首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Previous studies of the rapid rejection of MHC-disparate lymphocytes in rats, named allogeneic lymphocyte cytotoxicity, have indicated that rat NK cells express activating receptors for nonclassical MHC class I allodeterminants from the RT1-C/E/M region. Using an expression cloning system that identifies activating receptors associated with the transmembrane adapter molecule DAP12, we have cloned a novel rat Ly-49 receptor that we have termed Ly-49 stimulatory receptor 3 (Ly-49s3). A newly generated anti-Ly-49s3 Ab, mAb DAR13, identified subpopulations of resting and IL-2-activated NK cells, but not T or B lymphocytes. Depletion of Ly-49s3-expressing NK cells drastically reduced alloreactivity in vitro, indicating that this subpopulation is responsible for a major part of the observed NK alloreactivity. DAR13-mediated blockade of Ly-49s3 inhibited killing of MHC-congenic target cells from the av1, n, lv1, and c haplotypes, but not from the u or b haplotypes. A putative ligand was mapped to the nonclassical MHC class I region (RT1-C/E/M) using intra-MHC recombinant strains. Relative numbers of Ly-49s3(+) NK cells were reduced, and surface levels of Ly-49s3 were lower, in MHC congenic strains expressing the putative Ly-49s3 ligand(s). In conclusion, we have identified a novel Ly-49 receptor that triggers rat NK cell-mediated responses.  相似文献   

3.
Fetal liver- and thymus-derived NK1.1+ cells do not express known Ly-49 receptors. Despite the absence of Ly-49 inhibitory receptors, fetal and neonatal NK1.1+Ly-49- cells can distinguish between class Ihigh and class Ilow target cells, suggesting the existence of other class I-specific inhibitory receptors. We demonstrate that fetal NK1. 1+Ly-49- cell lysates contain CD94 protein and that a significant proportion of fetal NK cells are bound by Qa1b tetramers. Fetal and adult NK cells efficiently lyse lymphoblasts from Kb-/-Db-/- mice. Qa1b-specific peptides Qdm and HLA-CW4 leader peptide specifically inhibited the lysis of these blasts by adult and fetal NK cells. Qdm peptide also inhibited the lysis of Qa1b-transfected human 721.221 cells by fetal NK cells. Taken together, these results suggest that the CD94/NKG2A receptor complex is the major known inhibitory receptor for class I (Qa1b) molecules on developing fetal NK cells.  相似文献   

4.
Ly-49 receptor expression was studied in NK cells that developed in fully MHC-mismatched mixed bone marrow chimeras, in which host and donor MHC ligands were expressed solely on various proportions of hemopoietic cells or on both hemopoietic and nonhemopoietic cells. When hemopoietic cells were the only source of MHC ligand, a strong correlation between the level of down-regulation of Ly-49A, Ly-49C, and Ly-49G2 and the number of hemopoietic cells expressing their MHC ligands was observed on both donor and host NK cells. In some animals with low levels of donor hemopoietic chimerism, NK cells of donor origin expressed Ly-49 receptors at higher levels than was observed in normal mice of the same strain. This unexpected observation is inconsistent with the receptor calibration theory, which states that expression of Ly-49 inhibitory receptors is calibrated to an optimal level to maintain an NK cell repertoire that is sensitive to perturbations in normal class I ligand expression. Our data suggest a model in which Ly-49 receptors down-modulate in accordance with the frequency of their interactions with ligand-bearing cells, rather than a model in which these receptors calibrate to a specific "useful" level in response to ligands present in their environment.  相似文献   

5.
Little is known regarding the ligand specificity of Ly-49 activating receptor subfamily members expressed by NK cells. A new Ly-49 activating receptor related to Ly-49A in its extracellular domain, designated Ly-49P, was recently cloned from 129 strain mice. We independently cloned an apparent allele of Ly-49P expressed by nonobese diabetic and nonobese diabetes-resistant mouse strain NK cells. We found it to be reactive with the A1 Ab thought to recognize a polymorphic epitope expressed only by the Ly-49A inhibitory receptor of the C57BL/6 strain. Rat RNK-16 cells transfected with Ly-49P mediated reverse Ab-dependent cellular cytotoxicity of FcR-positive target cells, indicating that Ly-49P can activate NK-mediated lysis. We determined that RNK-16 lysis of Con A blasts induced by Ly-49P was MHC dependent, resulting in efficient lysis of H-2Dd-bearing targets. We found that the Dd alpha1/alpha2 domain is required for Ly-49P-mediated RNK-16 activation, as determined by exon shuffling and transfection. Thus, Ly-49P is the second activating Ly-49 receptor demonstrated to induce NK cytotoxicity by recognizing a class I MHC molecule.  相似文献   

6.
A novel murine NK cell-reactive mAb, AT8, was generated. AT8 recognizes Ly49G from 129/J, BALB/c, and related mouse strains, but does not bind to Ly49G(B6). Costaining with AT8 and a Ly49G(B6)-restricted Ab (Cwy-3) provides the first direct evidence that Ly49G protein is expressed from both alleles on a significant proportion of NK cells from four different types of F(1) hybrid mice. The observed level of biallelic Ly49G expression reproducibly followed the product rule in both freshly isolated and cultured NK cells. Surprisingly, the percentage of NK cells expressing both Ly49G alleles could be dramatically increased in vitro and in vivo through IL-2R- and IFN receptor-dependent signaling pathways, respectively. Unexpectedly, Ly49G(B6+) NK cells in an H-2(d), but not H-2(b), background were more likely to lyse D(d+) and Chinese hamster ovary tumor cells than Ly49G(BALB/129+) NK cells. Furthermore, Ly49G(B6+) NK cells also proliferated to a higher degree in response to poly(I:C) than NK cells expressing a non-Ly49G(B6) allele in an H-2(d), but not H-2(b), background. These results suggest that Ly49G(B6) has a lower affinity for H-2D(d) than Ly49G(BALB/129), and the genetic background calibrates the responsiveness of NK cells bearing self-specific Ly49. Other H-2D(d) receptors on the different Ly49G(+) NK cell subsets were unequally coexpressed, possibly explaining the disparate responses of Ly49G(B6+) NK cells in different hybrid mice. These data indicate that the stochastic mono- and biallelic expression of divergent Ly49G alleles increases the range of MHC affinities and the functional potential in the total NK cell population of heterozygous mice.  相似文献   

7.
By interacting with MHC class II molecules, CD4 facilitates lineage development as well as activation of Th cells. Expression of physiological levels of CD4 requires a proximal CD4 enhancer to stimulate basic CD4 promoter activity. T cell factor (TCF)-1/beta-catenin pathway has previously been shown to regulate thymocyte survival via up-regulating antiapoptotic molecule Bcl-xL. By both loss and gain of function studies, in this study we show additional function of TCF-1/beta-catenin pathway in the regulation of CD4 expression in vivo. Mice deficient in TCF-1 displayed significantly reduced protein and mRNA levels of CD4 in CD4+ CD8+ double-positive (DP) thymocytes. A transgene encoding Bcl-2 restored survival but not CD4 levels of TCF-1(-/-) DP cells. Thus, TCF-1-regulated survival and CD4 expression are two separate events. In contrast, CD4 levels were restored on DP TCF-1(-/-) cells by transgenic expression of a wild-type TCF-1, but not a truncated TCF-1 that lacks a domain required for interacting with beta-catenin. Furthermore, forced expression of a stabilized beta-catenin, a coactivator of TCF-1, resulted in up-regulation of CD4. TCF-1 or stabilized beta-catenin greatly stimulated activity of a CD4 reporter gene driven by a basic CD4 promoter and the CD4 enhancer. However, mutation of a potential TCF binding site located within the enhancer abrogated TCF-1 and beta-catenin-mediated activation of CD4 reporter. Finally, recruitment of TCF-1 to CD4 enhancer was detected in wild-type but not TCF-1 null mice by chromatin-immunoprecipitation analysis. Thus, our results demonstrated that TCF/beta-catenin pathway enhances CD4 expression in vivo by recruiting TCF-1 to stimulate CD4 enhancer activity.  相似文献   

8.
Murine Ly-49D augments NK cell function upon recognition of target cells expressing H-2Dd. Ly-49D activation is mediated by the immunoreceptor tyrosine-based activation motif-containing signaling moiety Dap-12. In this report we demonstrate that Ly-49D receptor ligation can lead to the rapid and potent secretion of IFN-gamma. Cytokine secretion can be induced from Ly-49D+ NK cells after receptor ligation with Ab or after interaction with target cells expressing their H-2Dd ligand. Consistent with the dominant inhibitory function of Ly-49G, NK cells coexpressing Ly-49D and Ly-49G show a profound reduction in IFN-gamma secretion after interaction with targets expressing their common ligand, H-2Dd. Importantly, we are able to demonstrate for the first time that effector/target cell interactions using Ly-49D+ NK cells and H-2Dd targets result in the rapid phosphorylation of Dap-12. However, Dap-12 is not phosphorylated when Ly-49D+ NK cells coexpress the inhibitory receptor, Ly-49G. These studies are novel in describing Ly-49 activation vs inhibition, where two Ly-49 receptors recognize the same class I ligand, with the dominant inhibitory receptor down-regulating phosphorylation of Dap-12, cytokine secretion, and cytotoxicity in NK cells.  相似文献   

9.
IL-15Ralpha-deficient (IL-15Ralpha(-/-)) mice lack NK cells. However, when bone marrow (BM) progenitors from IL-15Ralpha(-/-) mice were cultured with IL-7, stem cell factor and flt3 ligand, followed by IL-15, they were able to differentiate into functional NK cells, indicating that IL-15Ralpha is not critical for NK cell development. Whereas NK cells generated in vitro from IL-15Ralpha(-/-) BM progenitors expressed CD94/NKG2, they failed to express Ly-49 receptors. In keeping with this, when IL-15Ralpha(-/-) BM cells were transferred into wild type recipients, they gave rise to NK cells in vivo, but with greatly reduced expression of Ly-49 receptors. Furthermore, the small numbers of NK cells found in IL-15(-/-) as well as IL-15Ralpha(-/-) but not flt3 ligand(-/-) mice expressed much lower levels of Ly-49 receptors than those from wild type mice. These results indicate a novel role for IL-15Ralpha-chain in Ly-49 induction on developing NK cells.  相似文献   

10.
NK cells can express both activating and inhibitory Ly49 receptors on their cell surface. When cells expressing both receptors are presented with a ligand, inhibition dominates the functional outcome. In this report we demonstrate that costimulation of the activating Ly49D murine NK cell receptor with IL-12 or IL-18 is capable of over-riding the inhibitory Ly49G2 receptor blockade for cytokine production both in vitro and in vivo. This synergy is mediated by and dependent upon Ly49D-expressing NK cells and results in significant systemic expression of IFN-gamma. This would place NK cells and their activating Ly-49 receptors as important initiators of microbial, antiviral, and antitumor immunity and provide a mechanism for the release of activating Ly49 receptors from inhibitory receptor blockade.  相似文献   

11.
Natural killer cell-associated direct cytotoxicity and cytokine production are crucial mechanisms for early innate host resistance against viruses, bacteria, or protozoa. The engagement of inhibitory NK cell receptors can influence host responses to viruses. However, these receptors have not been investigated to date in parasitic infections, and little is known about the role of NK cells in the defense against helminths. Therefore, we have correlated the frequencies of cells expressing the pan-NK marker DX5 and subsets bearing inhibitory Ly-49 receptors with worm survival and cytokine production during infection with Litomosoides sigmodontis in BALB/c mice (H2(d)), the only fully permissive model of filariasis. A marked influx of DX5(+)/CD3(-) NK cells and DX5(+)/CD3(+) T cells into the pleural cavity, where the parasites were located, was observed. The frequency of pleural NK cells expressing the H2(d)-reactive inhibitory receptors Ly-49A, Ly-49C, or Ly-49G2 declined most strongly compared with spleen and blood. In the peripheral blood, longitudinal analysis revealed an early and stable reduction of Ly-49C(+) and Ly-49G2(+) NK cells, a subsequent significant increase of the entire NK cell and DX5(+)/CD3(+) T cell populations, and a reduction in the Ly-49A(+) subset. The in vivo depletion of NK cells strongly enhanced the worm load and influenced IL-4 and IL-5 plasma levels. These data demonstrate a new role for NK cells in the host defense against filariae and, for the first time, alterations of Ly-49 receptor-expressing NK cell subsets in a parasitic infection.  相似文献   

12.
Inhibitory receptors specific for alleles of MHC class I proteins play an important role in determining the reactivity and specificity of NK cells. To determine whether these receptors are also able to regulate T cell functions, we have studied anti-viral immune responses in mice transgenic for a class I-specific inhibitory receptor, Ly49A. Although nontransgenic mice express Ly49A primarily on NK cells and some T cells, the Ly49A transgenic mice express Ly49A on all lymphocytes, including T cells. We have assessed the activation, expansion, cytokine production, and cytotoxic activity of CD8 T cells in both transgenic and nontransgenic mice following infection with lymphocytic choriomeningitis virus. As expected, nontransgenic mice made a potent virus-specific CD8 T cell response following virus infection. However, as measured in cytolysis assays and by cytokine production, virus-specific CD8 T cell activity was reduced in Ly49A transgenic mice. This inhibition was largely, but not always exclusively, dependent upon the presence, either in vivo or in vitro, of the Ly49A ligand, H-2Dd. Strikingly Ly49A transgenic mice have reduced capacity to control infection with the virulent lymphocytic choriomeningitis virus variant clone 13. Overall, these studies demonstrate that expression of killer inhibitory receptors can modulate anti-viral T cell responses in vivo and in vitro.  相似文献   

13.
Mouse NK cells express inhibitory NK receptors that recognize target cell MHC class I molecules and activation receptors that are less well defined. The Ly-49D activation receptor on C57BL/6 NK cells recognizes Chinese hamster ovary cells and triggers natural killing. In this study, we demonstrate that a Chinese hamster classical MHC class I molecule is the ligand for Ly-49D in a reporter gene assay system as well as in NK cell killing assays. Ly-49D recognizes the Chinese hamster class I molecule better when it is expressed with Chinese hamster beta(2)-microglobulin (beta(2)m) than murine beta(2)m. However, it is still controversial that Ly-49D recognizes H-2D(d), as we were unable to demonstrate the specificity previously reported. Using this one ligand-one receptor recognition system, function of an NK activation receptor was, for the first time, investigated in NK cells that are tolerized in beta(2)m-deficient mice. Surprisingly, Ly-49D-killing activity against ligand-expressing targets was observed with beta(2)m-deficient mouse NK cells, albeit reduced, even though "tolerized" function of Ly-49D was expected. These results indicate that Ly-49D specifically recognizes the Chinese hamster MHC class I molecule associated with Chinese hamster beta(2)m, and indicate that the Ly-49D NK cell activation receptor is not tolerized in beta(2)m deficiency.  相似文献   

14.
Inhibitory Ly49 receptors expressed on NK cells provide a mechanism for tolerance to normal self tissues. The immunoregulatory tyrosine-based inhibitory motifs present in some Ly49s are able to transmit an inhibitory signal upon ligation by MHC class I ligands. In our system, as well as others, mice transgenic for inhibitory Ly49 receptors express these receptors on both NK and T cells. FVB (H2(q)) mice transgenic for the B6 strain Ly49I (Ly49I(B6)) express the inhibitory Ly49 receptor on the surface of both T and NK cells. Although Ly49I functions to prevent NK-mediated rejection of H2(b) donor bone marrow cells in this transgenic mouse strain, the T cells do not appear to be affected by the expression of the Ly49I transgene. FVB.Ly49I T cells have normal proliferative capabilities both in vitro and in vivo in response to the Ly49I ligand, H2(b). In vivo functional T cell assays were also done, showing that transgenic T cells were not functionally affected. T cells in these mice also appear to undergo normal T cell development and activation. Only upon stimulation with suboptimal doses of anti-CD3 in the presence of anti-Ly49I is T cell proliferation inhibited. These data are in contrast with findings in Ly49A, and Ly49G2 receptor transgenic models. Perhaps Ly49I-H2(b) interactions are weaker or of lower avidity than Ly49A-H-2D(d) interactions, especially in T cells.  相似文献   

15.
The diversity and ligand specificity of activating Ly-49 receptors expressed by murine NK cells are largely unknown. We cloned a new Ly-49-activating receptor, expressed by NK cells of the nonobese diabetic mouse strain, which we have designated Ly-49W. Ly-49W is highly related to the known inhibitory receptor Ly-49G in its carbohydrate recognition domain, exhibiting 97.6% amino acid identity in this region. We demonstrate that the 4D11 and Cwy-3 Abs, thought to be Ly-49G specific, also recognize Ly-49W. Rat RNK-16 cells transfected with Ly-49W mediated reverse Ab-dependent cellular cytotoxicity of FcR-positive target cells, indicating that Ly-49W can activate NK-mediated lysis. We further show that Ly-49W is allo-MHC specific: Ly-49W transfectants of RNK-16 only lysed Con A blasts expressing H-2(k) or H-2(d) haplotypes, and Ab-blocking experiments indicated that H-2D(k) and D(d) are ligands for Ly-49W. Ly-49W is the first activating Ly-49 receptor demonstrated to recognize an H-2(k) class I product. Ly-49G and Ly-49W represent a new pair of NK receptors with very similar ligand-binding domains, but opposite signaling functions.  相似文献   

16.
The Ly-49 multigene receptor family regulates mouse NK cell functions. A number of Ly-49 genes exhibit allelic variation, but the functional significance of allelic differences in extracellular domains of Ly-49 receptors regarding ligand specificity is largely unknown. Amino acid differences exist in the extracellular domains of the B6 and BALB/c allele products of the inhibitory Ly-49G receptor. We constructed chimeric Ly-49 receptors consisting of common cytoplasmic and transmembrane regions of the activating Ly-49W receptor fused with the ectodomains of the B6 and BALB/c alleles of Ly-49G. Expression of these chimeras in the RNK-16 rat NK cell line allowed us to study the specificity of inhibitory receptor ectodomains as they stimulated NK lytic activity. We found that the ectodomain of the BALB/c allele of Ly-49G recognizes both H-2D(d) and D(k) class I MHC alleles, whereas the ectodomain of the B6 allele of Ly-49G recognizes D(d), and not D(k). The specificity for D(k) as well as D(d) of the wild-type Ly-49G(BALB/c) allele product was confirmed with RNK-16 transfectants of this inhibitory receptor. Furthermore, the ectodomain of the Ly-49G(BALB/c) allele recognizes a distinct repertoire of xenogeneic ligands that only partially overlaps with that recognized by Ly-49G(B6). Our results indicate that allelic variation in Ly-49 extracellular domains can have functional significance by altering Ly-49 receptor specificity for mouse class I MHC and xenogeneic ligands.  相似文献   

17.
NK cells become functionally competent to be triggered by their activation receptors through the interaction of NK cell inhibitory receptors with their cognate self-MHC ligands, an MHC-dependent educational process termed "licensing." For example, Ly49A(+) NK cells become licensed by the interaction of the Ly49A inhibitory receptor with its MHC class I ligand, H2D(d), whereas Ly49C(+) NK cells are licensed by H2K(b). Structural studies indicate that the Ly49A inhibitory receptor may interact with two sites, termed site 1 and site 2, on its H2D(d) ligand. Site 2 encompasses the α1/α2/α3 domains of the H2D(d) H chain and β(2)-microglobulin (β2m) and is the functional binding site for Ly49A in effector inhibition. Ly49C functionally interacts with a similar site in H2K(b). However, it is currently unknown whether this same site is involved in Ly49A- or Ly49C-dependent licensing. In this study, we produced transgenic C57BL/6 mice expressing wild-type or site 2 mutant H2D(d) molecules and studied whether Ly49A(+) NK cells are licensed. We also investigated Ly49A- and Ly49C-dependent NK licensing in murine β2m-deficient mice that are transgenic for human β2m, which has species-specific amino acid substitutions in β2m. Our data from these transgenic mice indicate that site 2 on self-MHC is critical for Ly49A- and Ly49C-dependent NK cell licensing. Thus, NK cell licensing through Ly49 involves specific interactions with its MHC ligand that are similar to those involved in effector inhibition.  相似文献   

18.
Mouse NK cells express Ly-49 receptors specific for classical MHC class I molecules. Several of the Ly-49 receptors have been characterized in terms of function and ligand specificity. However, the only Ly-49 receptor-ligand interaction previously described in detail is that between Ly-49A and H-2D(d), as studied by point mutations in the ligand and the crystal structure of the co-complex of these molecules. It is not known whether other Ly-49 receptors bind MHC class I in a similar manner as Ly-49A. Here we have studied the effect of mutations in Ly-49C on binding to the MHC class I molecules H-2K(b), H-2D(b), and H-2D(d). The MHC class I molecules were used as soluble tetramers to stain transiently transfected 293T cells expressing the mutated Ly-49C receptors. Three of nine mutations in Ly-49C led to loss of MHC class I binding. The three Ly-49C mutations that affected MHC binding correspond to Ly-49A residues that are in contact or close to H-2D(d) in the co-crystal, demonstrating that MHC class I binding by Ly-49C is dependent on residues in the same area as that used by Ly-49A for ligand contacts.  相似文献   

19.
Murine NK cells express Ly-49 family receptors capable of either inhibiting or activating lytic function. The overlapping patterns of expression of the various receptors have complicated their precise biochemical characterization. Here we describe the use of the Jurkat T cell line as the model for the study of Ly-49s. We demonstrate that Ly-49D is capable of delivering activation signals to Jurkat T cells even in the absence of the recently described Ly-49D-associated chain, DAP-12. Ly-49D signaling in Jurkat leads to tyrosine phosphorylation of TCRzeta and requires Syk/Zap70 family kinases and arginine 54 of Ly-49D, suggesting that Ly-49D signals via association with TCRzeta. Coexpression studies in 293-T cells confirmed the ability of Ly-49D to associate with TCRzeta. In addition, we have used this model to study the functional interactions between an inhibitory Ly-49 (Ly-49G2) and an activating Ly-49 (Ly-49D). Ly-49G2 blocks activation mediated by Ly-49D in an immunoreceptor tyrosine-based inhibitory motif (ITIM)-dependent manner. In contrast, Ly-49G2 was incapable of inhibiting activation by the TCR even though human killer cell inhibitory receptor (KIR) (KIR3DL2(GL183)) effectively inhibits TCR. Both the ability of Ly-49G2 to block Ly-49D activation and the failure of Ly-49G2 to inhibit TCR signaling were confirmed in primary murine NK cells and NK/T cells, respectively. These data demonstrate the dominant effects of the inhibitory receptors over those that activate and suggest an inability of the Ly-49 type II inhibitory receptors to efficiently inhibit type I transmembrane receptor signaling in T cells and NK cells.  相似文献   

20.
Inhibitory receptors expressed on NK cells recognize MHC class I molecules and transduce negative signals to prevent the lysis of healthy autologous cells. The lectin-like CD94/NKG2 heterodimer has been studied extensively as a human inhibitory receptor. In contrast, in mice, another lectin-like receptor, Ly-49, was the only known inhibitory receptor until the recent discovery of CD94/NKG2 homologues in mice. Here we describe the expression and function of mouse CD94 analyzed by a newly established mAb. CD94 was detected on essentially all NK and NK T cells as well as small fractions of T cells in all mouse strains tested. Two distinct populations were identified among NK and NK T cells, CD94(bright) and CD94(dull) cells, independent of Ly-49 expression. The anti-CD94 mAb completely abrogated the inhibition of target killing mediated by NK recognition of Qa-1/Qdm peptide on target cells. Importantly, CD94(bright) but not CD94(dull) cells were found to be functional in the Qa-1/Qdm-mediated inhibition. In the presence of the mAb, activated NK cells showed substantial cytotoxicity against autologous target cells as well as enhanced cytotoxicity against allogeneic and "missing self" target cells. These results suggest that mouse CD94 participates in the protection of self cells from NK cytotoxicity through the Qa-1 recognition, independent of inhibitory receptors for classical MHC class I such as Ly-49.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号