particular, a reduction of 53% in ‘Human health’, 31% in ‘Eco-system quality’ and 24% in ‘Resources’. Conclusions This study has demonstrated that this new, open-loop recycling strategy for the CRT glass significantly reduces the environmental impact of the ceramic glaze production process. In fact, in all damage categories examined in this study, there is a minor impact. An improvement is evident in the respiratory inorganics sub-category related to the lowering of dusts mainly and to a lesser amount with NOx and SOx in the climate change sub-category, due mainly to the reduction of CO2 emission correlated to the avoided combustion of the mixture which feeds melting furnaces in the frit production. Thus, the damage decrease in ‘Ecosystem quality’ is prevalently due to the lower NOx emissions by the kilns in the frit production that is evident in the acidification/eutrophication sub-category. Finally, the significant saving in the ‘Resource’ category is principally linked to the fossil fuels sub-category, thanks to the methane saving which stokes the melting furnaces. Perspectives Furthermore, the decrease in CO2 emission (94.4%) evident in the climate change sub-category is a very important topic because it is in line with the Kyoto protocol (1997), where significant efforts have been exerted for the reduction of the green house gases emission, notably CO2. The CO2 emission is correlated to the combustion of the mixture which feeds melting kilns in the frit production, therefore the recycling of secondary raw materials, already in a glass state, can reduce the emissions of this gas. This reduction can be termed as environmental credit and it is an example of an allocation of environmental loads in a open-loop recycling, where waste from one industrial system are used as raw materials in another product system.  相似文献   

7.
In this paper we investigate a manufacturer’s sustainable sourcing strategy that includes recycled materials. To produce a short life-cycle electronic good, strategic raw materials can be bought from virgin material suppliers in advance of the season and via emergency shipments, as well as from a recycler. Hence, we take into account virgin and recycled materials from different sources simultaneously. Recycling makes it possible to integrate raw materials out of steadily increasing waste streams back into production processes. Considering stochastic prices for recycled materials, stochastic supply quantities from the recycler and stochastic demand as well as their potential dependencies, we develop a single-period inventory model to derive the order quantities for virgin and recycled raw materials to determine the related costs and to evaluate the effectiveness of the sourcing strategy. We provide managerial insights into the benefits of such a green sourcing approach with recycling and compare this strategy to standard sourcing without recycling. We conduct a full factorial design and a detailed numerical sensitivity analysis on the key input parameters to evaluate the cost savings potential. Furthermore, we consider the effects of correlations between the stochastic parameters. Green sourcing is especially beneficial in terms of cost savings for high demand variability, high prices of virgin raw material and low expected recycling prices as well as for increasing standard deviation of the recycling price. Besides these advantages it also contributes to environmental sustainability as, compared to sourcing without recycling, it reduces the total quantity ordered and, hence, emissions are reduced.  相似文献   

8.
Purpose

Composites consist of at least two merged materials. Separation of these components for recycling is typically an energy-intensive process with potentially significant impacts on the components’ quality. The purpose of this article is to suggest how allocation for recycling of products manufactured from composites can be handled in life cycle assessment to accommodate for the recycling process and associated quality degradations of the different composite components, as well as to describe the challenges involved.

Method

Three prominent recycling allocation approaches were selected from the literature: the cut-off approach, the end-of-life recycling approach with quality-adjusted substitution, and the circular footprint formula. The allocation approaches were adapted to accommodate for allocation of impacts by conceptualizing the composite material recycling as a separation process with subsequent recycling of the recovered components, allowing for separate modeling of the quality changes in each individual component. The adapted allocation approaches were then applied in a case study assessing the cradle-to-grave climate impact and energy use of a fictitious product made from a composite material that in the end of life is recycled through grinding, pyrolysis, or by means of supercritical water treatment. Finally, the experiences and results from applying the allocation approaches were analyzed with regard to what incentives they provide and what challenges they come with.

Results and discussion

Using the approach of modeling the composite as at least two separate materials rather than one helped to clarify the incentives provided by each allocation approach. When the product is produced using primary materials, the cut-off approach gives no incentive to recycle, and the end-of-life recycling approach and the circular footprint formula give incentives to recycle and recover materials of high quality. Each of the allocation approaches come with inherent challenges, especially when knowledge is limited regarding future systems as in prospective studies. This challenge is most evident for the circular footprint formula, for example, with regard to the supply and demand balance.

Conclusions

We recommend modeling the composite materials in products as separate, individual materials. This proved useful for capturing changes in quality, trade-offs between recovering high quality materials and the environmental impact of the recycling system, and the incentives the different approaches provide. The cut-off and end-of-life approaches can both be used in prospective studies, whereas the circular footprint formula should be avoided as a third approach when no market for secondary material is established.

  相似文献   

9.
Application and development of the LCA methodology to the context of the building sector makes several building specific considerations necessary, as some key characteristics of products in the building sector differ considerably from those of other industrial sectors. The largest difference is that the service life of a building can stretch over centuries, rather than decades or years as seen for consumer products. The result of the long service life is that it is difficult to obtain accurate data and to make relevant assumptions about future conditions regarding, for example, recycling. These problems have implications on the issue of allocation in the building sector, in the way that several allocation procedures ascribe environmental loads to users of recycled or reused products and materials in the future which are unknown today. The long service life for buildings, building materials and building components, is associated with the introduced concept of a virtual parallel time perspective proposed here, which basically substitutes historical and future processes and values with current data. Further, the production and refining of raw material as a parallel to upgrading of recycled material, normally contains several intermediate products. A suggestion is given for how to determine the comparability of intermediate materials. The suggested method for allocation presented is based on three basic assumptions: (1) If environmental loads are to be allocated to a succeeding product life cycle, the studied actual life cycle has to take responsibility for upgrading of the residual material into secondary resources. (2) Material characteristics and design of products are important factors to estimate the recyclable amount of the material. Therefore, a design factor is suggested using information for inherent material properties combined with information of the product context at the building level. (3) The quality reduction between the materials in two following product life cycles is indicated as the ratio between the market value for the material in the products. The presented method can be a good alternative for handling the problem of open-loop recycling allocation in the context of the building sector if a consensus for the use of the fictive parallel time perspective and the use of the design factor can be established. This as the use of the time perspective and design factor is crucial to be able to deal with the problem of long service lives for buildings and building materials and the specific characteristics of the same building materials and components built into different building contexts.  相似文献   

10.
11.
Goal, Scope and Background  In the recently published (Dutch) Handbook on LCA, economic allocation is advised as baseline method for most allocation situations in a detailed LCA. Although the Handbook on LCA aimed to provide a ‘cookbook’ with operational guidelines for conducting each step of an LCA, this was not completely achieved for the allocation step. The guidelines for allocation largely remained at the level of principles. This restricted elaboration of economic allocation may hamper application in practice. Therefore, this paper elaborates some examples applying economic allocation. Method  Two concepts are of particular importance when applying economic allocation: functional flow and multi-functional process. The definitions of these concepts are presented and discussed. The basic principle of economic allocation is that having determined the various functional flows of a multi-functional process, all other flows need to be allocated to these functional flows according to their shares in the total proceeds. Proceeds are based on prices and these are not always easy to determine for a process. A summary of possible solutions for different problems when determining prices is given. Results and Discussion  The examples presented focus on co-production and various recycling situations. All examples are hypothetical in order to avoid discussions on the data. The examples show that the prices of the functional flows determine the allocation results. It is of importance to have correct information on the relative prices of the functional flows at stake, especially whether they are negative or positive. Learning from these examples, we establish a decision tree for economic allocation. The decision tree is meant for identifying and handling multi-functionality situations starting from a defined (product) system. This decision tree is with minor adaptations also applicable to other allocation methods and has a more general value than for the economic allocation method only. Conclusions and perspective  The examples have helped us to establish a decision tree for handling the multi-functionality problem by economic allocation. The examples can be broadened to other materials and allocation situations. We would encourage others to provide other examples and experiences as we expect that these will help to further improve and refine the guidelines and decision tree for economic allocation in future.  相似文献   

12.

Purpose

Multifunctionality in LCA can be solved by several allocation procedures. Various official guidelines give divergent recommendations in which allocation procedure to apply, and up to now, no consensus has been reached. We aim to identify the obstacles to a consistent allocation approach that can be applied to all product categories and is supported by a broad range of stakeholders.

Methods

Based on a systematic framework for consistent allocation, developed by Schrijvers et al. (Int J Life Cycle Assess, 2016), we identify five review criteria that indicate the degree of consistency in the proposed allocation procedure of official guidelines. Several relevant guidelines, i.e. ISO 14044, ISO/TR 14049, ISO/TS 14067, the ILCD Handbook, BP X30-323-0, PAS 2050, the Greenhouse Gas Protocol, EN15804, PEF Guide and guidance documents for EPDs and PCRs, are reviewed according to these criteria.

Results and discussion

None of the investigated guidelines fully follows the systematic framework for allocation. Often, different approaches are recommended for co-products and recycled materials, although the boundary between these flows is not always clear. Many guidelines do not recognize the existence of different LCA goals; therefore, elements of attributional and consequential LCAs are often mixed. The market situation of the recycled material is not always taken into account, e.g. in the mandatory 50/50 method of the PEF Guide. The ILCD Handbook and the General Programme Instructions for the International EPD® System provide most consistent guidance. We argue that consistency does not require a one-formula-fits-all method, as this would favour some product categories and only responds to a certain LCA goal.

Conclusions and perspectives

A critical review of guidelines against a systematic framework for allocation of co-products and recycled materials shows that few guidelines propose a consistent allocation approach. The main obstacles for consistency are the different approaches for co-production and (different types of open-loop) recycling and disregarding of different LCA goals and recycled material markets. We recommend to include material specific guidance in Product Category Rules on the determination of market prices, quality determining factors and relevant material properties for different applications.
  相似文献   

13.

Background, Aim and Scope  

By using recycled aluminium or by disposing used aluminium products for recycling, it is normal LCA practice to give a credit for the avoided production of primary or recycled aluminium. Lately, consequential approaches have been suggested to qualify and quantify this credit in terms of market mechanisms. Depending on supply, demand and price elasticity of primary products and scrap products, a mixed share of primary and recycled material may be credited. Aluminium, having high energy consumption for its primary production and low energy consumption for recycling, is very sensitive concerning whether production of primary or recycled aluminium is avoided. This paper includes presentations of aluminium products which are typically made from primary and from recycled aluminium. This is essential concerning which production may be avoided. Examples of market mechanism parameters of aluminium for consequential LCA are given.  相似文献   

14.
- Preamble. In this series of two papers, a methodology to calculate the average number of times a material is used in a society from cradle to grave is presented and applied to allocation of environmental impact of virgin material. Part 1 focuses on methodology development and shows how the methodology works with hypothetical examples of material flows. Part 2 presents case studies for steel recycling in Japan, in which the methodology is applied and allocation of environmental impact of virgin steel is conducted. - Abstract Goal, Scope and Background. It has been recognized that LCA has a limitation in assessing open cycle recycling of materials because of inevitable subjective judgments in setting system boundary. According with the enforcement of recycling laws, there has been a rapid increase in recycling ratio of materials at the end-of-life of products in many industrialized countries. So, materials' life cycle is getting more complicated, which makes it difficult to quantify the environmental impacts of materials used in a product in an appropriate way. The purpose of this paper is to develop a methodology to calculate the average number of times a material is used in a society from cradle to grave. The method developed in this paper derives the average number of times material is used; this value could be used for allocation of environmental burdens of virgin material as well as an indicator for assessing the state of material use in a certain year, based on material flow of material in that year. Main Features Our methodology is based on Markov chain model using matrix-based numerical analysis. A major feature of this method is that it creates transition probability matrices for a material from the way in which the material is produced, consumed, and recycled, making it possible to simply elicit indicators that assess the status of material use in products in society. Our methodology could be an alternative method to derive the average number of times material is used, which could be used for allocation of environmental burdens of virgin material. Results and Discussions The methodology was applied to hypothetical examples of material flows, in which a virgin material was produced and used in products, recycled and finally landfilled. In some cases, closed loop and open loop recycling of materials existed. The transition probability matrix was created for each material flow, and how many times a virgin material is used in products until all of the elements are ultimately landfilled. Conclusions This methodology is applicable to a complicated material flow if the status of residence of a material and its flow in a society can be figured out. All the necessary data are the amount of virgin material production, amount of the material used in products, recycling rate of the material at the end of life of each product, the amount of scrap of the material that are used for products. In Part 2 of this paper, case studies for steel were conducted.  相似文献   

15.
Proponents of material recycling typically point to two environmental benefits: disposal (landfill/incinerator) reduction and primary production displacement. However, in this paper we mathematically demonstrate that, without displacement, recycling can delay but not prevent any existing end‐of‐life material from reaching final disposal. The only way to reduce the amount of material ultimately landfilled or incinerated is to produce less in the first place; material that is not made needs not be disposed. Recycling has the potential to reduce the amount of material reaching end of life solely by reducing primary production. Therefore, the “dual benefits” of recycling are in fact one, and the environmental benefit of material recycling rests in its potential to displace primary production. However, displacement of primary production from increased recycling is driven by market forces and is not guaranteed. Improperly assuming all recycled material avoids disposal underestimates the environmental impacts of the product system. We show that the potential magnitude of this error is substantial, though for inert recyclables it is lower than the error introduced by improperly assuming all recycled material displaces primary material production. We argue that life cycle assessment end‐of‐life models need to be updated so as not to overstate the benefits of recycling. Furthermore, scholars and policy makers should focus on finding and implementing ways to increase the displacement potential of recyclable materials rather than focusing on disposal diversion targets.  相似文献   

16.
The diversity of raw materials used in modern products, compounded by the risk of supply disruptions—due to uneven geological distribution of resources, along with socioeconomic factors like production concentration and political (in)stability of raw material producing countries—has drawn attention to the subject of raw material “criticality.” In this article, we review the state of the art regarding the integration of criticality assessment, herein termed “product‐level supply risk assessment,” as a complement to environmental life cycle assessment. We describe and compare three methods explicitly developed for this purpose—Geopolitical Supply Risk (GeoPolRisk), Economic Scarcity Potential (ESP), and the Integrated Method to Assess Resource Efficiency (ESSENZ)—based on a set of criteria including considerations of data sources, uncertainties, and other contentious methodological aspects. We test the methods on a case study of a European‐manufactured electric vehicle, and conclude with guidance for appropriate application and interpretation, along with opportunities for further methodological development. Although the GeoPolRisk, ESP, and ESSENZ methods have several limitations, they can be useful for preliminary assessments of the potential impacts of raw material supply risks on a product system (i.e., “outside‐in” impacts) alongside the impacts of a product system on the environment (i.e., “inside‐out” impacts). Care is needed to not overlook critical raw materials used in small amounts but nonetheless important to product functionality. Further methodological development could address regional and firm‐level supply risks, multiple supply‐chain stages, and material recycling, while improving coverage of supply risk characterization factors.  相似文献   

17.

Purpose

In a world where the population is expected to peak at around 9 billion people in the next 30 to 40 years, carefully managing our finite natural resources is becoming critical. We must abandon the outdated ‘take, make, consume and dispose’ mentality and move toward a circular economy model for optimal resource efficiency. Products must be designed for reuse and remanufacturing, which would reduce significant costs in terms of energy and natural resources.

Methods

To measure progress in achieving a circular economy, we need a life cycle approach that measures the social, economic and environmental impact of a product throughout its full life cycle—from raw material extraction to end-of-life (EoL) recycling or disposal. Life cycle thinking must become a key requirement for all manufacturing decisions, ensuring that the most appropriate material is chosen for the specific application, considering all aspects of a products’ life. The steel industry has been developing LCI data for 20 years. This is used to assess a product’s environmental performance from steel production to steel recycling at end-of-life. The steel industry has developed a methodology to show the benefits of using recycled steel to make new products. Using recycled materials also carries an embodied burden that should be considered when undertaking a full LCA.

Results and discussion

The recycling methodology is in accordance with ISO 14040/44:2006 and considers the environmental burden of using steel scrap and the benefit of scrap recycling from end-of-life products. It considers the recycling of scrap into new steel as closed material loop recycling, and thus, recycling steel scrap avoids the production of primary steel. The methodology developed shows that for every 1 kg of steel scrap that is recycled at the end of the products life, a saving of 1.5 kg CO2-e emissions, 13.4 MJ primary energy and 1.4 kg iron ore can be achieved. This equates to 73, 64 and 90 %, respectively, when compared to 100 % primary production.

Conclusions

Incorporating this recycling methodology into a full LCA demonstrates how the steel industry is an integral part of the circular economy model which promotes zero waste; a reduction in the amount of materials used and encourages the reuse and recycling of materials.
  相似文献   

18.
Goal, Scope and Background This paper discusses the merging of methodological aspects of two known methods into a hybrid on an application basis. Water shortages are imminent due to scarce supply and increasing demand in many parts of the world. In California, this is caused primarily by population growth. As readily available water is depleted, alternatives that may have larger energy and resource requirements and, therefore, environmental impacts must be considered. In order to develop a more environmentally responsible and sustainable water supply system, these environmental implications should be incorporated into planning decisions. Methods Comprehensive accounting for environmental effects requires life cycle assessment (LCA), a systematic account of resource use and environmental emissions caused by extracting raw materials, manufacturing, constructing, operating, maintaining, and decommissioning the water infrastructure. In this study, a hybrid LCA approach, combining elements of process-based and economic input-output-based LCA was used to compare three supply alternatives: importing, recycling, and desalinating water. For all three options, energy use and air emissions associated with energy generation, vehicle and equipment operation, and material production were quantified for life-cycle phases and water supply functions (supply, treatment, and distribution). The Water-Energy Sustainability Tool was developed to inform water planning decisions. It was used to evaluate the systems of a Northern and a Southern California water utility. Results and Discussion The results showed that for the two case study utilities desalination had 2–5 times larger energy demand and caused 2–18 times more emissions than importation or recycling, due primarily to the energy-intensity of the treatment process. The operation life-cycle phase created the most energy consumption with 56% to 90% for all sources and case studies. For each water source, a different life-cycle phase dominated energy consumption. For imported water, supply contributed 56% and 86% of the results for each case study; for desalination, treatment accounted for approximately 85%; for recycled water, distribution dominated with 61% and 74% of energy use. The study calculated external costs of air pollution from all three water supply systems. These costs are borne by society, but not paid by producers. The external costs were found to be 6% of desalinated water production costs for both case studies, 8% of imported water production costs in Southern California, and 1–2% for the recycled water systems and for the Northern California utility's imported water system. Conclusion Recycling water was found to be more energy intensive in Northern than in Southern California, but the results for imported water were similar. While the energy demand of water recycling was found to be larger than importation in Northern California, the two alternatives were competitive in Southern California. For all alternatives in both case studies, the energy consumed by system operation dominated the results, but maintenance was also found to be significant. Energy production was found to be the largest contributor in all water provision systems, followed by materials production. The assessment of external costs revealed that the environmental effects of energy and air emissions caused by infrastructure is measurable, and in some cases, significant relative to the economic cost of water. Recommendation and Perspective This paper advocates the necessity of LCA in water planning, and discusses the applicability of the described model to water utilities.  相似文献   

19.

Purpose

This paper explains in details the rationale behind the choice of the end-of-life allocation approach in the European Commission Product Environmental Footprint (PEF) and Organisational Environmental Footprint (OEF) methods. The end-of-life allocation formula in the PEF/OEF methods aims at enabling the assessment of all end-of-life scenarios possible, including recycling, reuse, incineration (with heat recovery) and disposal for both open- and closed-loop systems in a consistent and reproducible way. It presents how the formula builds on existing standards and how and why it deviates from them.

Methods

Various end-of-life allocation approaches and formulas, mainly taken not only from/based on existing environmental impact assessment methods and/or standards but also one original linearly degressive approach, were analysed against a predetermined set of criteria, reflecting the overall aim of the PEF/OEF methods. This set of criteria is physical realism, distribution of burdens and benefits in a product cascade system and applicability. Besides the qualitative analysis, the various formulas were implemented for several products and for different scenarios regarding recycled content and recyclability to check the robustness of the outcomes, exemplary expressed for the Global Warming Potential impact category.

Results and discussion

As reaching physical realism was impossible at both the product and overall product cascade system level by any of the end-of-life approaches analysed, one of both had to be prioritised. The paper explains in details why a product level approach was preferred in the context of the PEF/OEF methods. In consequence, allocation of the end-of-life processes which are related to more than one product in a product cascade system is needed and should be carefully considered as it has a major influence on the results and decision taking.

Conclusions

A formula taking into account the number of recycling cycles of a material was identified as preferred to reach physical realism and to allocate burdens and benefits of repeatedly recycling of a material over the different products in a product cascade system. However, this approach was not selected for the PEF/OEF methods as data on the number of recycling cycles was insufficiently available (for the time being) for all products on the market and hence fails the criterion of “applicability”. This explains why, instead, a formula based on the 50:50 approach—allocating shared end-of-life processes equally between the previous and subsequent product—was selected for the PEF/OEF methods.
  相似文献   

20.

Purpose  

A renewable thermoplastic called Novatein Thermoplastic Protein (NTP) has been developed from blood meal—a low-value by-product of the meat processing industry. The aim of this research was to develop a non-renewable energy and greenhouse gas emission eco-profile for cradle to gate production of NTP. Environmental impacts of supplying blood meal as a raw material were investigated using different allocation methods for farming and blood meal production. These included mass, economic, treating low-value by-products as waste and system expansion by substitution. In part 2, the entire system will be analysed on a cradle to gate basis and include the production of thermoplastic (NTP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号