首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fucose is a major constituent of the protein- and lipid-linked glycans of the various life-cycle stages of schistosomes. These fucosylated glycans are highly antigenic and seem to play a role in the pathology of schistosomiasis. In this article we describe the identification and characterization of two fucosyltransferases (FucTs) in cercariae of the avian schistosome Trichobilharzia ocellata, a GDP-Fuc:[Galbeta1-- >4]GlcNAcbeta-R alpha1-->3-FucT and a novel GDP-Fuc:Fucalpha-R alpha1-- >2-FucT. Triton X-100 extracts of cercariae were assayed for FucT activity using a variety of acceptor substrates. Type 1 chain (Galbeta1- ->3GlcNAc) based compounds were poor acceptors, whereas those based on a type 2 chain (Galbeta1-->4GlcNAc), whether alpha2'-fucosylated, alpha3'-sialylated, or unsubstituted, and whether present as oligosaccharide or contained in a glycopeptide or glycoprotein, all served as acceptor substrates. In this respect the schistosomal alpha3- FucT resembles human FucT V and VI rather than other known FucTs. N- ethylmaleimide, an inhibitor of several human FucTs, had no effect on the activity of the schistosomal alpha3-FucT, whereas GDP-beta-S was strongly inhibitory. Large scale incubations were carried out with Galbeta1-->4GlcNAc, GalNAcbeta1-->4GlcNAcbeta-O -(CH2)8COOCH3 and Fucalpha1-->3GlcNAcbeta1-->2Man as acceptor substrates and the products of the incubations were isolated using a sequence of chromatographic techniques. By methylation analysis and 2D-TOCSY and ROESY1H-NMR spectroscopy the products formed were shown to be Galbeta1-- >4[Fucalpha1-->2Fucalpha1-->3]GlcNAc, GalNAcbeta1-->4[Fucalpha1-- >2Fucalpha1-->3]GlcNAcbe ta-O-(CH2)8COOCH3, and Fucalpha1-->2Fucalpha1-- >3GlcNAcbeta1-->2Man, respectively. It is concluded that the alpha2- FucT and alpha3-FucT are involved in the biosynthesis of the (oligomeric) Lewisx sequences and the Fucalpha1-->2Fucalpha1-->3GlcNAc structural element that have been described on schistosomal glycoconjugates.   相似文献   

2.
3.
The alpha-Gal trisaccharide Gal(alpha)(1-->3)Galbeta(1-->4)GlcNAc 11 was synthesized on a homogeneously soluble polymeric support (polyethylene glycol, PEG) by use of a multi-enzyme system consisting of beta-1,4-galactosyltransferase (EC 2.4.1.38), alpha-1,3-galactosyltransferase (EC 2.4.1.151), sucrose synthase (EC 2.4.1.13) and UDP-glucose-4-epimerase (EC 5.1.3.2). In addition workup was simplified by use of dia-ultrafiltration. Thus the advantages of classic chemistry/enzymology and solid-phase synthesis could be united in one. Subsequent hydrogenolytic cleavage afforded the free alpha-Gal trisaccharide.  相似文献   

4.
Human blood group O plasma was found to contain an N-acetylgalactosaminyltransferase which catalyzes the transfer of N-acetylgalactosamine from UDP-GalNAc to Gal beta 1-->4Glc, Gal beta 1-->4GlcNAc, asialo-alpha 1-acid glycoprotein, and Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc-ceramide, but not to Gal beta 1-->3GlcNAc. The enzyme required Mn2+ for its activity and showed a pH optimum at 7.0. The reaction products were readily hydrolyzed by beta-N-acetylhexosaminidase and released N-acetylgalactosamine. Apparent Km values for UDP-GalNAc, Mn2+, lactose, N-acetyllactosamine, and terminal N-acetyllactosaminyl residues of asialo-alpha 1-acid glycoprotein were 0.64, 0.28, 69, 20, and 1.5 mM, respectively. Studies on acceptor substrate competition indicated that all the acceptor substrates mentioned above compete for one enzyme, whereas the enzyme can be distinguished from an NeuAc alpha 2-->3Gal beta-1,4-N-acetylgalactosaminyltransferase, which also occurs in human plasma. The methylation study of the product formed by the transfer of N-acetylgalactosamine to lactose revealed that N-acetylgalactosamine had been transferred to the carbon-3 position of the beta-galactosyl residue. Although the GalNAc beta 1-->3Gal structure is known to have the blood group P antigen activity, human plasma showed no detectable activity of Gal alpha 1-->4Gal beta-1,3-N-acetylgalactosaminyltransferase, which is involved in the synthesis of the major P antigen-active glycolipid, GalNAc beta 1-->3Gal alpha 1-->4Gal beta 1-->4Glc-ceramide. Hence, the GalNAc beta 1-->3Gal beta 1-->4GlcNAc/Glc structure is synthesized by the novel Gal beta 1-->4GlcNAc/Glc beta-1,3-N-acetylgalactosaminyltransferase.  相似文献   

5.
An agglutinin that has high affinity for GalNAcbeta1-->, was isolated from seeds of Wistaria sinensis by adsorption to immobilized mild acid-treated hog gastric mucin on Sepharose 4B matrix and elution with aqueous 0.2 M lactose. The binding property of this lectin was characterized by quantitative precipitin assay (QPA) and by inhibition of biotinylated lectin-glycan interaction. Of the 37 glycoforms tested by QPA, this agglutinin reacted best with a GalNAcbeta1-->4 containing glycoprotein (GP) [Tamm-Horsfall Sd(a+) GP]; a Galbeta1-->4GlcNAc containing GP (human blood group precursor glycoprotein from ovarian cyst fluid and asialo human alpha1-acid GP) and a GalNAcalpha1-->3GalNAc containing GP (asialo bird nest GP), but poorly or not at all with most sialic acid containing glycoproteins. Among the oligosaccharides tested, GalNAcalpha1-->3GalNAcbeta1-->3Galalpha1-->4Galbeta 1-->4Glc (Fp) was the most active ligand. It was as active as GalNAc and two to 11 times more active than Tn cluster mixtures, Galbeta1--> 3/4GlcNAc (I/II), GalNAcalpha1-->3(L-Fucalpha1-->2)Gal (Ah), Galbeta1-->4Glc (L), Galbeta1-->3GalNAc (T) and Galalpha1--> 3Galalpha-->methyl (B). Of the monosaccharides and their glycosides tested, p-nitrophenyl betaGalNAc was the best inhibitor; it was approximately 1.7 and 2.5 times more potent than its corresponding alpha anomer and GalNAc (or Fp), respectively. GalNAc was 53.3 times more active than Gal. From the present observations, it can be concluded that the Wistaria agglutinin (WSA) binds to the C-3, C-4 and C-6 positions of GalNAc and Gal residues; the N-acetyl group at C-2 enhances its binding dramatically. The combining site of WSA for GalNAc related ligands is most likely of a shallow type, able to recognize both alpha and beta anomers of GalNAc. Gal ligands must be Galbeta1-->3/4GlcNAc related, in which subterminal beta1-->3/4 GlcNAc contributes significantly to binding; hydrophobicity is important for binding of the beta anomer of Gal. The decreasing order of the affinity of WSA for mammalian structural carbohydrate units is Fp >/= multi-II > monomeric II >/= Tn, I and Ah >/= E and L > T > Gal.  相似文献   

6.
The genome of Caenorhabditis elegans encodes five genes with homology to known alpha1,3 fucosyltransferases (alpha1,3FTs), but their expression and functions are poorly understood. Here we report the molecular cloning and characterization of these C. elegans alpha1,3FTs (CEFT-1 through -5). The open-reading frame for each enzyme predicts a type II transmembrane protein and multiple potential N-glycosylation sites. We prepared recombinant epitope-tagged forms of each CEFT and found that they had unusual acceptor specificity, cation requirements, and temperature sensitivity. CEFT-1 acted on the N-glycan pentasaccharide core acceptor to generate Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-Asn. In contrast, CEFT-2 did not act on the pentasaccharide acceptor, but instead utilized a LacdiNAc acceptor to generate GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4Glc, which is a novel activity. CEFT-3 utilized a LacNAc acceptor to generate Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4Glc without requiring cations. CEFT-4 was similar to CEFT-3, but its activity was enhanced by some divalent cations. Recombinant CEFT-5 was well expressed, but did not act on available acceptors. Each CEFT was optimally active at room temperature and rapidly lost activity at 37 degrees C. Promoter analysis showed that CEFT-1 is expressed in C. elegans eggs and adults, but its expression was restricted to a few neuronal cells at the head and tail. We prepared deletion mutants for each enzyme for phenotypic analysis. While loss of CEFT-1 correlated with loss of pentasaccharide core activity and core alpha1,3-fucosylated glycans in worms, loss of other enzymes did not correlate with any phenotypic changes. These results suggest that each of the alpha1,3FTs in C. elegans has unique specificity and expression patterns.  相似文献   

7.
To investigate the synthesis of alpha2-fucosylated epitopes in the bovine species, we have characterized cDNAs from various tissues. We found three distinct alpha2-fucosyltransferase genes, named bovine fut1, fut2, and sec1 which are homologous to human FUT1, FUT2, and Sec1 genes, respectively. Their open reading frames (ORF) encode polypeptides of 360 (bovine H), 344 (bovine Se), and 368 (bovine Sec1) amino acids, respectively. These enzymes transfer fucose in alpha1,2 linkage to ganglioside GM(1)and galacto- N -biose, but not to the phenyl-beta-D-galactoside, type 1 or type 2 acceptors, suggesting that their substrate specificity is different and more restricted than the other cloned mammalian alpha2-fucosyltransferases. Southern blot analyses detected four related alpha2-fucosyltransferase sequences in the bovine genome while only three have been described in other species. The supernumerary entity seems to be related to the alpha2-fucosyltransferase activity which can also use type 1 and phenyl-beta-D-galactoside substrate acceptors. It was exclusively found in bovine intestinal tract. Our results show that, at least in one mammalian species, four alpha2-fucosyltransferases are present, three adding a fucose on alpha1,2 linkage on type 3/4 acceptor (Galbeta1-3GalNAc) and another able to transfer also fucose on phenyl-beta-D-galactoside and type 1 (Galbeta1-3GlcNAc) acceptors. The phylogenetic tree of the enzymes homologous to those encoded by the bovine fut1, fut2, and sec1 genes revealed two main families, one containing all the H-like proteins and the second containing all the Se-like and Sec1-like proteins. The Sec1-like family had a higher evolutionary rate than the Se-like family.  相似文献   

8.
We previously demonstrated a unique alpha-N-acetylgalactosaminyltransferase that transferred N-acetylgalactosamine (GalNAc) to the tetrasaccharide-serine, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser (GlcA represents glucuronic acid), derived from the common glycosaminoglycan-protein linkage region, through an alpha1,4-linkage. In this study, we purified the enzyme from the serum-free culture medium of a human sarcoma cell line. Peptide sequence analysis of the purified enzyme revealed 100% identity to the multiple exostoses-like gene EXTL2/EXTR2, a member of the hereditary multiple exostoses (EXT) gene family of tumor suppressors. The expression of a soluble recombinant form of the protein produced an active enzyme, which transferred alpha-GalNAc from UDP-[3H]GalNAc to various acceptor substrates including GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser. Interestingly, the enzyme also catalyzed the transfer of N-acetylglucosamine (GlcNAc) from UDP-[3H]GlcNAc to GlcAbeta1-3Galbeta1-O-naphthalenemethanol, which was the acceptor substrate for the previously described GlcNAc transferase I involved in the biosynthetic initiation of heparan sulfate. The GlcNAc transferase reaction product was sensitive to the action of heparitinase I, establishing the identity of the enzyme to be alpha1, 4-GlcNAc transferase. These results altogether indicate that EXTL2/EXTR2 encodes the alpha1,4-N-acetylhexosaminyltransferase that transfers GalNAc/GlcNAc to the tetrasaccharide representing the common glycosaminoglycan-protein linkage region and that is most likely the critical enzyme that determines and initiates the heparin/heparan sulfate synthesis, separating it from the chondroitin sulfate/dermatan sulfate synthesis.  相似文献   

9.
10.
Wu AM  Wu JH  Tsai MS  Herp A 《Life sciences》2000,66(26):2571-2581
The root of Trichosanthes kirilowii, which has been used as Chinese folk medicine for more than two thousand years, contains a Gal specific lectin (TKA). In order to elucidate its binding roles, the carbohydrate specificities of TKA were studied by enzyme linked lectinosorbent assay (ELLSA) and by inhibition of lectin-glycoform binding. Among glycoproteins (gp) tested, TKA reacted strongly with complex carbohydrates with Galbeta1-->4GlcNAc clusters as internal or core structures (human blood group ABH active glycoproteins from human ovarian cyst fluids, hog gastric mucin, and fetuin), porcine salivary glycoprotein and its asialo product, but it was inactive with heparin and mannan (negative control). Of the sugar inhibitors tested for inhibition of binding, Neu5Ac alpha2-->3/6Galbeta1-->4Glc was the best and about 4, 14.6 and 27.7 times more active than Galbeta1-->4GlcNAc(II), Galbeta1-->3GalNAc(T) and Gal, respectively. From these results, it is suggested that this agglutinin is specific for terminal or internal polyvalent Galbeta1-->4GlcNAcbeta1-->, terminal Neu5Ac alpha2-->3/6Galbeta1-->4Glc and cluster forms of Galbeta1-->3GalNAc alpha residues. The unusual affinity of TKA for terminal and internal Galbeta1-->glycotopes may be used to explain the possible attachment roles of this agglutinin in this folk medicine to target cells.  相似文献   

11.
We have partially characterised an alpha4-fucosyltransferase (alpha4-FucT) from Vaccinium myrtillus, which catalysed the biosynthesis of the Lewis(a) adhesion determinant. The enzyme was stable up to 50 degrees C. The optimum pH was 7.0, both in the presence and in the absence of Mn(2+). The enzyme was inhibited by Mn(2+) and Co(2+), and showed resistance towards inhibition with N-ethylmaleimide. It transferred fucose to N-acetylglucosamine in the type I Galbeta3GlcNAc motif from oligosaccharides linked to a hydrophobic tail and glycoproteins (containing the type I motif). Sialylated oligosaccharides containing the type II Galbeta4GlcNAc motif were not acceptors. The catalytic mechanism of the plant alpha4-FucT possibly involves a His residue, and it must have arisen by convergent evolution relative to its mammalian counterparts.  相似文献   

12.
In mammals, clearance of desialylated serum glycoproteins to the liver is mediated by a galactose-specific hepatic lectin, the 'asialoglycoprotein receptor'. In humans, serum glycoprotein glycans are usually capped with sialic acid, which protects these proteins against hepatic uptake. However, in most other species, an additional noncharged terminal element with the structure Galalpha1-->3Galbeta1-->4R is present on glycoprotein glycans. To investigate if alpha3-galactosylated glycoproteins, just like desialylated glycoproteins, could be cleared by the hepatic lectin, the affinities of alpha3-galactosylated compounds towards this lectin were determined using an in vitro inhibition assay, and were compared with those of the parent compounds terminating in Galbeta1-->4R. Diantennary, triantennary and tetraantennary oligosaccharides that form part of N-glycans were alpha3-galactosylated to completion by use of recombinant bovine alpha3-galactosyltransferase. Similarly, desialylated alpha1-acid glycoprotein (orosomucoid) was alpha3-galactosylated in vitro. The alpha3-galactosylation of a branched, Galbeta1-->4-terminated oligosaccharide lowered its affinity for the membrane-bound lectin on whole rat hepatocytes 50-250-fold, and for the detergent-solubilized hepatic lectin 7-50-fold. In contrast, alpha3-galactosylation of asialo-alpha1-acid glycoprotein caused only a minor decrease in affinity, increasing the IC50 from 5 to 15 nM. Fully alpha3-galactosylated alpha1-acid glycoprotein, intravenously injected into the mouse, was rapidly cleared from the circulation, with a clearance rate close to that of asialo-alpha1-acid glycoprotein (t1/2 of 0.42 min vs. 0.95 min). Its uptake was efficiently inhibited by pre-injection of an excess asialo-fetuin. Organ distribution analysis showed that the injected alpha1-acid glycoprotein accumulated predominantly in the liver. Taken together, these observations suggest that serum glycoproteins that are heavily alpha3-galactosylated will be rapidly cleared from the bloodstream via the hepatic lectin. It is suggested that glycosyltransferase expression in murine hepatocytes is tightly regulated in order to prevent undesired uptake of hepatocyte-derived, circulating glycoproteins.  相似文献   

13.
A high pH anion exchange chromatographic (HPAEC) system for the separation of isomeric sialo-oligosaccharide products was developed. Employing this system, using Gal beta 1-->4GlcNAc beta 1-->2Man alpha 1-->6Man beta 1-->4GlcNAc as a substrate, a Gal beta 1-->4GlcNAc-R alpha 2-->3-sialyltransferase activity was detected for the first time in human liver. This activity is expressed together with the prevalent alpha 2-->6-sialyltransferase. Furthermore, in addition to the major alpha 2-->3-sialyltransferase, a low but distinct activity of alpha 2-->6-sialyltransferase was detected in human placenta. This activity could not be found by methods based on methylation analysis or high resolution NMR spectroscopy. It is concluded that HPAEC, in combination with the use of the pentasaccharide as an acceptor substrate, is suited for the specific detection of minor, Gal beta 1-->4GlcNAc-specific sialyltransferase activities.  相似文献   

14.
A beta-N-Acetylglucosaminide alpha 1----3-fucosyltransferase was purified from human serum by ammonium sulfate precipitation, hydrophobic chromatography on phenyl-Sepharose, ion-exchange chromatography on sulfopropyl-Sepharose, affinity chromatography on GDP-hexanolamine-Sepharose, and finally high pressure liquid chromatography gel filtration. Gel filtration chromatography of the native enzyme revealed a Mr of 45,000. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified protein also appeared as a single molecular species of Mr 45,000. In contrast to the multisubunit beta-galactoside alpha 1----2-fucosyltransferases with an apparent Mr of 150,000, present in human serum, the native beta-N-acetylglucosaminide alpha 1----3-fucosyltransferase is a monomer with a Mr of 45,000. The enzyme is glycosylated, as revealed by wheat germ agglutinin binding properties. The alpha 1----3 linkage formed by the enzyme between alpha-L-fucose and the penultimate beta-N-acetylglucosamine by the purified enzyme was confirmed by 1H NMR homonuclear cross-irradiation analysis of the oligosaccharide product. The specificity of the purified enzyme is restricted to type 2 structures, as revealed by its reactivity with different substrates and from the Km values calculated from the initial rate data using various oligosaccharide acceptors. The enzyme has the ability to utilize the N-acetyl-beta-lactosamine determinant (Gal beta 1----4GlcNAc) and the sialylated (NeuAc alpha 2----3Gal beta 1----4GlcNAc) and fucosylated (Fuc alpha 1----2Gal beta 1----4GlcNAc) derivatives of N-acetyl-beta-lactosamine and thus is distinct from both the human Lewis gene-encoded enzyme and the alpha 1----3-fucosyltransferase of the myeloid cell type.  相似文献   

15.
We report here on in vitro acceptor and site specificity of recombinant alpha3-fucosyltransferase V (Fuc-TV) with 40 oligosaccharide acceptors. Galbeta1-4GlcNAc (LN) and GalNAcbeta1-4GlcNAc (LDN) reacted rapidly; Galbeta1-3GlcNAc (LNB) reacted moderately, and GlcNAcbeta1-4GlcNAc (N, N'-diacetyl-chitobiose) reacted slowly yet distinctly. In neutral and terminally alpha3-sialylated polylactosamines of i-type, the reducing end LN unit reacted rapidly and the distal (sialyl)LN group very slowly; the midchain LNs revealed intermediate reactivities. The data suggest that a distal LN neighbor enhances but a proximal LN neighbor reduces the reactivity of the midchain LNs. This implies that Fuc-TV may bind preferably the tetrasaccharide sequence Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc for transfer at the underlined monosaccharide. Terminal alpha3-sialylation of i-type polylactosamines almost doubled the reactivities of the LN units at all positions of the chains. We conclude that, in comparison with human Fuc-TIV and Fuc-TIX, Fuc-TV reacted with a highly distinct site specificity with i-type polylactosamines. The Fuc-TV reactivity of free LNB resembled that of LNBbeta1-3'R of a polylactosamine, contrasting strongly with the dissimilarity of the reactivities of the analogous pair of LN and LNbeta1-3'R. This observation supports the notion that LN and LNB may be functionally bound at distinct sites on Fuc-TV surface. Our data show that Fuc-TV worked well with a very wide range of LN-glycans, showing weak reactivity only with distal (sialyl)LN units of i-type polylactosamines, biantennary N-glycans, and I branches of polylactosamines.  相似文献   

16.
17.
Here we report the discovery of a unique fucosyltransferase (FT) in Caenorhabditis elegans. In studying the activities of FTs in extracts of adult C. elegans, we detected activity toward the unusual disaccharide acceptors Galbeta1-4Xyl-R and Galbeta1-6GlcNAc-R to generate products with the general structure Fucalpha1-2Galbeta1-R. We identified a gene encoding a unique alpha1,2FT (designated CE2FT-1), which contains an open reading frame encoding a predicted protein of 355 amino acids with the type 2 topology and domain structure typical of other glycosyltransferases. The predicted cDNA for CE2FT-1 has very low identity (5-10%) at the amino acid level to alpha1,2FT sequences in humans, rabbits, and mice. Recombinant CE2FT-1 expressed in human 293T cells has high alpha1,2FT activity toward the simple acceptor Galbeta-O-phenyl acceptor to generate Fucalpha1-2Galbeta-R, which in this respect resembles mammalian alpha1,2FTs. However, CE2FT-1 is otherwise completely different from known alpha1,2FTs in its acceptor specificity, since it is unable to fucosylate either Galbeta1-4Glcbeta-R or free lactose and prefers the unusual acceptors Galbeta1-4Xylbeta-R and Galbeta1-6GlcNAc-R. Promoter analysis of the CE2FT-1 gene using green fluorescent protein reporter constructs demonstrates that CE2FT-1 is expressed in single cells of early stage embryos and exclusively in the 20 intestinal cells of L(1)-L(4) and adult worms. These and other results suggest that multiple fucosyltransferase genes in C. elegans may encode enzymes with unique activities, expression, and developmental roles.  相似文献   

18.
alpha1,3-Fucosyltransferases (Fuc-Ts) convert N-acetyllactosamine (LN, Galbeta1-4GlcNAc) to Galbeta1-4(Fucalpha1-3)GlcNAc, the Lewis x (CD15, SSEA-1) epitope, which is involved in various recognition phenomena. We describe details of the acceptor specificity of alpha1,3-fucosyltransferase IX (Fuc-TIX). The unconjugated N- and O-glycan analogs LNbeta1-2Man, LNbeta1-6Manalpha1-OMe, LNbeta1-2Manalpha1-3(LNbeta1-2Manalpha1-6)Manbeta1-4GlcNAc, and Galbeta1-3(LNbeta1-6)GalNAc reacted well in vitro with Fuc-TIX present in lysates of appropriately transfected Namalwa cells. Fuc-TIX reacted well with the reducing end LN of GlcNAcbeta1-3'LN (underscored site reacted) and GlcNAcbeta1-3'LNbeta1-3'LN (both LNs reacted), but very poorly with the reducing end LN of LNbeta1-3'LN. However, Fuc-TIX reacted significantly better with the non-reducing end LN as compared to the other LN units in the glycans LNbeta1-3'LN and LNbeta1-3'LNbeta1-3'LNbeta1-3'LN, confirming our previous data on LNbeta1-3'LNbeta1-OR. In contrast, the sialylated glycan Neu5Acalpha2-3'LNbeta1-3'LNbeta1-3'LNbeta1-3'LN was fucosylated preferentially at the two most reducing end LN units. We conclude that Fuc-TIX is a versatile alpha1,3-Fuc-T, that (1) generates distal Lewis x epitopes from many different acceptors, (2) possesses inherent ability for the biosynthesis of internal Lewis x epitopes on growing polylactosamine backbones, and (3) fucosylates the remote internal LN units of alpha2,3-sialylated i-type polylactosamines.  相似文献   

19.
The fucose alpha(1-->2) galactose beta structure is expressed by uterine epithelial cells in the mouse and has been implicated in blastocyst adhesion events thought to be required for murine implantation. Fucalpha(1-->2)Galbeta moieties and cognate fucosyltransferases are also expressed by epithelial cells of the male reproductive tract and have been implicated in sperm maturation events that may contribute to fertilization. To determine directly if Fucalpha(1-->2)Galbeta moieties are required for fertility, we have generated strains of mice that are deficient in genes encoding FUT1 and FUT2, a pair of GDP-L-fucose:beta(1-->4)-D-galactosyl-R 2-alpha-L-fucosyltransferase enzymes (EC 2.4.1.69) responsible for Fucalpha(1-->2)Galbeta synthesis and expression. FUT1 null mice and FUT2 null mice develop normally and exhibit no gross phenotypic abnormalities. The Fucalpha(1-->2)Galbeta epitope is absent from the uterine epithelia of FUT2 null mice and from the epithelia of the epididymis of FUT1 null mice. Fully normal fertility is observed in FUT1 null intercrosses and in FUT2 null intercrosses. These observations indicate that Fucalpha(1-->2)Galbeta moieties are not essential to blastocyst-uterine epithelial cell interactions required for implantation and are not required for sperm maturation events that permit fertilization and that neither the FUT loci nor their cognate fucosylated glycans are essential to normal development.  相似文献   

20.
UDP-Gal:Galbeta1-4GlcNAc alpha1,3-galactosyltransferase (alpha3GalT) is responsible for the synthesis of carbohydrate xenoantigen Galalpha1-3Galbeta1-4GlcNAc. In this work a convenient and sensitive assay system for quantification of alpha3GalT activity by enzyme-linked lectin assay (ELLA) with colorimetric detection is described. Microtiter plate wells whose surface had been coated with the polyacrylamide conjugate of the disaccharide Galbeta1-4GlcNAc (acceptor) are incubated with alpha3GalT in the presence of "cold" UDP-Gal as glycosyl donor. Formation of product by enzymatic extension of the glycan chain is detected by the biotinylated plant lectin Viscum album agglutinin. The standard curve for correct quantification of alpha3GalT activity is completed after running standard assays with no (background) or known quantities of enzyme activity. Product formation detected in this manner is proportional to enzyme activity and the concentrations of the acceptor and the glycosyl-donor UDP-Gal. In accordance with the known specificity of alpha3GalT, no enzymatic conversion of Le(x) into GalalphaLe(x) was observed using this assay. Human alphaGal antibodies were isolated using a disaccharide-exposing affinity adsorbent and their specificity was studied. Relative to the application of these natural immunoglobulins as product-detecting tool, the ELLA proved to be more sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号