首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ischemia are common conditions related to lack of blood supply to tissues. Depending on the ischemic sites, ischemia can cause different diseases, such as hindlimb ischemia, heart infarction and stroke. This study aims to evaluate how extracellular vesicles (EVs) derived from ETV2 transfected fibroblasts affect endothelial cell proliferation and neovascularization in a murine model of hindlimb ischemia. Human fibroblasts were isolated and cultured under standard conditions and expanded to the 3th passage before use in experiments. Human fibroblasts were transduced with a viral vector containing the ETV2 gene. Transduced cells were selected by puromycin treatment. These cells were further cultured for collection of EVs, which were isolated from culture supernatant. Following co-culture with endothelial cells, EVs were evaluated for their effect on endothelial cell proliferation and were directly injected into ischemic tissues of a murine model of hindlimb ischemia. The results showed that EVs could induce endothelial cell proliferation in vitro and improved neovascularization in a murine model of hindlimb ischemia. Our results suggest that EVs derived from ETV2-transfected fibroblasts can be promising non-cellular products for the regeneration of blood vessels.  相似文献   

2.
Hypoxia inducible factor-1 alpha (HIF-1 alpha) is a key determinant of oxygen-dependent gene regulation in angiogenesis. HIF-1 alpha overexpression may be beneficial in cell therapy of hypoxia-induced pathophysiological processes, such as ischemic heart disease. To address this issue, human peripheral blood mononuclear cells (PBMNCs) were induced to differentiate into endothelial progenitor cells (EPCs), and then were transfected with either an HIF-1 alpha-expressing or a control vector and cultured under normoxia or hypoxia. Hypoxia-induced HIF-1 alpha mRNA and protein expression was increased after HIF-1 alpha transfection. This was accompanied by VEGF mRNA induction and increased VEGF secretion. Hypoxia-stimulated VEGF mRNA induction was significantly abrogated by HIF-1 alpha-specific siRNA. Functional studies showed that HIF-1 alpha overexpression further promoted hypoxia-induced EPC differentiation, proliferation and migration. The expressions of endothelial cell markers CD31, VEGFR2 (Flk-1) and eNOS as well as VEGF and NO secretions were also increased. Furthermore, in an in vivo model of hindlimb ischemia, HIF-1 alpha-transfected EPCs homed to the site of ischemia. A higher revascularization potential was also demonstrated by increased capillary density at the injury site. Our results revealed that endothelial progenitor cells ex vivo modification by hypoxia inducible factor-1 alpha gene transfection is feasible and may offer significant advantages in terms of EPC expansion and treatment efficacy.  相似文献   

3.
LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during tissue ischemia. Therefore, we examined the role of LOX-1 in ischemia-induced angiogenesis in the hindlimbs of LOX-1 knockout (KO) mice. Angiogenesis was evaluated in a surgically induced hindlimb ischemia model using laser Doppler blood flowmetry (LDBF) and histological capillary density (CD) and arteriole density (AD). After right hindlimb ischemia, the ischemic/nonischemic hindlimb blood flow ratio was persistently lower in LOX-1 KO mice than in wild-type (WT) mice. CD and AD were significantly smaller in LOX-1 KO mice than in WT mice on postoperative day 14. Immunohistochemical analysis revealed that the number of macrophages infiltrating ischemic tissues was significantly smaller in LOX-1 KO mice than in WT mice. The number of infiltrated macrophages expressing VEGF was also significantly smaller in LOX-1 KO mice than in WT mice. Western blot analysis and ROS production assay revealed that LOX- KO mice show significant decrease in Nox2 expression, ROS production and HIF-1α expression, the phosphorylation of p38 MAPK and NF-κB p65 subunit as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and LOX-1 itself in ischemic muscles, which is supposed to be required for macrophage infiltration expressing angiogenic factor VEGF. Reduction of VEGF expression successively suppressed the phosphorylation of Akt and eNOS, which accelerated angiogenesis, in the ischemic leg of LOX-1 KO mice. Our findings indicate that LOX-1 plays an important role in ischemia-induced angiogenesis by 1) Nox2-ROS-NF-κB activation, 2) upregulated expression of adhesion molecules: VCAM-1 and LOX-1 and 3) promoting macrophage infiltration, which expresses angiogenic factor VEGF.  相似文献   

4.
Mesenchymal stem cell‐based therapy has emerged as a promising approach for the treatment of peripheral arterial disease. The purpose of this study was to examine the potential effects of human placenta‐derived mesenchymal stem cells (PMSCs) on mouse hindlimb ischemia. PMSCs were isolated from human placenta tissue and characterized by flow cytometry. An in vivo surgical ligation‐induced murine limb ischemia model was generated with fluorescent dye (CM‐DiI) labelled PMSCs delivered via intramuscular injection. Our data show that PMSCs treatment significantly enhanced microvessel density, improved blood perfusion and diminished pathologies in ischemic mouse hindlimbs as compared to those in the control group. Further immunostaining studies suggested that injected PMSCs can incorporate into the vasculature and differentiate into endothelial and smooth muscle cells to enhance angiogenesis in ischemic hind limbs. This may in part explain the beneficial effects of PMSCs treatment. Taken together, we found that PMSCs treatment might be an effective treatment modality for treatment of ischemia‐induced injury to mouse hind limbs by enhancement of angiogenesis.  相似文献   

5.
Vitamin k epoxide reductase: a protein involved in angiogenesis   总被引:1,自引:0,他引:1  
Vitamin K epoxide reductase (VKOR) is a newly identified protein which has been reported to convert the epoxide of vitamin K back to vitamin K, a cofactor essential for the posttranslational gamma-carboxylation of several blood coagulation factors. We found that the gene is expressed ubiquitously including vascular endothelial cells, smooth muscle cells, fibroblasts and cardiomyocytes, and is overexpressed in 11 tumor tissues on microarray. Stable transfection of VKOR cDNA into tumor cell line A549 and H7402 did not promote the cell proliferation. These results promoted us to hypothesize that VKOR may also be involved in angiogenesis. To test this hypothesis, the expression of VKOR was studied in different vascular cells in developmental and pathologic heart tissues. The effects of overexpression and suppressing expression of VKOR on endothelial cell proliferation, migration, adhesion, and tubular network formation were explored. We found that VKOR expression in arteries was prominent in vascular endothelial cells and was high in the ventricular aneurysm tissue of human heart and human fetal heart. In vitro studies showed that overexpression of VKOR slightly but significantly stimulated human umbilical vein endothelial cell proliferation (by 120%), migration (by 118%), adhesion (by 117%), as well as tubular network formation. Antisense to VKOR gene inhibited the proliferation (by 67%), migration (by 64%), adhesion (by 50%), and tubular network formation. Our findings support the impact of VKOR in the process of angiogenesis; hence, the molecule may have a potential application in cardiovascular disease and cancer therapy.  相似文献   

6.
The aim of this present study is to investigate the impacts of combinatorial simvastatin administration and endothelial progenitor cell (EPC) transplantation on therapeutic angiogenesis in an athymic nude mouse model of hind limb ischemia. Athymic nude mice were divided into four groups (n = 10/group): vehicle administration plus PBS injection (control), simvastatin administration plus PBS injection (simvastatin), vehicle administration plus EPC transplantation (EPC), and simvastatin administration plus EPC transplantation (combination). The combination therapy had the greatest laser Doppler blood perfusion imager (LDPI) index and capillary density among the four groups. Importantly, this combination therapy significantly reduced apoptosis of ischemic skeletal muscle cells in part through downregulation of Bax and upregulation of Bcl-2 compared with the other groups. Moreover, the combination therapy exhibited the highest efficacy of increasing the ratio of phospho-Akt to Akt among the four groups. Taken together, the simvastatin and EPC combination therapy promotes powerful angiogenesis in hindlimb ischemia. The combination therapy not only inhibites apoptosis of ischemic skeletal muscle cells partially via downregulation of Bax and upregulation of Bcl-2, but also activates Akt phosphorylation significantly. These efficacies may be mediated by the angiogenic potency of simvastatin, EPCs, and by the beneficial effects of simvastatin on transplanted EPCs as well.  相似文献   

7.
The effects and potential mechanisms of the vascular endothelial cell (EC)-enriched microRNA-15a (miR-15a) on angiogenesis remain unclear. Here, we show a novel finding that EC-selective miR-15a transgenic overexpression leads to reduced blood vessel formation and local blood flow perfusion in mouse hindlimbs at 1-3 weeks after hindlimb ischemia. Mechanistically, gain- or loss-of-miR-15a function by lentiviral infection in ECs significantly reduces or increases tube formation, cell migration, and cell differentiation, respectively. By FGF2 and VEGF 3'-UTR luciferase reporter assays, Real-time PCR, and immunoassays, we further identified that the miR-15a directly targets FGF2 and VEGF to facilitate its anti-angiogenic effects. Our data suggest that the miR-15a in ECs can significantly suppress cell-autonomous angiogenesis through direct inhibition of endogenous endothelial FGF2 and VEGF activities. Pharmacological modulation of miR-15a function may provide a new therapeutic strategy to intervene against angiogenesis in a variety of pathological conditions.  相似文献   

8.
Angiogenesis is positively correlated with the survival rate of stroke patients. Therefore, studying factors that initiate and promote angiogenesis after ischemic stroke is crucial for finding novel and effective treatment targets that improve the prognosis of stroke. X-box binding protein l splicing (XBP1s) plays a positive regulatory role in cell proliferation and angiogenesis. However, the role and mechanism of XBP1s on the proliferation of brain microvascular endothelial cells (BMECs) and angiogenesis after cerebral ischemia remains unclear. In the current study, we investigated the role XBP1s plays in BMEC proliferation and angiogenesis following cerebral ischemia. In this study, the roles of XBP1s on cell survival, apoptosis, cycle migration, and angiogenesis were determined in oxygen-glucose deprivation (OGD) treated BMECs. The expression of XBP1s in BMECs, which were exposed to OGD at 0, 2, 4, and 6 hr, increased in a time-dependent manner. The overexpression of XBP1s promoted cell survival, cell cycle, migration, and angiogenesis of BMECs, and inhibited the apoptosis in OGD-treated BMECs. In addition, the overexpression of XBP1s promoted the expression of cyclin D1, matrix metalloproteinase (MMP-2), and MMP-9, but inhibited cleaved Caspase-3 and cleaved Caspase-9 expression in OGD-treated BMECs. The overexpression of XBP1s also promoted the expression of hypoxia-inducible factor 1-alpha, vascular endothelial growth factor, phosphatidylinositol-4,5-bisphosphate 3-kinase, p-AKT, p-mTOR, p-GSK3β, and p-extracellular signal-regulated kinase1/2 in OGD-treated BMECs. The effect of XBP1s silencing was opposite to that of XBP1s overexpression. In conclusion, using an in vitro OGD model, we demonstrated that XBP1s may be a promising target for ischemic stroke therapy to maintain BMECs survival and induce angiogenesis.  相似文献   

9.
It is known that the neural system plays a fundamental role in neovascularization. A neuropeptide, calcitonin gene-related peptide (CGRP), is widely distributed in the central and peripheral neuronal systems. However, it remains to be elucidated the role of CGRP in angiogenesis during ischemia. The present study examined whether endogenous CGRP released from neuronal systems facilitates revascularization in response to ischemia using CGRP knockout mice (CGRP-/-). CGRP-/- or their wild-type littermates (CGRP+/+) were subjected to unilateral hindlimb ischemia. CGRP-/- exhibited impaired blood flow recovery from ischemia and decreased capillary density expressed in terms of the number of CD-31-positive cells in the ischemic tissues compared with CGRP+/+. In vivo microscopic studies showed that the functional capillary density in CGRP-/- was reduced. Hindlimb ischemia increased the expression of pro-CGRP mRNA and of CGRP protein in the lumbar dorsal root ganglia. Lack of CGRP decreased mRNA expression of growth factors, including CD31, vascular endothelial growth factor-A, basic fibroblast growth factor, and transforming growth factor-β, in the ischemic limb tissue. The application of CGRP enhanced the mRNA expression of CD31 and VEGF-A in human umbilical vein endothelial cells (HUVECs) and fibroblasts. Subcutaneous infusion of CGRP8-37, a CGRP antagonist, using miniosmotic pumps delayed angiogenesis and reduced the expression of proangiogenic growth factors during hindlimb ischemia. These results indicate that endogenous CGRP facilitates angiogenesis in response to ischemia. Targeting CGRP may provide a promising approach for controlling angiogenesis related to pathophysiological conditions.  相似文献   

10.
Several studies of stem cell-based gene therapy have indicated that long-lasting regeneration following vessel ischemia may be stimulated through VEGFA gene therapy and/or MSC transplantation for reduction of ischemic injury in limb ischemia and heart failure. The therapeutic potential of MSC transplantation can be further improved by genetically modifying MSCs with genes which enhance angiogenesis following ischemic injury. In the present study, we aimed to develop an approach in MSC-based therapy for repair and mitigation of ischemic injury and regeneration of damaged tissues in ischemic disease. HSP70 promoter-driven VEGFA expression was induced by resveratrol (RSV) in MSCs, and in combination with known RSV biological functions, the protective effects of our approach were investigated by using ex vivo aortic ring coculture system and a 3D scaffolds in vivo model. Results of this investigation demonstrated that HSP promoter-driven VEGFA expression in MSC increased approximately 2-fold over the background VEGFA levels upon HSP70 promoter induction by RSV. Exposure of HUVEC cells to medium containing MSC in which VEGFA had been induced by cis-RSV enhanced tube formation in the treated HUVEC cells. RSV-treated MSC cells differentiated into endothelial-like phenotypes, exhibiting markedly elevated expression of endothelial cell markers. These MSCs also induced aortic ring sprouting, characteristic of neovascular formation from pre-existing vessels, and additionally promoted neovascularization at the MSC transplantation site in a mouse model. These observations support a hypothesis that VEGFA expression induced by cis-RSV acting on the HSP70 promoter in transplanted MSC augments the angiogenic effects of stem cell gene therapy. The use of an inducible system also vastly reduces possible clinical risks associated with constitutive VEGFA expression.  相似文献   

11.
12.
BACKGROUND: Acidic fibroblast growth factor (FGF-1) has been identified as a potent mitogen for vascular cells, inducing formation of mature blood vessels in vitro and in vivo and represents one of the most promising approaches for the treatment of ischemic cardiovascular diseases by gene therapy. Nevertheless, and most probably due to the few experimental models able to address the issue, no study has described the therapeutic effects of FGF-1 gene transfer in subjects with peripheral arterial disease (PAD) exhibiting a clinically relevant cardiovascular pathology. METHODS: In order to assess the potency of FGF-1 gene transfer for therapeutic angiogenesis in ischemic skeletal muscles displaying decreased gene expression levels and sustained impaired formation of collateral vessels and arterioles, we developed a model of PAD in hamsters with a background of hypercholesterolemia. Hamsters fed a cholesterol-rich diet and subjected to hindlimb ischemia exhibit a sustained impaired angiogenic response, as evidenced by decreased angiographic score and histological quantification of arterioles in the ischemic muscles. RESULTS: In this model, we demonstrate that NV1FGF (a human FGF-1 expression plasmid), given intramuscularly 14 days after induction of hindlimb ischemia, promoted the formation of both collateral vessels and arterioles 14 days after treatment (i.e. 28 days post-ischemia). CONCLUSIONS: Our data provide evidence that NV1FGF can reverse the cholesterol-induced impairment of revascularization in a hamster model of hindlimb ischemia by promoting the growth of both collateral vessels and arterioles in ischemic muscles exhibiting significantly decreased levels of gene expression compared with control muscles. Therefore, this study underscores the relevance of NV1FGF gene therapy to overcome perfusion defects in patients with PAD.  相似文献   

13.
Recent reports have demonstrated that erythroid progenitor cells contain and secrete various angiogenic cytokines. Here, the impact of erythroid colony-forming cell (ECFC) implantation on therapeutic angiogenesis was investigated in murine models of hindlimb ischemia. During the in vitro differentiation, vascular endothelial growth factor (VEGF) secretion by ECFCs was observed from day 3 (burst-forming unit erythroid cells) to day 10 (erythroblasts). ECFCs from day 5 to day 7 (colony-forming unit erythroid cells) showed the highest VEGF productivity, and day 6 ECFCs were used for the experiments. ECFCs contained larger amounts of VEGF and fibroblast growth factor-2 (FGF-2) than peripheral blood mononuclear cells (PBMNCs). In tubule formation assays with human umbilical vein endothelial cells, ECFCs stimulated 1.5-fold more capillary growth than PBMNCs, and this effect was suppressed by antibodies against VEGF and FGF-2. Using an immunodeficient hindlimb ischemia model and laser-Doppler imaging, we evaluated the limb salvage rate and blood perfusion after intramuscular implantation of ECFCs. ECFC implantation increased both the salvage rate (38% vs. 0%, P < 0.05) and the blood perfusion (82.8% vs. 65.6%, P < 0.01). In addition, ECFCs implantation also significantly increased capillaries with recruitment of vascular smooth muscle cells and the capillary density was 1.6-fold higher than in the control group. Continuous production of human VEGF from ECFCs in the skeletal muscle was confirmed at least 7 days after the implantation. Implantation of ECFCs promoted angiogenesis in ischemic limbs by supplying angiogenic cytokines (VEGF and FGF-2), suggesting a possible novel strategy for therapeutic angiogenesis.  相似文献   

14.
Stem cell‐conditioned medium (CM), which contains angiogenic factors that are secreted by stem cells, represents a potential therapy for ischemic diseases. Along with stem cells, tumor cells also secrete various angiogenic factors. Here, tumor cells as a cell source of CM for therapeutic angiogenesis was evaluated and the therapeutic efficacy of tumor cell CM in mouse hindlimb ischemia models was demonstrated. CM obtained from a human fibrosarcoma HT1080 cell line culture was compared with CM obtained from a human bone marrow‐derived mesenchymal stem cell (MSC) culture. HT1080 CM contained higher concentrations of angiogenic factors compared with MSC CM, which was attributable to the higher cell density that resulted from a much faster growth rate of HT1080 cells compared with MSCs. For use in in vitro and in vivo angiogenesis studies, HT1080 CM was diluted such that HT1080 CM and MSC CM would have the same cell number basis. The two types of CMs induced the same extent of human umbilical vein endothelial cell (HUVEC) proliferation in vitro. The injection of HT1080 CM into mouse ischemic limbs significantly improved capillary density and blood perfusion compared with the injection of fresh medium. Although the therapeutic outcome of HT1080 CM was similar to that of MSC CM, the preparation of CM by tumor cell line culture would be much more efficient due to the faster growth and unlimited life‐time of the tumor cell line. These data suggest the potential application of tumor cell CM as a therapeutic modality for angiogenesis and ischemic diseases. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:456–464, 2016  相似文献   

15.
We examined the effect of reactive oxygen species (ROS) on MicroRNAs (miRNAs) expression in endothelial cells in vitro, and in mouse skeletal muscle following acute hindlimb ischemia. Human umbilical vein endothelial cells (HUVEC) were exposed to 200 μM hydrogen peroxide (H2O2) for 8 to 24 h; miRNAs profiling showed that miR-200c and the co-transcribed miR-141 increased more than eightfold. The other miR-200 gene family members were also induced, albeit to a lower level. Furthermore, miR-200c upregulation was not endothelium restricted, and occurred also on exposure to an oxidative stress-inducing drug: 1,3-bis(2 chloroethyl)-1nitrosourea (BCNU). miR-200c overexpression induced HUVEC growth arrest, apoptosis and senescence; these phenomena were also induced by H2O2 and were partially rescued by miR-200c inhibition. Moreover, miR-200c target ZEB1 messenger RNA and protein were downmodulated by H2O2 and by miR-200c overexpression. ZEB1 knockdown recapitulated miR-200c-induced responses, and expression of a ZEB1 allele non-targeted by miR-200c, prevented miR-200c phenotype. The mechanism of H2O2-mediated miR-200c upregulation involves p53 and retinoblastoma proteins. Acute hindlimb ischemia enhanced miR-200c in wild-type mice skeletal muscle, whereas in p66ShcA −/− mice, which display lower levels of oxidative stress after ischemia, upregulation of miR-200c was markedly inhibited. In conclusion, ROS induce miR-200c and other miR-200 family members; the ensuing downmodulation of ZEB1 has a key role in ROS-induced apoptosis and senescence.  相似文献   

16.
Endothelial progenitor cells (EPCs) play an important role in angiogenesis. However, they exist in limited numbers in the human body. This study was aimed to produce EPCs, for autologous transplantation, using direct reprogramming of skin fibroblasts under GMP-compliant conditions. Fibroblasts were collected and cultured from the skin in DMEM/F12 medium supplemented with 5% activated platelet-rich plasma and 1% antibiotic-antimycotic solution. They were then transfected with mRNA ETV2 and incubated in culture medium under hypoxia (5% oxygen) for 14 d. Phenotype analysis of transfected cells confirmed that single-factor ETV2 transfection successfully reprogrammed dermal fibroblasts into functional EPCs. Our results showed that ETV2 mRNA combined with hypoxia can give rise to functional EPCs. The cells exhibited functional phenotypes similar to endothelial cells derived from umbilical cord vein; they expressed CD31 and VEGFR2, and formed capillary-like structures in vitro. Moreover, these EPCs could significantly improve hindlimb ischemia in mouse models. Although the direct conversion efficacy was low (3.12 ± 0.98%), altogether our study demonstrates that functional EPCs can be produced from fibroblasts and can be used in clinical applications.  相似文献   

17.
Peripheral blood mononuclear cell (PBMNC) is one of powerful tools for therapeutic angiogenesis in hindlimb ischemia. However, traditional approaches with transplanted PBMNCs show poor therapeutic effects in severe ischemia patients. In this study, we used autograft models to determine whether hypoxic pretreatment effectively enhances the cellular functions of PBMNCs and improves hindlimb ischemia. Rabbit PBMNCs were cultured in the hypoxic condition. After pretreatment, cell adhesion, stress resistance, and expression of angiogenic factor were evaluated in vitro. To examine in vivo effects, we autografted preconditioned PBMNCs into a rabbit hindlimb ischemia model on postoperative day (POD) 7. Preconditioned PBMNCs displayed significantly enhanced functional capacities in resistance to oxidative stress, cell viability, and production of vascular endothelial growth factor. In addition, autologous transplantation of preconditioned PBMNCs significantly induced new vessels and improved limb blood flow. Importantly, preconditioned PBMNCs can accelerate vessel formation despite transplantation on POD 7, whereas untreated PBMNCs showed poor vascularization. Our study demonstrated that hypoxic preconditioning of PBMNCs is a feasible approach for increasing the retention of transplanted cells and enhancing therapeutic angiogenesis in ischemic tissue.  相似文献   

18.
19.
20.
Blood flow restoration to ischemic tissue is affected by various risk factors. The aim of this study was to examine gender effects on arteriogenesis and angiogenesis in a mouse ischemic hindlimb model. C57BL/6J mice were subjected to unilateral hindlimb ischemia. Flow recovery was less and hindlimb use impairment was greater in females. No gender difference in vessel number was found at baseline, although 7 days postsurgery females had fewer α-smooth muscle actin-positive vessels in the midpoint of the adductor region. Females had higher hindlimb vascular resistance, were less responsive to vasodilators, and were more sensitive to vasoconstrictors postligation. Western blotting showed that females had higher baseline levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) in the calf, while 7 days postligation males had higher levels of VEGF, eNOS, and phosphorylated vasodilator stimulated phosphoprotein. Females had less angiogenesis in a Matrigel plug assay and less endothelial cell proliferation in vitro. Females have impaired recovery of flow, a finding presumably caused by multiple factors including decreased collateral remodeling, less angiogenesis, impaired vasodilator response, and increased vasoconstrictor activity; our results also suggest the possibility that new collateral formation, from capillaries, is impaired in females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号