首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li Y  O'Neill C 《PloS one》2012,7(1):e30687
Normal development of the mammalian embryo requires epigenetic reprogramming of the genome. The level of cytosine methylation of CpG-rich (5meC) regions of the genome is a major epigenetic regulator and active global demethylation of 5meC throughout the genome is reported to occur within the first cell-cycle following fertilization. An enzyme or mechanism capable of catalysing such rapid global demethylation has not been identified. The mouse is a widely used model for studying developmental epigenetics. We have reassessed the evidence for this phenomenon of genome-wide demethylation following fertilisation in the mouse. We found when using conventional methods of immunolocalization that 5meC showed a progressive acid-resistant antigenic masking during zygotic maturation which gave the appearance of demethylation. Changing the unmasking strategy by also performing tryptic digestion revealed a persistence of a methylated state. Analysis of methyl binding domain 1 protein (MBD1) binding confirmed that the genome remained methylated following fertilisation. The maintenance of this methylated state over the first several cell-cycles required the actions of DNA methyltransferase activity. The study shows that any 5meC remodelling that occurs during early development is not explained by a global active loss of 5meC staining during the cleavage stage of development and global loss of methylation following fertilization is not a major component of epigenetic reprogramming in the mouse zygote.  相似文献   

2.
The methylation of CpG dinucleotides is a pervasive epigenetic signature with critical roles governing genomic stability and lineage-specific patterns of gene expression. Reprogramming the patterns of CpG methylation accompanies key developmental transitions and the onset of some pathologies, such as cancer. In this study we show that levels of immuno-detectable 5meC decreased as mouse embryonic fibroblasts withdraw from the cell-cycle (became mitotically quiescent), but increased as they aged in culture. Two pools of 5meC epitope were found to exist, one solvent exposed after acid-induced denaturation of chromatin and another that required the additional step of tryptic digestion for detection. Proliferative cells displayed a relatively greater accumulation of detectable 5meC within the trypsin-sensitive pool than did quiescent cells. A substantial proportion of the 5meC was associated with a large number of heterochromatic foci scattered throughout nuclei, yet much of this was masked in a trypsin-sensitive manner, particularly in young proliferative cells. This study showed that the growth status of cells changed the level of solvent exposure of 5meC in fibroblasts and the long-accepted conventional methods of immunolocalization underestimate the level of 5meC in cells. This resulted in an artefactual assessment of the levels and patterns of nuclear localization of the antigen. The use of an additional tryptic digestion step improved antigen retrieval and revealed a more dynamic response of 5meC levels and distribution patterns to changes in the cell''s growth state. This discovery will provide a basis for investigating the role of changes in chromatin structure that underlie this dynamism.  相似文献   

3.
DNA methylation is an important epigenetic modification involved in the ability of an organism to respond to stress and adaptation. It has been implicated in development, differentiation, oncogenesis, chromatin remodelling, nutrigenomics, and appears to play a pivotal role in many regulatory and adaptive functions. It is therefore important to analyze the status of DNA methylation and its changes under various developmental, carcinogenic, pharmacological, and environmental conditions. In this report we describe an immunochemical method for the detection of genome wide DNA methylation and its alterations under various conditions along with the analysis of DNA methyltransferase activity. The ability of this approach to detect and provide a map of methylomic changes in a genome facilitates assessment of various agents and conditions which can alter this important epigenetic signal. This experimental system permits rapid evaluation of potential target genes which would be modulated by DNA methylation changes and thus the gene networks that govern the processes.  相似文献   

4.
Site-specific methylation of cytosines is a key epigenetic mark of vertebrate DNA. While a majority of the methylated residues are in the symmetrical (meC)pG:Gp(meC) configuration, a smaller, but significant fraction is found in the CpA, CpT and CpC asymmetric (non-CpG) dinucleotides. CpG methylation is reproducibly maintained by the activity of the DNA methyltransferase 1 (Dnmt1) on the newly replicated hemimethylated substrates (meC)pG:GpC. On the other hand, establishment and hereditary maintenance of non-CpG methylation patterns have not been analyzed in detail. We previously reported the occurrence of site- and allele-specific methylation at both CpG and non-CpG sites. Here we characterize a hereditary complex of non-CpG methylation, with the transgenerational maintenance of three distinct profiles in a constant ratio, associated with extensive CpG methylation. These observations raised the question of the signal leading to the maintenance of the pattern of asymmetric methylation. The complete non-CpG pattern was reinstated at each generation in spite of the fact that the majority of the sperm genomes contained either none or only one methylated non-CpG site. This observation led us to the hypothesis that the stable CpG patterns might act as blueprints for the maintenance of non-CpG DNA methylation. As predicted, non-CpG DNA methylation profiles were abrogated in a mutant lacking Dnmt1, the enzymes responsible for CpG methylation, but not in mutants defective for either Dnmt3a or Dnmt2.  相似文献   

5.
6.
In Escherichia coli and human cells, many sites of cytosine methylation in DNA are hot spots for C to T mutations. It is generally believed that T.G mismatches created by the hydrolytic deamination of 5-methylcytosines (5meC) are intermediates in the mutagenic pathway. A number of hypotheses have been proposed regarding the source of the mispaired thymine and how the cells deal with the mispairs. We have constructed a genetic reversion assay that utilizes a gene on a mini-F to compare the frequency of occurrence of C to T mutations in different genetic backgrounds in exponentially growing E. coli. The results identify at least two causes for the hot spot at a 5meC: (1) the higher rate of deamination of 5meC compared to C generates more T.G than uracil.G (U.G) mismatches, and (2) inefficient repair of T.G mismatches by the very short-patch (VSP) repair system compared to the repair of U. G mismatches by the uracil-DNA glycosylase (Ung). This combination of increased DNA damage when the cytosines are methylated coupled with the relative inefficiency in the post-replicative repair of T.G mismatches can be quantitatively modeled to explain the occurrence of the hot spot at 5meC. This model has implications for mutational hot and cold spots in all organisms.  相似文献   

7.
DNA methylation is a chemical modification of DNA involved in the regulation of gene expression by controlling the access to the DNA sequence. It is the most stable epigenetic mark and is widely studied for its role in major biological processes. Aberrant DNA methylation is observed in various pathologies, such as cancer. Therefore, there is a great interest in analyzing subtle changes in DNA methylation induced by biological processes or upon drug treatments. Here, we developed an improved methodology based on flow cytometry to measure variations of DNA methylation level in melanoma and leukemia cells. The accuracy of DNA methylation quantification was validated with LC-ESI mass spectrometry analysis. The new protocol was used to detect small variations of cytosine methylation occurring in individual cells during their cell cycle and those induced by the demethylating agent 5-aza-2''-deoxycytidine (5AzadC). Kinetic experiments confirmed that inheritance of DNA methylation occurs efficiently in S phase and revealed a short delay between DNA replication and completion of cytosine methylation. In addition, this study suggests that the uncoupling of 5AzadC effects on DNA demethylation and cell proliferation might be related to the duration of the DNA replication phase.  相似文献   

8.
Disturbances of epigenetic information that result in changes in DNA methylation patterns are involved in carcinogenesis and other human disorders. Detection of agents that can cause epigenetic alterations--i.e. epimutagens--is therefore an important objective. We have developed and now describe the first detection system for demethylating agents that involves an endogenous promoter CpG island (CGI). After screening 10 promoter CGIs of genes silenced in human cancers, a CGI of the FLJ32130 gene was found to respond sensitively to a known demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC), by abundantly re-expressing its mRNA. After introducing the Hyg(r)-EGFP fusion gene into exon 3 of the FLJ32130 gene by homologous recombination, we isolated one clone that had the expected recombination outcomes and designated it F117. Two subclones (F117-47 and F117-123) of this original clone that did not share its propensity for leaky expression of the Hyg(r)-EGFP mRNA were then isolated, and methylation of their 5' CGI was confirmed. The addition of 5-aza-dC at doses of 0.1 microM or higher led to their 5' CGI being demethylated, and to Hyg(r)-EGFP being expressed; the anticipated fluorescence was readily confirmed by fluorescence microscopy. We believe that this is the first assay system that detects agents that disturb the methylated status of a CGI that regulates an endogenous promoter.  相似文献   

9.
DNA methylation is an epigenetic modification involved in regulatory processes such as cell differentiation during development, X-chromosome inactivation, genomic imprinting and susceptibility to complex disease. However, the dynamics of DNA methylation changes between humans and their closest relatives are still poorly understood. We performed a comparative analysis of CpG methylation patterns between 9 humans and 23 primate samples including all species of great apes (chimpanzee, bonobo, gorilla and orangutan) using Illumina Methylation450 bead arrays. Our analysis identified ∼800 genes with significantly altered methylation patterns among the great apes, including ∼170 genes with a methylation pattern unique to human. Some of these are known to be involved in developmental and neurological features, suggesting that epigenetic changes have been frequent during recent human and primate evolution. We identified a significant positive relationship between the rate of coding variation and alterations of methylation at the promoter level, indicative of co-occurrence between evolution of protein sequence and gene regulation. In contrast, and supporting the idea that many phenotypic differences between humans and great apes are not due to amino acid differences, our analysis also identified 184 genes that are perfectly conserved at protein level between human and chimpanzee, yet show significant epigenetic differences between these two species. We conclude that epigenetic alterations are an important force during primate evolution and have been under-explored in evolutionary comparative genomics.  相似文献   

10.
Organisms often respond to environmental changes by producing alternative phenotypes. Epigenetic processes such as DNA methylation may contribute to environmentally induced phenotypic variation by modifying gene expression. Changes in DNA methylation, unlike DNA mutations, can be influenced by the environment; they are stable at the time scale of an individual and present different levels of heritability. These characteristics make DNA methylation a potentially important molecular process to respond to environmental change. The aim of this review is to present the implications of DNA methylation on phenotypic variations driven by environmental changes. More specifically, we explore epigenetic concepts concerning phenotypic change in response to the environment and heritability of DNA methylation, namely the Baldwin effect and genetic accommodation. Before addressing this point, we report major differences in DNA methylation across taxa and the role of this modification in producing and maintaining environmentally induced phenotypic variation. We also present the different methods allowing the detection of methylation polymorphism. We believe this review will be helpful to molecular ecologists, in that it highlights the importance of epigenetic processes in ecological and evolutionary studies.  相似文献   

11.
Post-translational modifications of histone proteins have a crucial role in regulating gene expression. If efficiently re-established after chromosome duplication, histone modifications could help propagate gene expression patterns in dividing cells by epigenetic mechanisms. We used an integrated approach to investigate the dynamics of the conserved methylation of histone H3 Lys 79 (H3K79) by Dot1. Our results show that methylation of H3K79 progressively changes after histone deposition, which is incompatible with a rapid copy mechanism. Instead, methylation accumulates on ageing histones, providing the cell with a timer mechanism to directly couple cell-cycle length to changes in chromatin modification on the nucleosome core.  相似文献   

12.
胞嘧啶甲基化是DNA表观遗传修饰的主要类型之一,在维持正常细胞功能和调控基因表达中具有重要作用。重亚硫酸盐测序法(bisulfite sequencing PCR,BSP)是特异性位点DNA甲基化检测的通用方法,能明确目的片段中每一个CpG位点的甲基化状态,但此方法需要大量的单克隆测序,操作过程较繁琐、成本昂贵。因此,开发准确、高效、便捷的DNA甲基化检测技术对提升表观遗传研究效率具有重要意义。基于本课题组开发的高通量突变类型检测平台Hi-TOM (high-throughput tracking of mutations),我们进一步建立了特定位点DNA甲基化高通量检测平台Hi-Meth (high-throughput detection of DNA methylation)。DNA样品通过重亚硫酸盐处理之后,仅需一轮PCR扩增即可通过Hi-Meth平台获得特定位点DNA甲基化分析结果。利用Hi-Meth平台,对水稻不同基因启动子区域进行了DNA甲基化检测分析,并与基于BSP方法获得的结果进行了比较。结果表明,Hi-Meth策略与BSP策略检测结果基本一致。而且通过Hi-Meth平台可以更准确、便捷地获得特异性位点DNA甲基化分析结果。综上所述,Hi-Meth为特定DNA区域提供了重要的甲基化检测平台,对表观遗传研究具有重要意义。  相似文献   

13.
14.
The process of aging results in a host of changes at the cellular and molecular levels, which include senescence, telomere shortening, and changes in gene expression. Epigenetic patterns also change over the lifespan, suggesting that epigenetic changes may constitute an important component of the aging process. The epigenetic mark that has been most highly studied is DNA methylation, the presence of methyl groups at CpG dinucleotides. These dinucleotides are often located near gene promoters and associate with gene expression levels. Early studies indicated that global levels of DNA methylation increase over the first few years of life and then decrease beginning in late adulthood. Recently, with the advent of microarray and next‐generation sequencing technologies, increases in variability of DNA methylation with age have been observed, and a number of site‐specific patterns have been identified. It has also been shown that certain CpG sites are highly associated with age, to the extent that prediction models using a small number of these sites can accurately predict the chronological age of the donor. Together, these observations point to the existence of two phenomena that both contribute to age‐related DNA methylation changes: epigenetic drift and the epigenetic clock. In this review, we focus on healthy human aging throughout the lifetime and discuss the dynamics of DNA methylation as well as how interactions between the genome, environment, and the epigenome influence aging rates. We also discuss the impact of determining ‘epigenetic age’ for human health and outline some important caveats to existing and future studies.  相似文献   

15.
16.
17.
Epigenetic misregulation is consistent with various non-Mendelian features of schizophrenia and bipolar disorder. To date, however, few studies have investigated the role of DNA methylation in major psychosis, and none have taken a genome-wide epigenomic approach. In this study we used CpG-island microarrays to identify DNA-methylation changes in the frontal cortex and germline associated with schizophrenia and bipolar disorder. In the frontal cortex we find evidence for psychosis-associated DNA-methylation differences in numerous loci, including several involved in glutamatergic and GABAergic neurotransmission, brain development, and other processes functionally linked to disease etiology. DNA-methylation changes in a significant proportion of these loci correspond to reported changes of steady-state mRNA level associated with psychosis. Gene-ontology analysis highlighted epigenetic disruption to loci involved in mitochondrial function, brain development, and stress response. Methylome network analysis uncovered decreased epigenetic modularity in both the brain and the germline of affected individuals, suggesting that systemic epigenetic dysfunction may be associated with major psychosis. We also report evidence for a strong correlation between DNA methylation in the MEK1 gene promoter region and lifetime antipsychotic use in schizophrenia patients. Finally, we observe that frontal-cortex DNA methylation in the BDNF gene is correlated with genotype at a nearby nonsynonymous SNP that has been previously associated with major psychosis. Our data are consistent with the epigenetic theory of major psychosis and suggest that DNA-methylation changes are important to the etiology of schizophrenia and bipolar disorder.  相似文献   

18.
《Genomics》2021,113(3):1098-1113
Epigenetic inheritance occurs due to different mechanisms such as chromatin and histone modifications, DNA methylation and processes mediated by non-coding RNAs. It leads to changes in gene expressions and the emergence of new traits in different organisms in many diseases such as cancer. Recent advances in experimental methods led to the identification of epigenetic target sites in various organisms. Computational approaches have enabled us to analyze mass data produced by these methods. Next-generation sequencing (NGS) methods have been broadly used to identify these target sites and their patterns. By using these patterns, the emergence of diseases could be prognosticated. In this study, target site prediction tools for two major epigenetic mechanisms comprising histone modification and DNA methylation are reviewed. Publicly accessible databases are reviewed as well. Some suggestions regarding the state-of-the-art methods and databases have been made, including examining patterns of epigenetic changes that are important in epigenotypes detection.  相似文献   

19.
Analysis of target sequences of DDM1s in Brassica rapa by MSAP   总被引:1,自引:0,他引:1  
DNA methylation is an important epigenetic modification regulating gene expression and transposon silencing. Although epigenetic regulation is involved in some agricultural traits, there has been relatively little research on epigenetic modifications of genes in Brassica rapa, which includes many important vegetables. In B. rapa, orthologs of DDM1, a chromatin remodeling factor required for maintenance of DNA methylation, have been characterized and DNA hypomethylated knock-down plants by RNAi (ddm1-RNAi plants) have been generated. In this study, we investigated differences of DNA methylation status at the genome-wide level between a wild-type (WT) plant and a ddm1-RNAi plant by methylation-sensitive amplification polymorphism (MSAP) analysis. MSAP analysis detected changes of DNA methylation of many repetitive sequences in the ddm1-RNAi plant. Search for body methylated regions in the WT plant revealed no difference in gene body methylation levels between the WT plant and the ddm1-RNAi plant. These results indicate that repetitive sequences are preferentially methylated by DDM1 genes in B. rapa.  相似文献   

20.
Decades of investigation on DNA methylation have led to deeper insights into its metabolic mechanisms and biological functions.This understanding was fueled by the recent development of genome editing tools and our improved capacity for analyzing the global DNA methylome in mammalian cells.This review focuses on the maintenance of DNA methylation patterns during mitotic cell division.We discuss the latest discoveries of the mechanisms for the inheritance of DNA methylation as a stable epigenetic memory.We also highlight recent evidence showing the rapid turnover of DNA methylation as a dynamic gene regulatory mechanism.A body of work has shown that altered DNA methylomes are common features in aging and disease.We discuss the potential links between methylation maintenance mechanisms and diseaseassociated methylation changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号