首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative mapping and sequencing show that turnover of sex determining genes and chromosomes, and sex chromosome rearrangements, accompany speciation in many vertebrates. Here I review the evidence and propose that the evolution of therian mammals was precipitated by evolution of the male‐determining SRY gene, defining a novel XY sex chromosome pair, and interposing a reproductive barrier with the ancestral population of synapsid reptiles 190 million years ago (MYA). Divergence was reinforced by multiple translocations in monotreme sex chromosomes, the first of which supplied a novel sex determining gene. A sex chromosome‐autosome fusion may have separated eutherians (placental mammals) from marsupials 160 MYA. Another burst of sex chromosome change and speciation is occurring in rodents, precipitated by the degradation of the Y. And although primates have a more stable Y chromosome, it may be just a matter of time before the same fate overtakes our own lineage. Also watch the video abstract .  相似文献   

2.

Background

Sex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping.

Results

Chromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1.

Conclusion

Monotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z.  相似文献   

3.
4.
1. Comparisons of chromosomes and gene maps of different mammals are yielding a big picture of the evolution of mammalian genome form and function. It has been particularly instructive to compare gene arrangements on the sex chromosomes between the three major groups of mammals. Eutheria (so-called placental mammals). Metatheria (marsupials) and Prototheria (monotremes), which diverged 150 and 170 Myr BP respectively. 2. A region amounting to 3% of the haploid genome is located on the X chromosome in all three groups, implying that this region must have been part of the original X in a common ancestor. This region comprises the long arm of the human X. 3. A region represented by the short arm of the human X is common to the X in all eutherians, but is autosomal in marsupials and monotremes; thus it was not a part of the original X, and must have been acquired by the X early in the eutherian radiation. 4. This recently acquired region was probably translocated to a pseudoautosomal region shared by the eutherian X and Y. Thus it was originally paired and exempt from X chromosome inactivation; stepwise deletion of this region from the Y and recruitment of the newly unpaired region of the X into the inactivation system could account for some of the peculiarities of this region of the human X. 5. The sex-determining gene TDF must lie on the Y in all mammals in which the Y is male determining. The autosomal location of the candidate gene ZFY in marsupials and monotremes eliminates it from consideration. The recently described candidate gene SRY has yet to pass the "marsupial test".  相似文献   

5.
6.
X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore, the differentiation of sex chromosomes.  相似文献   

7.
Marsupial sex chromosomes are smaller than their eutherian counterparts and are thought to reflect an ancestral mammalian X and Y. The gene content of this original X is represented largely by the long arm of the human X chromosome. Genes on the short arm of the human X are autosomal in marsupials and monotremes, and represent a recent addition to the eutherian X and Y. The marsupial X and Y apparently lack a pseudoautosomal region and show only end-to-end pairing at meiosis. However, the sex chromosomes of macropodid marsupials (kangaroos and wallabies) are larger than the sex chromosomes of other groups, and a nucleolus organizer is present on the X and occasionally the Y. Chromosome painting using DNA from sorted and microdissected wallaby X and Y chromosomes reveals homologous sequences on the tammar X and Y chromosomes, concentrated on the long arm of the Y chromosome and short arm of the X. Ribosomal DNA sequences were detected by fluorescence in situ hybridization on the wallaby Xp but not the Y. Since no chiasmata have been observed in marsupial sex chromosomes, it is unlikely that these shared sequences act as a pseudoautosomal region within which crossing over may occur, but they may be required for end-to-end associations. The shared region of wallaby X and Y chromosomes bears no homology with the recently added region of the eutherian sex chromosomes, so we conclude that independent additions occurred to both sex chromosomes in a eutherian and macropodid ancestor, as predicted by the addition-attrition hypothesis of sex chromosome evolution. Received: 18 October 1996 / Accepted: 21 February 1997  相似文献   

8.
ABSTRACT: BACKGROUND: The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in placental mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (pTERT) ortholog, and provide a comparison with genes of other vertebrates. RESULTS: The pTERT encodes a protein with the high homology to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, pTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in placental mammals and ray-finned fish. Several alternatively spliced pTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues similarly to cold-blooded animals and murine rodents. pTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. The synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. CONCLUSIONS: pTERT shares many features with TERT of the reptilian outgroup, suggesting that pTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes.  相似文献   

9.
New findings in the platypus and Drosophila pseudoobscura illustrate, yet again, that the sex chromosomes seem never to stop evolving. Degeneration processes lead to a continual loss of genes and gene activity on the Y chromosome, and complete loss of Y-linked genes is possible if autosomal genes take over control of male fertility - though addition of new material to the sex chromosomes may start the process anew.  相似文献   

10.

Background

The monotremes, represented by the duck-billed platypus and the echidnas, are the most divergent species within mammals, featuring a flamboyant mix of reptilian, mammalian and specialized characteristics. To understand the evolution of the mammalian major histocompatibility complex (MHC), the analysis of the monotreme genome is vital.

Results

We characterized several MHC containing bacterial artificial chromosome clones from platypus (Ornithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus) and mapped them onto chromosomes. We discovered that the MHC of monotremes is not contiguous and locates within pseudoautosomal regions of two pairs of their sex chromosomes. The analysis revealed an MHC core region with class I and class II genes on platypus and echidna X3/Y3. Echidna X4/Y4 and platypus Y4/X5 showed synteny to the human distal class III region and beyond. We discovered an intron-containing class I pseudogene on platypus Y4/X5 at a genomic location equivalent to the human HLA-B,C region, suggesting ancestral synteny of the monotreme MHC. Analysis of male meioses from platypus and echidna showed that MHC chromosomes occupy different positions in the meiotic chains of either species.

Conclusion

Molecular and cytogenetic analyses reveal new insights into the evolution of the mammalian MHC and the multiple sex chromosome system of monotremes. In addition, our data establish the first homology link between chicken microchromosomes and the smallest chromosomes in the monotreme karyotype. Our results further suggest that segments of the monotreme MHC that now reside on separate chromosomes must once have been syntenic and that the complex sex chromosome system of monotremes is dynamic and still evolving.  相似文献   

11.
Since the two eutherian sex chromosomes diverged from an ancestral autosomal pair, the X has remained relatively gene-rich, while the Y has lost most of its genes through the accumulation of deleterious mutations in nonrecombining regions. Presently, it is unclear what is distinctive about genes that remain on the Y chromosome, when the sex chromosomes acquired their unique evolutionary rates, and whether X-Y gene divergence paralleled that of paralogs located on autosomes. To tackle these questions, here we juxtaposed the evolution of X and Y homologous genes (gametologs) in eutherian mammals with their autosomal orthologs in marsupial and monotreme mammals. We discovered that genes on the X and Y acquired distinct evolutionary rates immediately following the suppression of recombination between the two sex chromosomes. The Y-linked genes evolved at higher rates, while the X-linked genes maintained the lower evolutionary rates of the ancestral autosomal genes. These distinct rates have been maintained throughout the evolution of X and Y. Specifically, in humans, most X gametologs and, curiously, also most Y gametologs evolved under stronger purifying selection than similarly aged autosomal paralogs. Finally, after evaluating the current experimental data from the literature, we concluded that unique mRNA/protein expression patterns and functions acquired by Y (versus X) gametologs likely contributed to their retention. Our results also suggest that either the boundary between sex chromosome strata 3 and 4 should be shifted or that stratum 3 should be divided into two strata.  相似文献   

12.
We have mapped five human chromosome 21 (HSA 21) markers in marsupials and a monotreme, two major groups of mammals that diverged from eutherians 130-150 and 150-170 million years before present (MYrBP), respectively. We have found that these genes map to two distinct autosomal sites, one containing SOD1/CBR/BCEI and the other containing ETS2/INFAR, in the marsupials Macropus eugenii and Sminthopsis macroura (which belong to orders that diverged 40-80 MYrBP), as well as in the monotreme Ornithorhynchus anatinus (the platypus). Since marsupials and monotremes diverged independently from eutherians, these data suggest that HSA 21 genes were originally located in two separate autosomal blocks. In another Sminthopsis species, SOD1 is linked to TRF (a marker on HSA 3q), suggesting that the ancestral SOD1/CBR/BCEI region also included HSA 3 markers. We suggest that these blocks became fused early in the eutherian evolution to form a HSA 3/21 chromosome, which has remained intact in artiodactyls, but has been independently disrupted in both the primate and rodent lineages.  相似文献   

13.
A striking example of the power of chromosome painting has been the resolution of the male platypus karyotype and the pairing relationships of the chain of ten sex chromosomes. We have extended our analysis to the nine sex chromosomes of the male echidna. Cross-species painting with platypus shows that the first five chromosomes in the chain are identical in both, but the order of the remainder are different and, in each species, a different autosome replaces one of the five X chromosomes. As the therian X is homologous mainly to platypus autosome 6 and echidna 16, and as SRY is absent in both, the sex determination mechanism in monotremes is currently unknown. Several of the X and Y chromosomes contain genes orthologous to those in the avian Z but the significance of this is also unknown. It seems likely that a novel testis determinant is carried by a Y chromosome common to platypus and echidna. We have searched for candidates for this determinant among the many genes known to be involved in vertebrate sex differentiation. So far fourteen such genes have been mapped, eleven are autosomal in platypus, two map to the differential regions of X chromosomes, and one maps to a pairing segment and is likewise excluded. Search for the platypus testis-determining gene continues, and the extension of comparative mapping between platypus and birds and reptiles may shed light on the ancestral origin of monotreme sex chromosomes.  相似文献   

14.
The order Monotremata, comprising the platypus and two species of echidna (Australian and Nuigini) is the only extant representative of the mammalian subclass Prototheria, which diverged from subclass Theria (marsupials and placental mammals) 150–200 million years ago. The 2n=63, 64 karyotype (newly described here) of the Nuigini echidna is almost identical in morphology and G-band pattern to that of the Australian echidna, from which it diverged about a million years ago. The karyotype of the platypus (2n=52) has several features in common with those of the echidna species; six pairs of large autosomes, many pairs of small (but not micro-) chromosomes, and a series of small unpaired chromosomes which form a multivalent at meiosis. Comparison of the G-band patterns of platypus and echidna autosomes reveals considerable homology. Chromomycin banding demonstrates GC-rich heterochromatin at the centromeres of many platypus and echidna chromosomes, and at the nucleolar organizing regions; some of this heterochromatin C-bands weakly in platypus (but not echidna) spreads. Late replication banding patterns resemble G-banding patterns and confirm the homologies between the species. Striking heteromorphism between chromosomes of some of the large autosomal pairs can be accounted for in the echidna by differences in amount of chromomycin-bright, late replicating heterochromatin. The sex chromosomes in all three species also bear striking homology, despite the difference in sex determination mechanism between platypus (XX/XY) and the echidna species (X1X1X2X2/X1X2Y). The platypus X and echidna X1 each represent about 5.8% of haploid chromosome length, and are G-band identical. Y chromosomes are similar between species, and are largely homologous to the X (or X1).  相似文献   

15.
Marsupial and monotreme mammals fill an important gap in vertebrate phylogeny between reptile-mammal divergence 310 million years ago (mya) and the eutherian (placental) mammal radiation 105 mya. They possess many unique features including their distinctive chromosomes, which in marsupials are typically very large and well conserved between species. In contrast, monotreme genomes are divided into several large chromosomes and many smaller chromosomes, with a complicated sex chromosome system that forms a translocation chain in male meiosis. The application of molecular cytogenetic techniques has greatly advanced our understanding of the evolution of marsupial chromosomes and allowed the reconstruction of the ancestral marsupial karyotype. Chromosome painting and gene mapping have played a vital role in piecing together the puzzle of monotreme karyotypes, particularly their complicated sex chromosome system. Here, we discuss the significant insight into karyotype evolution afforded by the combination of recently sequenced marsupial and monotreme genomes with cytogenetic analysis, which has provided a greater understanding of the events that have shaped not only marsupial and monotreme genomes, but the genomes of all mammals.  相似文献   

16.
17.
In mammals, chromosomes occupy defined positions in sperm, whereas previous work in chicken showed random chromosome distribution. Monotremes (platypus and echidnas) are the most basal group of living mammals. They have elongated sperm like chicken and a complex sex chromosome system with homology to chicken sex chromosomes. We used platypus and chicken genomic clones to investigate genome organization in sperm. In chicken sperm, about half of the chromosomes investigated are organized non-randomly, whereas in platypus chromosome organization in sperm is almost entirely non-random. The use of genomic clones allowed us to determine chromosome orientation and chromatin compaction in sperm. We found that in both species chromosomes maintain orientation of chromosomes in sperm independent of random or non-random positioning along the sperm nucleus. The distance of loci correlated with the total length of sperm nuclei, suggesting that chromatin extension depends on sperm elongation. In platypus, most sex chromosomes cluster in the posterior region of the sperm nucleus, presumably the result of postmeiotic association of sex chromosomes. Chicken and platypus autosomes sharing homology with the human X chromosome located centrally in both species suggesting that this is the ancestral position. This suggests that in some therian mammals a more anterior position of the X chromosome has evolved independently.  相似文献   

18.
Mammal sex determination depends on an XY chromosome system, a gene for testis development and a means of activating the X chromosome. The duckbill platypus challenges these dogmas.(1,2) Gutzner et al.(1) find no recognizable SRY sequence and question whether the mammalian X was even the original sex chromosome in the platypus. Instead they suggest that the original platypus sex chromosomes were derived from the ZW chromosome system of birds and reptiles. Unraveling the puzzles of sex determination and dosage compensation in the platypus has been complicated by the fact that it has a surplus of sex chromosomes. Rather than a single X and Y chromosome, the male platypus has five Xs and five Ys.  相似文献   

19.
Handley LJ  Ceplitis H  Ellegren H 《Genetics》2004,167(1):367-376
The human X chromosome exhibits four "evolutionary strata," interpreted to represent distinct steps in the process whereby recombination became arrested between the proto X and proto Y. To test if this is a general feature of sex chromosome evolution, we studied the Z-W sex chromosomes of birds, which have female rather than male heterogamety and evolved from a different autosome pair than the mammalian X and Y. Here we analyze all five known gametologous Z-W gene pairs to investigate the "strata" hypothesis in birds. Comparisons of the rates of synonymous substitution and intronic divergence between Z and W gametologs reveal the presence of at least two evolutionary strata spread over the p and q arms of the chicken Z chromosome. A phylogenetic analysis of intronic sequence data from different avian lineages indicates that Z-W recombination ceased in the oldest stratum (on Zq; CHD1Z, HINTZ, and SPINZ) 102-170 million years ago (MYA), before the split of the Neoaves and Eoaves. However, recombination continued in the second stratum (on Zp; UBAP2Z and ATP5A1Z) until after the divergence of extant avian orders, with Z and W diverging 58-85 MYA. Our data suggest that progressive and stepwise cessation of recombination is a general feature behind sex chromosome evolution.  相似文献   

20.
The medaka Oryzias latipes and its two sister species, O. curvinotus and O. luzonensis, possess an XX-XY sex-determination system. The medaka sex-determining gene DMY has been identified on the orthologous Y chromosome [O. latipes linkage group 1 (LG1)] of O. curvinotus. However, DMY has not been discovered in other Oryzias species. These results and molecular phylogeny suggest that DMY was generated recently [approximately 10 million years ago (MYA)] by gene duplication of DMRT1 in a common ancestor of O. latipes and O. curvinotus. We identified seven sex-linked markers from O. luzonensis (sister species of O. curvinotus) and constructed a sex-linkage map. Surprisingly, all seven sex-linked markers were located on an autosomal linkage group (LG12) of O. latipes. As suggested by the phylogenetic tree, the sex chromosomes of O. luzonensis should be "younger" than those of O. latipes. In the lineage leading to O. luzonensis after separation from O. curvinotus approximately 5 MYA, a novel sex-determining gene may have arisen and substituted for DMY. Oryzias species should provide a useful model for evolution of the master sex-determining gene and differentiation of sex chromosomes from autosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号