首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is highly nutritious and an excellent dietary source of flavonoid compounds. Chalcone synthase (CHS) is the first key enzyme involved in flavonoid biosynthesis. Here, three putative CHS genes (designated as FtCHS1 (GU172165), FtCHS2 (KT284884), and FtCHS3 (KT284885) were isolated from tartary buckwheat. Nucleotide sequence analysis indicated that FtCHS1 and FtCHS2 each contained one intron of 444 bp and 157 bp, respectively. FtCHS3 included two introns, one of 86 bp and another of 73 bp. The results of quantitative real-time PCR (qRT-PCR) showed the FtCHSs expression presented the same pattern in the stems and flowers, with FtCHS1>FtCHS3>FtCHS2. A different tendency was found in leaves, with FtCHS3>FtCHS2>FtCHS1. However, there was no direct correlation between the three CHS expression and total flavonoids. Furthermore, high-performance liquid chromatography (HPLC) performance reveals rutin is the most abundant flavonoid in all tissues, leaves should be the main location for quercetin storage in tartary buckwheat.  相似文献   

2.
Enzymes of the chalcone synthase (CHS) family catalyze the generation of multiple secondary metabolites in fungi, plants, and bacteria. These metabolites have played key roles in antimicrobial activity, UV protection, flower pigmentation, and pollen fertility during the evolutionary process of land plants. We performed a genome-wide investigation about CHS genes in rice (Oryza sativa). The phylogenetic relationships, gene structures, chromosomal locations, and functional predictions of the family members were examined. Twenty-seven CHS family genes (OsCHS0127) were identified in the rice genome and were found to cluster into six classes according to their phylogenetic relationships. The 27 OsCHS genes were unevenly distributed on six chromosomes, and 17 genes were found in the genome duplication zones with two segmental duplication and five tandem duplication events that may have played key roles in the expansion of the rice CHS gene family. In addition, the OsCHS genes exhibited diverse expression patterns under salicylic acid treatment. Our results revealed that the OsCHS genes exhibit both diversity and conservation in many aspects, which will contribute to further studies of the function of the rice CHS gene family and provide a reference for investigating this family in other plants.  相似文献   

3.
In vitro plant regeneration was established in Echinacea pallida, a plant that is commonly used as a folk medicine to treat the common cold, fevers, inflammation and so on. Conditions for callus induction, lateral root and shoot regeneration were determined. Subsequently, two vectors pCHS and pOSAG78, carrying different selection marker genes resistant to kanamycin and hygromycin, respectively, were independently used to transform leaf explants of E. pallida using an Agrobacterium-mediated method. Genomic PCR analysis confirmed the presence of the transgene and selection marker gene in obtained transgenic lines. Southern hybridization indicated that the T-DNA insertion in some transgenic E. pallida was single copy. Among them, transformants carrying Petunia chalcone synthase (CHS) were selected for further study. CHS is a key enzyme in the biosynthesis of diverse flavonoids including anthocyanin pigmentation. Here, we analyzed the roles and compared the gene expression of two clusters of CHSs, EpaCHS-A and EpaCHS-B (EpaCHS-B1 and EpaCHS-B2), isolated from E. pallida. Two of the genes, EpaCHS-A and EpaCHS-B1, were abundantly expressed in petals, whereas EpaCHS-B2 was expressed at high levels in leaves. The expression of EpaCHSs remained constant in leaves and roots of Petunia CHS transformants, while EpaCHS-B2 expression was changed in flowers of transgenic plants. The biosynthesis of caffeic acid derivatives, cichoric acid and caftaric acid, was increased in leaves and roots of CHS transformants, respectively, while the amount of echinacoside in roots of transgenic plants was decreased. This is the first report on genetic engineering of E. pallida. The information contained herein can be used as a tool for further study of the biological pathways and secondary metabolism of specific compounds from medicinal Echinacea species.  相似文献   

4.

Key message

Functional characterization and ectopic expression studies of chalcone synthase mutants implicate the role of phenylalanine in tailoring the substrate specificity of type III polyketide synthase.

Abstract

Chalcone synthase (CHS) is a plant-specific type III polyketide synthase that catalyzes the synthesis of flavonoids. Native CHS enzyme does not possess any functional activity on N-methylanthraniloyl-CoA, which is the substrate for acridione/quinolone alkaloid biosynthesis. Here, we report the functional transformation of chalcone synthase protein from Emblica officinalis (EoCHS) to quinolone and acridone synthase (ACS) with single amino acid substitutions. A cDNA of 1173 bp encoding chalcone synthase was isolated from E. officinalis and mutants (F215S and F265V) were generated by site-directed mutagenesis. Molecular modeling studies of EoCHS did not show any active binding with N-methylanthraniloyl-CoA, but the mutants of EoCHS showed strong affinity to the same. As revealed by the modeling studies, functional analysis of CHS mutants showed that they could utilize p-coumaroyl-CoA as well as N-methylanthraniloyl-CoA as substrates and yield active products such as naringenin, 4-hydroxy 1-methyl 2(H) quinolone and 1,3-dihydroxy-n-methyl acridone. Exchange of a single amino acid in EoCHS (F215S and F265V) resulted in functionally active mutants that preferred N-methylanthraniloyl-CoA over p-coumaroyl-CoA. This can be attributed to the increase in the relative volume of active sites in mutants by mutation. Moreover, metabolomic and MS analyses of tobacco leaves transiently expressing mutant genes showed high levels of naringenin, acridones and quinolone derivatives compared to wild-type CHS. This is the first report demonstrating the functional activity of EoCHS mutants with N-methylanthraniloyl-CoA and these results indicate the role of phenylalanine in altering the substrate specificity and in the evolution of type III PKSs.
  相似文献   

5.
6.
7.
The dek18 mutant of maize was previously classified as a collapsed kernel mutant named cp*-931A, which has a decreased auxin content in kernels. Molecular and functional characterization of this mutant line offers the possibility to better understand auxin biology during maize seed development. Seeds of the dek18 mutants are smaller compared to wild-type seeds and the vegetative development of dek18 is delayed. Here we analyzed the expression of several auxin-related genes in dek18 homozygous seeds and normal-sized seeds (Dek18/-) segregating on the same ear. Three genes related to auxin biosynthesis ZmAlliinase/Tar3, ZmTar1, and ZmYuc1 were highly downregulated in the mutant compared to the wild type. Sequence analysis of these genes revealed that no nucleotide difference is present in dek18 homozygous seeds compared to Dek18/-, except for ZmYuc1. Two different ZmYuc1 cDNAs sequences are produced: a normal-sized sequence of 1197 bp and a shorter coding sequence lacking the third exon. Ectopic expression of ZmYuc1 cDNAs in Arabidopsis indicates that (i) the ZmYuc1 gene is functional in Arabidopsis and (ii) the third exon is required for the enzymatic activity of the YUCCA1 protein. Because ZmYuc1, ZmTar1, and ZmAlliinase are barely expressed in dek18 homozygous seeds, it is proposed that the mutation responsible for the dek18 phenotype alters the upstream regulation of the auxin biosynthetic pathway.  相似文献   

8.
9.
10.
?12 fatty acid desaturase (FAD2) is a key enzyme for linoleic acid and linolenic acid biosynthesis. Perilla frutescens is a special oil plant species with highest linolenic acid content. In this study, based on RACE, two alleles for one FAD2 gene were isolated from P. frutescens cultivar C2: the 3956 bp PfFAD2a and the 3959 bp PfFAD2b, both with a full-length cDNA of 1526 bp, and both encoding a 382aa basic protein. The alleles have identities of over 98%, and their encoded proteins differ only by substitution of a strongly similar residue. Saccharomyces cerevisiae heterologous expression suggested that PfFAD2a/b both encode a bio-functional FAD2 enzyme. Phylogenetic analyses indicated that PfFAD2 shows the highest homologies to FAD2 genes from dicots such as Boraginaceae and Burseraceae. PfFAD2a/b expressions are mainly restricted to developing seeds. PfFAD2a/b expression in the seedling leaf is upregulated by cold (4 °C) and repressed by heat (42 °C). Each of the eight cultivars contains two alleles for one PfFAD2 and 40 SNP sites are found. One allelic gene in cultivars C1 and P1 is pseudogene because of premature stop codon mutation in 5′ coding region. All other normal PfFAD2 genes/allelic genes encode identical or very similar proteins. PfFAD2a/b expression level in developing seeds also varies among the eight cultivars. This study provides systemic molecular and functional features of PfFAD2 and enables its application in the study of plant fatty acids traits.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
The B race of a green microalga Botryococcus braunii Kützing produces triterpene hydrocarbons that is a promising source for biofuel. In this algal race, precursors of triterpene hydrocarbons are provided from the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. The terminal enzyme of this pathway, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is regarded as one of the key enzymes that affect yields of products in terpene biosynthesis. In order to better understand the MEP pathway of the alga, cDNA and genomic clones of HDR were obtained from B. braunii Showa strain. B. braunii HDR (BbHDR) is encoded on a single copy gene including a 1509-bp open reading frame that was intervened by 6 introns. The exon–intron structure of BbHDR genes did not show clear relation to phylogeny, while its amino acid sequence reflected phyla and classes well. BbHDR sequence was distinctive from that of the HDR protein from Escherichia coli in the residues involved in hydrogen-bond network that surrounds substrate. Introduction of BbHDR cDNA into an E. coli HDR deficient mutant resulted in recovery of its auxotrophy. BbHDR expression level was upregulated from the onset of liquid culture to the 24th day after inoculation with a 2.5-fold increase and retained its level in the subsequent period.  相似文献   

20.
Uridine diphosphate glucose dehydrogenase (UGDH) plays an important role in biosynthesis of hemicellulose by catalyzing oxidation of UDP-glucose (UDP-Glc) to UDP-glucuronate (UDP-GlcA), a key sugar nucleotide involved in biosynthesis of the plant cell wall. In this study, a UGDH ortholog referred to as LgUGDH was isolated from Larix gmelinii using PCR and rapid amplification of cDNA ends techniques. Real-time PCR shows that the LgUGDH gene was expressed primarily in larch stems in addition to its roots and leaves, and Southern blot analysis indicates that UGDH is encoded by two paralogous genes in L. gmelinii. Overexpression of LgUGDH increased the content of soluble sugars and hemicelluloses and enhanced vegetative growth and cold tolerance in transgenic Arabidopsis thaliana. These results reveal that L. gmelinii UGDH participates in sucrose/polysaccharide metabolism and cell wall biosynthesis and may be a good candidate gene for enhancing plant growth, cold tolerance, and hemicellulose content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号