首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
A cell-free system which catalyzes the biosynthesis of terpene hydrocarbons when supplemented with mevalonate, Mn2+, and ATP was prepared from the scutellum-embryonic axis region of maize seedlings. The capacity of this system for the production of terpene hydrocarbons was enhanced 50- to 100-fold when the seedlings were exposed for 48 hours to the fungus Rhizopus stolonifer prior to tissue homogenization. The fungi Aspergillus niger, Fusarium moniliforme, and Verticillium albo-atrum also elicited this biosynthetic enhancement. The terpene hydrocarbon products were separable into six fractions by argentation thin layer chromatography. Radioactivity was contributed to five of these fractions when either geranylgeranyl pyrophosphate or copalyl pyrophosphate was supplied as substrate, suggesting that polycyclic diterpenoid hydrocarbons were the main products. Large scale biosynthetic reactions led to the acquisition of about 1 milligram of terpene hydrocarbon products plus some more polar terpenoid products. Analysis of the hydrocarbon products by gas chromatography and mass spectrometry led to the separation of six distinct diterpene hydrocarbons plus a fraction with a molecular weight of about 550. Three of the diterpene hydrocarbons were identified as kaur-16-ene, kaur-15-ene (isokaurene), and pimara-8(14),15-diene. None of the terpene hydrocarbon fractions tested displayed antifungal activity in the Cladosporium cucumerinum thin layer plate assay.  相似文献   

4.
Polygalacturonase-inhibiting protein (PGIP) is a cell wall-associated protein that specifically binds to and inhibits the activity of fungal endopolygalacturonases. The Phaseolus vulgaris gene encoding PGIP has been cloned and characterized. Using a fragment of the cloned pgip gene as a probe in Northern blot experiments, it is demonstrated that the pgip mRNA accumulates in suspension-cultured bean cells following addition of elicitor-active oligogalacturonides or fungal glucan to the medium. Rabbit polyclonal antibodies specific for PGIP were generated against a synthetic peptide designed from the N-terminal region of PGIP; the antigenicity of the peptide was enhanced by coupling to KLH. Using the antibodies and the cloned pgip gene fragment as probes in Western and Northern blot experiments, respectively, it is shown that the levels of PGIP and its mRNA are increased in P. vulgaris hypocotyls in response to wounding or treatment with salicylic acid. Using gold-labeled goat-anti-rabbit secondary antibodies in EM studies, it has also been demonstrated that, in bean hypocotyls infected with Colletotrichum lindemuthianum, the level of PGIP preferentially increases in those cells immediately surrounding the infection site. The data support the hypothesis that synthesis of PGIP constitutes an active defense mechanism of plants that is elicited by signal molecules known to induce plant defense genes.  相似文献   

5.
6.
Effects of ozone exposure on polyamines in Pinus sylvestris L. were studied in a long-term experiment. Ten- to 15-year-old Scots pines were exposed to target ozone levels which began at ambient + 40 ppb in May, decreasing to ambient air only by September for 3 growing seasons. The amount of ozone applied followed the natural pattern of variation in ozone concentrations in Northern Finland. The free, soluble conjugated and insoluble conjugated polyamines were analyzed during the experiment and shortly after termination of exposure as well as at the beginning of the following growing season. A carry-over effect was observed as ozone-induced reduction of free spermidine in the oldest needle year class, which developed during the first exposure season of the experiment. This reduction was observed both after the second and the third ozone exposure season. Conversely, after termination of the experiment, levels of free polyamines increased in the following growing season, and soluble conjugated polyamines decreased in the developing needles. The post-treatment changes in polyamine concentrations are hypothesized to be caused by stress-induced injuries or delayed recovery of metabolic processes rather than protective responses. It is noteworthy that some responses in polyamines were found in the developing needles nine months after terminating the ozone exposure. This suggests that stress-induced injuries to older needles affected metabolism of new developing needles.  相似文献   

7.
8.
Elevated levels of both ozone and UV-B radiation are typical for high-altitude sites. Few studies have investigated their possible interaction on plants. This study reports interactive effects of O3 and UV-B radiation in four-year-old Norway spruce and Scots pine trees. The trees were cultivated in controlled environmental facilities under simulated climatic conditions recorded on Mt Wank, an Alpine mountain in Bavaria, and were exposed for one growing season to simulated ambient or twice-ambient ozone regimes at either near ambient or near zero UV-B radiation levels. Chlorotic mottling and yellowing of current year needles became obvious under twice-ambient O3 in both species at the onset of a high ozone episode in July. Development of chlorotic mottling in relation to accumulated ozone concentrations over a threshold of 40 nL L–1 was more pronounced with near zero rather than ambient UV-B radiation levels. In Norway spruce, photosynthetic parameters at ambient CO2 concentration, measured at the end of the experiment, were reduced in trees cultivated under twice-ambient O3, irrespective of the UV-B treatment. Effects on photosynthetic capacity and carboxylation efficiency were restricted to trees exposed to near zero levels of UV-B radiation, and twice-ambient O3. The data indicate that UV-B radiation, applied together with O3, ameliorates the detrimental effects of O3. The data also demonstrate that foliar symptoms develop more rapidly in Scots pine than in Norway spruce at higher accumulated ozone concentrations. Symbols and abbreviations: LSD, least significant difference; PAS300, UV-B irradiance weighted according to the plant action spectrum of Green et al. (1974) normalized at 300 (nm); AOT40, (AOT = accumulated over threshold) reflects the sum of hourly ozone concentrations above 40 nL L–1 during daylight hours (> 50 Wm–2) ( Kärenlampi & Skärby 1996 ); A350, net photosynthesis at ambient CO2; G350, stomatal conductance for water vapour at ambient CO2; A2500, net photosynthesis at saturating CO2 (maximal potential photosynthetic activity); CE, carboxylation efficiency; ROS, reactive oxygen species; RuBP, ribulose 1,5-bisphosphate; Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase; GLM, general linear model.  相似文献   

9.
Summary It has been suggested that the forest decline (Neuartige Waldschäden) seen recently in parts of West Germany is due to the direct effects of ozone combined with acid mists, rather than soil-mediated effects of acid deposition. It has been proposed that ozone (a) makes the needles of affected conifers more susceptible to leaching by acid mist and (b) damages the photosynthetic apparatus, giving rise to diminished carbohydrate reserves which reduce the ability of affected trees to replace the leached nutrients. This nutrient deficiency (especially of Ca and Mg) is a characteristic symptom of the Waldschäden, which progresses through growth decline, needle loss, and eventually death. Parts of this hypothesis were tested in a preliminary experiment in which 3-year old Pinus sylvestris (Scots pine) saplings were exposed to 4 different O3 levels, with and without acid mist (pH 3) treatment, for 56 days between July and September, 1983 in outdoor solardome fumigation chambers. The visual symptoms observed at >100 g m-3 were more characteristic of the chlorotic mottle seen on O3-affected trees in the USA than the general chlorosis of affected stands in Germany. O3 at mean concentrations of >200 g m-3 for 56 days reduced the fine root biomass and accelerated the senescence of older needles, in keeping with field effects observed in Germany. However, these O3 levels increased, rather than decreased, the concentrations of most elements in the needles. Acid mist had no effect on needle concentrations, and there was no O3-acid mist interaction. O3 up to 300 g m-3 also had no effect on the amount of ions leached from the needles, whereas acid mist increased the leaching of some ions, and again there was no interaction. The only nutritional effect of O3 was to reduce the foliar uptake of NO - 3 from the acid mist solution. An aphid infection part way through the experiment caused a large increase in leaching, particularly of K, and affected the intermediate O3 and watersprayed plants most. Caution is needed in extrapolating these results to the field, as the experiments were of short duration on young trees with fully-formed needles, growing in a soil better supplied with nutrients than field soils. Nevertheless, these preliminary results do not support the hypothesis of an O3-mediated increase in foliar leaching as the major cause of forest decline nor were the symptoms of O3-injury on Scots pine comparable with those reported in the field.  相似文献   

10.
11.
This is the first report on Scots pine (Pinus sylvestris L.) somatic embryo plants regenerated and growing in a greenhouse. The present work focused on improving somatic embryogenesis of the species by studying the factors affecting culture induction. Developmental stage of explants that were immature female gametophytes, including the zygotic embryos with suspensor tissues, was investigated in detail. The genetic background of the material, cold treatments (14 d, 1 or 2 months at +5C) of cones including explants, as well as the plant growth regulator composition of the initiation medium, were also examined. When initiation of somatic embryogenesis was successful, the zygotic embryos in the explants were either proembryos or early embryos. Cold treatment of the cones had no significant effect on induction, nor were there any differences among the treatments with different duration, thus improving the practical applicability of the culture technique. The explants in cold-stored cones probably retained their initiation capacity due to the conversion of starch to sugars. This was observed as decreased number and size of starch grains in the megagametophytes compared with the controls. The seed family and the medium significantly affected induction success, the medium with auxin (9.1 or 13.6 M 2,4-dichlorophenoxyacetic acid) and cytokinin (2.2 M 6-benzylaminopurine) being better than the medium with cytokinin (5 M 6-benzylaminopurine) alone. The significance of the genetic background of the explants and the initiation medium indicate that it might be possible to improve the initiation rates by using explants from controlled crossings between competent genotypes, and by developing more specific media for important seed families.  相似文献   

12.
The fungicidal class I endochitinases (E.C.3.3.1.14, chitinase) are associated with the biochemical defense of plants against potential pathogens. We isolated and sequenced a genomic clone, DAH53, corresponding to a class I basic endochitinase gene in pea, Chil. The predicted amino acid sequence of this chitinase contains a hydrophobic C-terminal domain similar to the vacuole targeting sequences of class I chitinases isolated from other plants. The pea genome contains one gene corresponding to the chitinase DAH53 probe. Chitinase RNA accumulation was observed in pea pods within 2 to 4 h after inoculation with the incompatible fungal strain Fusarium solani f. sp. phaseoli, the compatible strain F. solani f.sp. pisi, or the elicitor chitosan. The RNA accumulation was high in the basal region (lower stem and root) of both fungus challenged and wounded pea seedlings. The sustained high levels of chitinase mRNA expression may contribute to later stages of pea's non-host resistance.  相似文献   

13.
Scots pine (Pinus sylvestris L.) seedlings were fumigated with 1.2–1.5 x ambient ozone (cumulative exposure) over 2 seasons in an open-air experiment. Starch and fatty acid concentrations were analyzed in needle and root tissue in the summer, autumn and early winter. Seedling growth was determined by measuring the height of the stem and the total shoot and root biomass. Significant decreases in growth were found in exposed seedlings, even though visible symptoms were lacking. Almost significant reductions in needle and root starch concentrations were found. In the ozone treated foliage, significant increases in myristic acid (140) were detected, but the major fatty acids remained unchanged. Fatty acid ratios showed that the degree of unsaturation decreased in treated needles in the summer. In the roots of ozone treated seedlings, changes in fatty acids were different from those in the foliage. Decreases of the main root fatty acids (160, 180, 181, 18:2, 183) were detected in the summer. These results show that Scots pine is susceptible to enhanced levels of ozone. If the tropospheric ozone levels continue to increase it may have deleterious effects on Scots pine forests in Finland.  相似文献   

14.
The data on Scots pine responses to elevated ozone (O3) mainly come from experimental studies with young seedlings and trees. Based on the 38 experiments reviewed here, Scots pine may be considered as an O3-sensitive conifer species, with mature pines more sensitive than younger trees. This is due to their relatively small proportion of current (c) year needles with the highest photosynthetic capacity. Moreover, young seedlings and trees seem to acclimate to slightly elevated realistic O3 exposures, and hence do not often exhibit growth and biomass reductions in spite of the visible and microscopic needle injuries and changes in needle chemistry. The O3 sensitivity in Scots pine is thought to relate to impaired water status due to the malfunction of stomata and subsequent increase in transpiration. This may lead to reduced wood biomass in the long term, if Scots pines try to maximise the biomass of c needles and root biomass to maintain efficient water and nitrogen (N) supply to support the photosynthesis of c needles. Tree water status also contributes to the spring-time recovery of photosynthesis. We call especially for studies on atmosphere–needle surface interaction that would yield novel information on the impact of O3 on epicuticular waxes and stomatal functioning, which both regulate O3 flux and tree water status and hence also modify photosynthesis. The need for flux-based field studies is especially important in the light of future climatic change, since the risk presented by O3 to Scots pine forests in Northern and Central Europe seems to be equal.  相似文献   

15.
16.
17.
The induction of peroxidases (EC 1.11.1.7) during elicitation of lignification by α-1,4-linked oligogalacturonides in cucumber hypocotyl segments ( Cucumis sativus L. cv, Wisconsin SMR 58) was investigated. The wounding associated with the preparation of hypocotyl segments induced a 19-fold increase in peroxidase activity during the following 72 h. The increase was partially due to an increase in activity of a constitutive peroxidase with a pI of 8.9 and partially due to the expression of new peroxidase isozymes with pIs of 3.8, 5.4, 6.2, 9.1 and 9.4. The oligogalacturonides did not induce any peroxidase activity in addition to the wound-induced activity. These results suggest that either the constitutive peroxidase isozyme (pI 8.9) of intact hypocotyls or some of the wound-induced peroxidases are involved in the oligogalacturonide-induced lignification.
Induction of the peroxidases by wounding was inhibited by cycloheximide. This indicates that they accumulate as a result of de novo protein synthesis. Actinomycin D caused only a modest inhibition of the wound-induction peroxidases, indicating that the process is regulated at the level of translation.
Peroxidase activity increased more rapidly in resistant than in susceptible cucumber hypocotyls after inoculation with the pathogen Cladosporium cucumerinum Ellis & Arthur. The pattern of isozymes which was induced by fungal infection of resistant hypocotyls was similar to the pattern of isozymes induced by wounding. This suggests that similar induction mechanisms may be involved in the two processes.  相似文献   

18.
This study aimed to explore if changes in peak ozone (O3) concentrations may reinforce the phytotoxic effects of air concentration of acidifying compounds and their deposition, as well as unfavorable climatic factors on pine crown defoliation. Forty-eight pine stands with more than 8000 sample pine trees have been monitored annually. The impact of sulfur dioxide (SO2) on pine defoliation was found to be the most significant. The impacts of peak O3 concentrations, acid deposition, and amount of precipitation were considerably lower, whereas the impact of air temperature, the least. Contribution of peak O3 concentrations to the integrated impact of acid deposition and amount of precipitation on pine defoliation was most significant, whereas the contribution to the impact of acidifying air compounds, mainly SO2, was the least. No synergetic effect between peak O3 concentrations and high temperature during vegetation period was detected.  相似文献   

19.
Summary The effect of ozone, needle age, and season on the pH of homogenate and acid contents of Scots pine and Norway spruce needles is presented. In addition enzyme activities of cytochrome C-oxidase (cyt. C-ox), phosphoenolpyruvate-carboxylase (PEPC), shikimic acid-dehydrogenase (SHDH) and malate-dehydrogenase (MDH) were measured in Scots pine needles. In freshly sprouted spruce needles the level of quinic acid is high and the pH of the needle homogenate is low. Shikimic acid starts at low levels, increases with increasing needle age and becomes dominant, whereas the quinic acid content decreases. Malic acid has a marked seasonal trend; no trend was found in citric acid. Ozone (200 g/m3) decreased shikimic acid and quinic acid, whereas pH, malic acid and citric acid increased. Ozone (100 g/m3) had a similar effect, except in the current-year spruce needles. In Scots pine needles ozone led to increased enzymatic activities of cyt. C-ox, PEPC and SHDH, and a decrease in the activity of MDH. This effect was more pronounced in summer than in autumn, but the visible damage was greater in autumn. These effects can be found with other stresses and are not specific for ozone.  相似文献   

20.
Phospholipase A(2) (PLA(2)) catalyzes hydrolysis of phospholipids at sn-2 position and usually releases arachidonic acid, which is oxygenated into various eicosanoids that mediate innate immune responses in insects. PLA(2) activities were measured in both immune-associated tissues of hemocyte and fat body in the beet armyworm, Spodoptera exigua. Upon challenge of an entomopathogenic fungus, Beauveria bassiana, the PLA(2)s were significantly activated in both hemocyte and fat body. The fungal infection also induced gene expression of antimicrobial peptides (AMPs), such as two attacins, cecropin, gallerimycin, gloverin, hemolin, and transferrin of S. exigua. RNA interference of Toll or Imd signal pathway using double-stranded RNAs (dsRNAs) specific to SeToll or SeRelish suppressed specific AMP gene expressions, in which dsRNA specific to SeToll suppressed two attacins, cecropin, gallerimycin, gloverin, hemolin, and transferrin I, while dsRNA specific to SeRelish suppressed only cecropin. Interestingly, dsRNA specific to SeToll also significantly inhibited the activation of PLA(2) in response to the fungal infection, but dsRNA specific to SeRelish did not. Eicosanoid-dependent hemocyte nodulation was inhibited by dsRNA specific to SeToll but was not by dsRNA specific to SeRelish. These results suggest that eicosanoid biosynthesis is activated via Toll, but not Imd signal pathway in response to fungal infection in S. exigua.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号