首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Type X collagen, a homotrimer of alpha 1 (X) polypeptide chains, is specifically expressed by hypertrophic chondrocytes in regions of cartilage undergoing endochondral ossification. We have previously described the isolation of a small fragment of the human type X collagen gene (COL10A1) and its localization to the q21-q22 region of human chromosome 6 [Apte, S., Mattei, M.-G. & Olsen, B. R. (1991) FEBS Lett. 282, 393-396]. Using this fragment as a probe to screen genomic libraries, we report here the isolation of human and mouse genomic clones which contain the major part of the human and mouse type X collagen genes. In both species, the 14-kb genomic clones which were isolated contain a long open reading frame (greater than 2000 bp in length) which codes for the entire C-terminal non-collagenous (NC1) domain, the entire collagenous (COL) domain and part of the N-terminal non-collagenous (NC2) domain of the alpha 1(X) collagen chain. The human genomic clone contains the major part of the COL10A1 gene, in addition to the region we have previously cloned, and is highly similar to the corresponding portions of the mouse genomic clone (84.5% similarity at the nucleotide level, and 86.1% at the level of the conceptual translation product). The identification of the mouse genomic clone as the alpha 1(X) collagen gene (Col10a1) was confirmed by in situ hybridization of a fragment of the mouse genomic clone to sections from newborn mice. Hybridization was restricted to the hypertrophic chondrocytes of developing chondroepiphyses, being absent in small chondrocytes and in other tissues. Using interspecific backcross analysis, the locus for the mouse alpha 1 (X) collagen gene was assigned to chromosome 10. The cloning and chromosomal mapping of the human and mouse alpha 1 (X) collagen genes now permit the investigation of the possible role of type X collagen gene defects in the genesis of chondrodysplasias in both species and provide data essential for the generation of transgenic mice deficient in type X collagen.  相似文献   

4.
5.
6.
Comparative mapping of human and mouse chromosomes can be used to predict locations of homologous loci between the species, provides the substrate to examine the process of chromosomal evolution, and facilitates the continuing development of mouse genetic models for human disorders. A YAC contig of the region of mouse Chromosome (Chr) 10 (MMU10) that demonstrates conserved linkage with the distal portion of human Chr 21 (HSA21) has been constructed. The contig contains all known genes mapped in both species, defines the proximal region of homology between MMU10 and HSA22, and contains the evolutionary junction between HSA21 and HSA22 on MMU10. It consists of 23 YACs and 2 PACs, and covers 3.2 Mb of MMU10. The average marker density for this region is 1 marker/69 kb. Nine of 22 expressed sequences are mapped here for the first time in mouse, and two are newly characterized expressed sequences. The contig also contains 12 simple sequence repeats (SSRs) and 16 YAC and PAC endclone markers. YAC fragmentation analysis was used to create a physical map for the proximal 2.2 Mb of the contig. Cloning of the corresponding region of HSA21 has proven difficult, and the mouse contig includes segments absent from previously described sequence ready maps of HSA21. Received: 22 July 1998 / Accepted: 13 November 1998  相似文献   

7.
Using direct R-banding fluorescence in situ hybridization, we determined the location of 31 functional genes on chicken chromosomes. Replication R-banded chromosomes were obtained by synchronizing splenocyte cultures with excessive thymidine, followed by BrdU treatment. Thirty-one functional genes were directly localized to banded chicken chromosomes using genomic DNA and cDNA fragments as probes. The possibility of conserved linkage homology between chicken and human chromosomes was demonstrated for seven chicken chromosome regions (1p, 1q, 2q, 4p, 4q, and 5q).  相似文献   

8.
9.
10.
A new autosomal recessive mouse mutation characterized by deafness and circling behavior was recovered during mutagenesis experiments with chlorambucil (CHL). On the basis of allelism tests and linkage analyses, this mutation appears to represent a new allele of waltzer (v) that maps to mouse Chromosome (Chr) 10. We have designated this new allele, Albany waltzer (v Alb ). A high-resolution map of the region around v was constructed from data from two intersubspecific backcrosses involving Mus musculus castaneus. The analysis of 648 backcross mice has allowed v Alb to be localized 1.1 ± 0.4 cM distal to D10Mit60 and 0.2 ± 0.2 cM proximal to a cluster of four markers, D10Mit172, D10Mit112, D10Mit48, and D10Mit196. An independent backcross was used to confirm the map order and distances in the v Alb backcross. The two linkage maps were consistent, indicating that the lesion in v Alb , which is presumed to be a deletion based on the known action of CHL, is small and has not significantly altered the map at this level of detection. Additionally, three genes (Ros1, Grik2, and Zfa) were eliminated as possible candidates for v Alb , and several SSLP markers were separated genetically. Received: 3 July 1996 / Accepted: 13 August 1996  相似文献   

11.
12.
13.
The locus Om (ovum mutant) identified in the mouse strain DDK affects the viability of (DDK |m~ non-DDK)F1 preimplantation embryos. We previously located this locus on Chromosome (Chr) 11 close to Scya2 (Baldacci et al. Mamm. Genome 2, 100–105, 1992). Here we report a high-resolution map of the region around Om based on a large number of backcross individuals. The same region has been analyzed on the EUCIB backcross, and the two maps have been compared. The results define the proximal and distal boundaries for the Om mutation as Scya2 and D11Mit36 respectively. The distance between these two markers is about 2 cM. These data should facilitate the positional cloning and molecular characterization of Om. Received: 10 July 1995 / Accepted: 11 September 1995  相似文献   

14.
Aquaporins are water channel proteins that control the flow of water across cellular membranes and play vital roles in all aspects of plant–water relations. Our previous identification of 35 wheat PIP and TIP aquaporin genes showed they formed a large family with many conserved features that are thought to be important in structure and function. The present work focussed on determining the positions of these genes in the wheat genome in order to help investigate their functions in water uptake and transport. Genomic locations of wheat PIPs and TIPs were predicted using a number of reported rice–wheat comparative maps and additional in silico approaches. Physical mapping of select genes utilising aneuploid stocks and progenitor DNAs placed these on chromosomes 2B, 2D, 6B and 7B and helped to clarify the individual genes and homoeologues. The compilation of all in silico and physical mapping work confirmed many of the orthologous relationships between wheat and rice and/or barley genes, and synteny in the related areas of genome. These results further reinforce that wheat PIP and TIP proteins are most likely to have similar functions to those closely related in rice, including water permeability and abiotic stress response, and provide important tools for future investigations into the involvement of this complex gene family in traits related to plant-water relations and osmotic stress response.  相似文献   

15.
Ahi-1 has previously been identified as a common helper provirus integration site on mouse Chromosome (Chr) 10 in 16% of Abelson pre-B-cell lymphomas and shown to be closely linked to the Myb protooncogene. By using long-range restriction mapping, we have mapped the Myb and Ahi-1 regions within a 120-kbp DNA fragment. The Ahi-1 region is located approximately 35 kbp downstream of the Myb gene. A further comfirmation of this finding was obtained by screening a mouse YAC library. The three positive clones obtained contained both the Myb and Ahi-1 gene sequences. To test whether provirus integration in the Ahi-1 region enhances the expression of Myb by a cis-acting mechanism, we have also examined Myb gene expression in A-MuLV-induced pre-B-lymphomas. Our data have revealed that there is no clear evidence for such activation in the tumors we have tested, indicating that provirus insertion in the Ahi-1 region is activating a novel gene, apparently involved in tumor formation.  相似文献   

16.
17.
Seasonal infertility in sows is a problem in the pig industry characterized by delayed onset of puberty in summer and decreased farrowing rate resulting from silent oestrus and aborted pregnancy. Summer infertility is thought to be influenced by heat, sunburn and stress. However, the strongest contributory factor is photoperiod. The difference in seasonality between wild boar and commercial pig breeds suggests that there may be a genetic component to this trait. The maps and associated molecular tools emerging from the pig genome project have created opportunities to examine the genetic component of seasonal infertility. We are identifying and mapping genes that are likely to be involved in biological clock mechanisms and the melatonin pathways as candidate seasonality genes.  相似文献   

18.
19.
20.
Myodystrophy (myd), an autosomal recessive mutation of the mouse characterized by progressive weakness and dystrophic muscle histology, maps to the central portion of Chromosome (Chr) 8 (Lane et al. J. Hered 67, 135, 1976). This portion of Chr 8 contains the genes for a mitochondrial uncoupling protein (Ucp) and kallikrein (Kal3), which map to distal 4q in the human, providing evidence for a segment of homology. Characteristics of the myd phenotype coupled with this homology suggest that myd may be a mouse homolog of facioscapulohumeral muscular dystrophy (FSHD), which maps to human 4q35. We have confirmed and expanded the region of mouse 8-human 4 homology by generating a map of Chr 8 in an interspecific backcross of C57BL/6J and a partially inbred strain derived from M. spretus. The map is comprised of the genes for Ucp, coagulation factor XI (Cf11), and chloride channel 5 (Clc5), all of which have homologs on distal human 4q, 15 microsatellite loci, and the membrane cofactor protein pseudogene (Mcp-ps). To place myd in the genetic map, 75 affected progeny from an intersubspecific backcross of animals heterozygous for myd with Mus musculus castaneus were genotyped with Chr 8 microsatellite loci. The mutation maps between D8Mit30 and D8Mit75, an interval that is flanked by genes with human homologs at distal 4q. These results are consistent with the possibility that myd is the mouse homolog of FSHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号