首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Researches have reported that reactive oxygen species (ROS)-induced oxidative stress plays an important role in cell cryodamage during cryopreservation. In the current study, pollen from Magnolia denudata and Paeonia lactiflora ‘Zi Feng Chao Yang’ was cryopreserved and incubated with exogenous catalase (CAT) and malate dehydrogenase (MDH) immediately after thawing. The effect of CAT and MDH on the germination of cryopreserved pollen was measured. Based on that, the ROS level, lipid peroxidation and antioxidants activities in fresh pollen, cryopreserved pollen added with or without CAT or MDH were determined to investigate their relationship with oxidative stress. Pollen from Magnolia and Paeonia showed a significant loss of germination, but marked increase of ROS and malondialdehyde (MDA) production after cryostorage. Antioxidant profiles in them were also enhanced. CAT and MDH addition increased the post-LN pollen germination of Magnolia and Paeonia significantly. Their germination rate achieved the highest with 100 IU ml?1 MDH and 400 IU ml?1 CAT application, respectively. Compared to their untreated controls, ROS and MDA accumulation reduced significantly in cryopreserved Magnolia pollen treated with 100 IU ml?1 MDH, while superoxide dismutase (SOD) activity improved markedly. In the case of Paeonia, significantly lower level of ROS and MDA, but higher activity of CAT and SOD were observed in cryopreserved pollen treated with 400 IU ml?1 CAT. In conclusion, pollen deterioration after cryopreservation is associated with ROS-induced oxidative stress. Exogenous CAT and MDH can reduce the oxidative damage through the activity stimulation of antioxidant enzymes, and play a protective role in the pollen during cryopreservation.  相似文献   

2.
Use of cryopreserved semen has become an important tool in assisted reproduction but freezing and thawing cause sub-lethal damage to spermatozoa. This is detrimental to sperm because of the membrane damage including permeability and integrity. An excess generation of reactive oxygen species (ROS) creates oxidative stress due to reduced antioxidant status of the cryopreserved spermatozoa. In the present study fresh buffalo semen was collected and divided into two aliquots. One aliquot was used for fresh semen analysis and the other was cryopreserved in Tris-egg yolk-citrate extender. The semen samples were used to study different sperm quality parameters like motility, viability, membrane integrity and total antioxidant status. The DNA integrity in fresh and cryopreserved spermatozoa was also studied using comet assay. The sperm quality parameters like post-thaw sperm motility, viability, membrane integrity and total antioxidant status of cryopreserved spermatozoa were significantly lowered (P < 0.05) compared to fresh spermatozoa. The DNA fragmentation in cryopreserved spermatozoa was significantly higher (P < 0.01) as compared to fresh spermatozoa. The results show that the irreversible DNA damage occurs in spermatozoa during cryopreservation.  相似文献   

3.
《Cryobiology》2015,70(3):386-393
Reactive oxygen species (ROS) are one of the main causes for decreased viability in cryopreserved sperm. Many studies have reported the beneficial effect of antioxidant supplements in freezing media for post-thaw sperm quality. In the present study, we explored two new approaches of ROS inhibition in sperm cryopreservation of yellow catfish, namely mitochondrial-targeted antioxidant and metabolic modulator targeting mitochondrial uncoupling pathways. Our study revealed that addition of MitoQ, a compound designed to deliver ubiquinone into mitochondria, significantly decreased ROS production, as well as lipid peroxidation, and increased post-thaw viability. Similarly, sperm incubated with 2,4-dinitrophenol (DNP), a chemical protonophore that induces mitochondrial uncoupling, also had reduced ROS production, as well as lipid peroxidation, and increased post-thaw sperm viability. Conversely, activation of uncoupling protein (UCP2) by 4-hydroxynonenal (HNE) neither reduced ROS production nor increased post-thaw sperm viability. Our findings indicate that ROS inhibition through mitochondrial-targeted antioxidant or mild mitochondrial uncoupling is beneficial for sperm cryopreservation in yellow catfish. Our study provides novel methods to mitigate oxidative stress induced damage in cryopreserved sperm for future applications.  相似文献   

4.
During biotic and abiotic stress in plants, reactive oxygen species (ROS) may play two very different roles: high ROS concentrations can exacerbate damage, whereas low concentrations can activate defense responses. The aim of this study was to investigate the relationship between ROS generation and pollen viability after cryopreservation. ROS generation was detected from ‘Siberia’ (Lilium?×?siberia) pollen using flow cytometry with 2′,7′-dichlorodihydrofluorescein diacetate as a fluorescent probe. Pollen viability was determined by 2,3,5-triphenyltetrazolium chloride staining. ROS generation was slightly increased by rapid cooling (26.13?±?4.74 vs. 15.80?±?2.30 for fresh pollen) and significantly increased by vitrification (49.74?±?1.43; P?<?0.01). Pollen viabilities after rapid cooling and vitrification were significantly increased (58.88?±?3.76% and 70.35?±?2.90%, respectively) over that of fresh pollen (46.65?±?1.61%; P?<?0.01). No significant differences in ROS generation were associated with cold acclimation at different temperatures before rapid cooling. However, sharp decreases in viability were observed with cold acclimation at 4°C and ?20°C relative to rapid cooling without acclimation (P?<?0.01). We observed nonsignificant decreases in ROS generation among vitrification treatments that omitted different steps and a significant decrease when the unloading step was omitted (P?<?0.05). Pollen viabilities were significantly reduced when the loading or dehydration steps were omitted (P?<?0.01). No significant differences were observed in ROS generation or pollen viability among the treatments when 200 U/ml catalase was added to different solutions used in the vitrification process. Comprehensive analysis of all data indicated a positive correlation between ROS generation and pollen viability (r?=?0.651, P?<?0.001). Therefore, increasing ROS generation during cryopreservation may improve the viability of ‘Siberia’ pollen.  相似文献   

5.
High levels of reactive oxygen species (ROS), which may be related to reduced semen quality, are detected during semen cryopreservation in some species. The objectives of this study were to measure the oxidative stress during ram semen cryopreservation and to evaluate the effect of adding 2 antioxidant mimics of superoxide dismutase (Tempo and Tempol) during the cooling process on sperm motility, viability, acrosomal integrity, capacitation status, ROS levels, and lipid peroxidation in frozen and/or thawed ram spermatozoa. Measuring of ROS levels during the cooling process at 35, 25, 15, and 5 °C and after freezing and/or thawing showed a directly proportional increase (P < 0.05) when temperatures were lowering. Adding antioxidants at 10 °C confered a higher motility and sperm viability after cryopreservation in comparison with adding at 35 °C or at 35 °C/5 °C. After freezing and/or thawing, sperm motility was significantly higher (P < 0.05) in Tempo and Tempol 1 mM than that in control group. Percentage of capacitated spermatozoa was lower (P < 0.05) in Tempo and Tempol 1 mM in comparison with that in control group. In addition, ROS levels and lipid peroxidation in group Tempo 1 mM were lower (P < 0.05) than those in control group. These results demonstrate that ram spermatozoa are exposed to oxidative stress during the cooling process, specifically when maintained at 5 °C and that lipid peroxidation induced by high levels of ROS decreases sperm motility and induces premature sperm capacitation. In contrast, the addition of Tempo or Tempol at 0.5 to 1 mM during the cooling process (10 °C) protects ram spermatozoa from oxidative stress.  相似文献   

6.
In this work, we studied the effects of cryopreservation on various parameters of early stages of germination of Phaseolus vulgaris seeds (0, 7 and 14?days). Percentages of germination, fresh mass of different plant parts, levels of chlorophyll pigments (a, b, total), malondialdehyde, other aldehydes, phenolics (cell wall-linked, free, and total) and protein were determined. No phenotypic changes were observed visually in seedlings recovered from cryopreserved seeds. However, several significant effects of seed liquid nitrogen exposure were recorded at the biochemical level. There was a significant negative effect of cryopreservation on shoot protein content, which decreased from 3.11?mg?g?1 fresh weight for non-cryopreserved controls to 0.44?mg?g?1 fresh shoot weight for cryopreserved seeds. On the other hand, cryopreservation significantly increased levels of other aldehydes than malondialdehyde in shoots at day 7, from 56.47?μmol?g?1 for non-cryopreserved controls to 253.19?μmol?g?1 fresh shoot weight for cryopreserved samples. Liquid nitrogen exposure significantly reduced phenolics contents (free, cell-wall linked, total) in roots at day 7 after onset of germination. In general, roots were more affected by cryostorage compared with other plant parts, while leaves were the least affected. The effects of seed cryopreservation seem to decline progressively along with seedling growth.  相似文献   

7.
目的:研究不同浓度葡萄糖氧化酶(GO)对人肝细胞L02氧化应激水平的影响,以确定建立肝细胞氧化应激模型的合适浓度。方法:用不同浓度GO干预L02肝细胞2h,MTT法检测细胞的存活率,流式细胞术检测细胞内活性氧簇(ROS),荧光强度(FI)来表示ROS水平。分光光度法检测检测细胞MDA、GSH,速率法检测细胞培养液LDH、AST和ALT的水平。结果:①随GO浓度增加,肝细胞的存活率逐渐降低,其中75U/L、100U/L和125U/L组存活率显著低于对照组(P〈0.05)。②随GO浓度增加,MDA含量逐渐增高,其中50U/L、75U/L、100U/L、125U/L组MDA水平较对照组显著增高(P〈0.05)。GSH水平随GO浓度增高而逐渐减低,各干预组较对照组均显著降低(P〈0.05)。GO各干预组FI均较对照组显著降低(P〈0.05)。③各干预组LDH活性均显著高于对照组(P〈0.05),50U/L、75U/L、100U/L、125U/L干预组AST与ALT水平均较对照组显著增高(P〈0.05)。结论:GO能引起的肝细胞氧化应激损伤有剂量依赖性,100U/L是建立肝细胞氧化应激的合适浓度。  相似文献   

8.
Cryopreservation of ovarian tissues (OTs) has become the most effective way to preserve the fertility of female cancer patients. However, cryopreservation of OTs is still relatively at an experimental stage. The aim of study is to examine the effect of melatonin (MTL) on cryopreserved-thawed OTs. Fragments of OTs were cryopreserved in medium containing different concentrations (0 mM, 0.001 mM, 0.01 mM, 0.1 mM and 1 mM) of MLT. The endogenous enzymes (GSH-PX, GSH, SOD, CAT and T-AOC), MDA and ROS levels were all evaluated after cryopreservation. Our results showed that the 0.1 mM of MLT significantly improved the survival and diameter of follicles (P < 0.001). Meanwhile, the antioxidant enzymes activities (including GSH-PX, GSH, SOD, CAT and T-AOC) were enhanced and MDA content were significantly decreased in 0.1 mM of MLT group compared to other groups (P < 0.001). Additionally, compared to the control group, MTL of 0.1 mM resulted in a significantly lower ROS level. In conclusion, MLT protects the quality of cryopreserved OTs by decreasing oxidative stress level and the optimal concentration is 0.1 mM.  相似文献   

9.
This study determined the changes in pollen viability of 102 species/cultivars of ornamental plants (affiliated to 32 genera of 14 families) following long-term liquid nitrogen storage in a cryopreservation pollen bank. The goal was to provide information on the safety and stability of pollen cryopreservation technology. Fresh pollen at the time of storage was used as the control, and the study examined the pollen viability of ornamental plants cryopreserved for 8, 9, or 10 years. The results show that pollen of the 102 species/cultivars in the cryopreservation pollen bank retained viability ranging from 1% to 58%, After long-term storage there were changes in viability: 11.76% (12 species/cultivars) had increased viability, 16.67% (17 species/cultivars) had stable viability, and the viability of 71.57% (73 species/cultivars) showed a decreasing trend.  相似文献   

10.
Cryopreserved human cardiac valve allografts could suffer lethal damages if the temperature is elevated during cryostorage. This work describes the functional and morphological alterations suffered by human cardiac valve allografts after a gradual increment of the cryostorage temperature from −147 °C to −47 °C due to a technical failure. Three experimental groups of human pulmonary and aortic allografts were compared: fresh, cryopreserved (−147 °C) and cryopreserved with temperature changes from −147 °C up to −47 °C and back to −147 °C. Fibroblast functionality was studied to asses the degree of valvular damages. Collagen network was also analyzed with bright light field and polarized microscopy; an immunohistochemistry for procollagen I was performed and the MTT colorimetric assay was used to evaluate fibroblast mitochondrial enzymatic activity. Porcine heart grafts valves were used to set the MTT colorimetric assay.With bright light field microscopy, disorganized collagen network was seen together with interstitial edema in cryopreserved groups. Polarized microscopy showed that fresh allografts had abundant collagen type I and III, cryopreserved group had less amount of collagen type I and in allografts that suffered cryopreservation temperature elevation collagen type I synthesis could not been demonstrated. Procollagen I was present in fibroblast cytoplasm of fresh group, but it was diminished in cryopreserved group and was absent in the group that suffered temperature elevation.Temperature changes during the cryopreservation period of human cardiac valve allografts induced fibroblast activity reduction. When the cryopreservation temperature is elevated during cryostorage, fibroblasts lost their functionality and the allografts may be not suitable for transplant.  相似文献   

11.
《Reproductive biology》2020,20(2):169-174
Sperm cryopreservation causes different stresses including thermal shock, osmotic damage, and ice crystal formation, thereby reducing sperm quality. Few studies have evaluated the application of AFPs in cryopreservation. The effects of antifreeze protein III (AFP III) on human sperm cryopreservation is not fully understood therefore, we conducted this study to investigate the effects of AFPIII treatment on human sperm parameters following cryopreservation. First, for 20 semen samples the effects of various concentrations of AFPIII (0, 0.01, 0.1, 1, 5, 10 μg/ml) were evaluated. Sperm parameters, such as motility and viability were assessed in order to identify an optimal dose. Next, liquefied 20 semen samples were divided into three aliquots and diluted in glycerol-egg-yolk-citrate (GEYC) cryopreserved without AFPIII (control), with optimal dose of AFPIII, as well as fresh groups. After thawing, samples were evaluated for plasma membrane integrity (PMI), DNA fragmentation index (DFI), reactive oxygen species (ROS), and total antioxidant capacity (TAC) levels. Spermatozoa treatment with 0.01, 0.1 and 1 μg/ml AFPIII increased the sperm motility and viability compared to the control group, but the highest concentrations were ineffective. In conclusion, the results showed that the addition of AFPIII to GEYC at 1 μg/ml improved motility, PMI, viability and TAC, and decreased ROS and DNA fragmentation of cryopreserved human semen compared to the control group.  相似文献   

12.
Assisted reproduction using frozen-thawed semen has practical advantages, although cryopreservation is detrimental to sperm fertility in most mammals. We examined the influence of cryopreservation and reactive oxygen species (ROS) on ram sperm DNA stability (using SCSA), lipid peroxidation (LPO), chlortetracycline fluorescence (CTC) patterns, motility and viability. In Experiment 1, DNA integrity, LPO, CTC, motility and viability tests were performed on fresh and cryopreserved sperm after 0, 6, and 24 hr in synthetic oviductal fluid (SOF). In Experiment 2, fresh sperm were incubated in serum-free SOF (SOF-S; 1, 4, and 24 hr) with 0, 50, 150, or 300 microM H2O2 then assayed. Cryopreservation increased the percentage of sperm with a high DNA fragmentation index (%DFI), decreased the percentages of motile and viable sperm at thawing (0 hr), but did not affect LPO. H2O2 (150 or 300 microM) increased %DFI after 24 hr. LPO or sperm viability were not affected by H2O2, although most motility parameters decreased. H2O2 decreased the percentage of chlortetracycline pattern F sperm at 4 hr and increased the percentage of acrosome-reacted sperm (pattern AR) after 1 hr. Pooled data of Experiment 2 showed LPO was positively correlated with SCSA (r = 0.29 to r = 0.59; P < 0.05 to P < 0.01), while most motility parameters and the percentage of viable sperm were negatively correlated with LPO (r = -0.30 to r = -0.38; P < 0.05 to P < 0.01). LPO was positively correlated with the percentage of pattern AR sperm (r = 0.33; P < 0.01). Cryopreservation and H2O2 promote DNA instability in ram sperm, though motility is a more sensitive indicator of oxidative stress than the other parameters investigated.  相似文献   

13.
The seeds of Azadirachta indica were successfully cryopreserved for 12 months with 45% survival following drying to 0.16gH(2)Og(-1) dry mass (DM). Highest survival (94-96%) was recorded during the first month of cryostorage. Subsequent cryopreservation up to 12 months resulted in decreasing germination. Post-thawing pre-heat treatment enhanced the recovery marginally in seeds cryopreserved from 3 to 12 months. Viability of cryostored seeds was negatively correlated with leachate conductivity and accumulation of thiobarbituric acid reactive substances (TBRS) estimated in cotyledons and axes. Leachate conductivity of imbibed seeds was low during the first month of cryostorage but increased gradually with the duration of cryostorage to a maximum after 12 months. TBRS accumulation was gradual throughout cryostorage. Relatively low amounts of active oxygen species (AOS) detected during the first month of cryostorage were closely associated with very high activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in seeds (cotyledons and axes). Marked accumulation of AOS from 3 to 12 months was associated with decrease in antioxidant enzyme activity.  相似文献   

14.
The cryopreservation of exfoliated deciduous teeth and harvesting of stem cells from them as required would reduce the costs and efforts associated with banking stem cells from primary teeth. The aim of this study was determine whether the viability of pulp stromal cells from deciduous teeth was influenced by the cryopreservation process itself or the period of cryopreservation. In total, 126 deciduous teeth were divided into three groups: (1) fresh, (2) cryopreserved for <3 months (cryo<3), and (3) cryopreserved for 3–9 months (cryo3–9). The viability of the pulp tissues was compared among the three groups by evaluating the outgrowth from pulp tissues and cell activity within those pulp tissues. In addition, the terminal deoxynucleotidyl transferase-mediated dUTP–biotin nick end labeling (TUNEL) assay was performed to compare cell apoptosis within fresh pulp tissue and pulp tissue that had been cryopreserved for 4 months. The outgrowth from and cell activity within the pulp tissues did not differ significantly between the fresh and cryo<3 pulp tissues. However, these parameters were significantly reduced in the cryo3–9 pulp tissue. In TUNEL assay, 4-month cryopreserved pulp tissues has more apoptotic cells than fresh group. In conclusion, it is possible to acquire pulp stromal cells from cryopreserved deciduous teeth. However, as the period of cryopreservation becomes longer, it is difficult to get pulp cells due to reduced cell viability.  相似文献   

15.
Antioxidants may be useful for supplementing sperm extenders. We have tested dehydroascorbic acid (DHA), TEMPOL, N-acetyl-cysteine (NAC) and rutin on epididymal spermatozoa from red deer, during incubation at 37 °C. Cryopreserved spermatozoa were thawed, washed and incubated with 1 mm or 0.1 mm of each antioxidant, including oxidative stress (Fe2+/ascorbate). Motility (CASA and clustering of subpopulations), viability, mitochondrial membrane potential, and acrosomal status were assessed at 2 and 4 h. Lipoperoxidation, intracellular reactive oxygen species (ROS) and DNA damage (DNA) status (TUNEL) were checked at 4 h. Oxidative stress increased ROS, lipoperoxidation and DNA damage. Overall, antioxidants negatively affected motility and physiological parameters. Only DHA 1 mm protected motility, increasing the fast and progressive subpopulation. However, it had a detrimental effect on acrosomal and DNA status, in absence of oxidative stress. Tempol and rutin efficiently reduced lipoperoxidation, ROS, and DNA damage in presence of oxidative stress. NAC was not as efficient as TEMPOL or rutin reducing lipoperoxidation or protecting DNA, and did not reduce ROS, but its negative effects were lower than the other antioxidants when used at 1 mm, increasing the subpopulation of hyperactivated-like spermatozoa at 2 h. Our results show that these antioxidants have mixed effects when spermatozoa are incubated at physiological temperatures. DHA may not be suitable because of prooxidant effects, but TEMPOL, NAC and rutin may be considered for cryopreservation trials. In general, exposure of red deer spermatozoa to these antioxidants should be limited to low temperatures, when only protective effects may develop.  相似文献   

16.
Oxidative stress is a major component of cryoinjury in plant tissues. This study investigated the ability of recalcitrant (i.e. desiccation sensitive) Amaryllis belladonna L. and Haemanthus montanus Baker zygotic embryos to survive cryopreservation, in relation to oxidative stress. The study also investigated whether glycerol cryoprotection promoted embryo post-cryo survival by protecting enzymic antioxidant activities. Zygotic embryos excised from hydrated stored seeds were subjected to various combinations of rapid dehydration (to < or >0.4 g g?1 [dmb]), cryoprotection (with sucrose or glycerol), and cooling (either rapidly or slowly), and were thereafter assessed for viability, extracellular superoxide (·O??) production, lipid peroxidation (TBARS) and antioxidant enzyme activities. Short-term hydrated storage of whole seeds was accompanied by ·O?? production and lipid peroxidation, but ·O?? levels were lower than in dehydrated and cooled embryos and viability was 100%, possibly associated with the high activities of certain antioxidant enzymes. Partial dehydration and cryoprotection (in H. montanus only) increased ·O?? production (especially in cryoprotected-dried embryos) and was associated with some viability loss, but this was not correlated with enhanced lipid peroxidation. Cooling was generally accompanied by the greatest increase in ·O?? production, and with a decline in viability. In A. belladonna only, post-cryo TBARS levels were generally higher than for fresh and pre-conditioned embryos. Partial dehydration and cooling decreased antioxidant activities, but these were consistently less severe in glycerol cryoprotected-dried, as opposed to non-cryoprotected-dried embryos. Post-cryo viability retention for glycerol cryoprotected-dried embryos was significantly higher than for non-cryoprotected-dried embryos, possibly facilitated by relatively low post-drying TBARS levels and high post-drying and post-rewarming activities of some antioxidant enzymes in the former. Pre-conditioning treatments such as glycerol cryoprotection, when used in combination with partial drying, may enhance post-cryo viability retention in recalcitrant zygotic embryos by protecting the activities of certain antioxidant enzymes during pre-conditioning for, and after retrieval from, cryostorage.  相似文献   

17.
Cryopreservation of embryogenic cultures of Scots pine   总被引:7,自引:2,他引:5  
The aim of the study was to develop an effective cryopreservation method for Scots pine (Pinus sylvestris L.) embryogenic cultures. Altogether nine cell lines derived from three mother trees were cryopreserved after cold hardening using dimethylsulfoxide or two different mixtures of polyethyleneglycol 6000, glucose and dimethylsulfoxide as cryoprotectants. Seventy-eight percent of the cell lines remained viable after cryostorage, the best cryoprotectant treatment being 10% polyethyleneglycol 6000, 10% glucose, and 10% dimethylsulfoxide in water. This treatment resulted in significantly better regrowth of the embryogenic cultures than with the other cryoprotectants or with the controls. According to microscopical observations, the cells that retained their viability and regrowth ability after cryopreservation were the embryonal head cells, as well as some elliptic suspensor cells close to the embryonal head cell area. When proliferation growth of the frozen cultures had started, their morphological appearance was the same as the non-frozen cultures. In addition, the RAPD assays suggested that the cryostorage treatment used here preserved the genetic fidelity of the Scots pine embryogenic cultures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Sexual reproduction in flowering plants depends on the fitness of the male gametophyte during fertilization. Because pollen development is highly sensitive to hot and cold temperature extremes, reliable methods to evaluate pollen viability are important for research into improving reproductive heat stress (HS) tolerance. Here, we describe an approach to rapidly evaluate pollen viability using a reactive oxygen species (ROS) probe dichlorodihydrofluorescein diacetate (i.e. H2DCFDA‐staining) coupled with flow cytometry. In using flow cytometry to analyze mature pollen harvested from Arabidopsis and tomato flowers, we discovered that pollen distributed bimodally into ‘low‐ROS’ and ‘high‐ROS’ subpopulations. Pollen germination assays following fluorescence‐activated cell sorting revealed that the high‐ROS pollen germinated with a frequency that was 35‐fold higher than the low‐ROS pollen, supporting a model in which a significant fraction of a flower's pollen remains in a low metabolic or dormant state even after hydration. The ability to use flow cytometry to quantify ROS dynamics within a large pollen population was shown by dose‐dependent alterations in DCF‐fluorescence in response to oxidative stress or antioxidant treatments. HS treatments (35°C) increased ROS levels, which correlated with a ~60% reduction in pollen germination. These results demonstrate the potential of using flow cytometry‐based approaches to investigate metabolic changes during stress responses in pollen.  相似文献   

19.
Transplantation using hematopoietic stem cells from umbilical cord blood (UCB) is a life-saving treatment option for patients with select oncologic diseases, immunologic diseases, bone marrow failure, and others. Often this transplant modality requires cryopreservation and storage of hematopoietic stem cells (HSC), which need to remain cryopreserved in UCB banks for possible future use. The most widely used cryoprotectant is dimethylsulfoxide (Me2SO), but at 37 °C, it is toxic to cells and for patients, infusion of cryopreserved HSC with Me2SO has been associated with side effects. Freezing of cells leads to chemical change of cellular components, which results in physical disruption. Reactive oxygen species (ROS) generation also has been implicated as cause of damage to cells during freezing. We assessed the ability of two bioantioxidants and two disaccharides, to enhance the cryopreservation of UCB. UCB was processed and subjected to cryopreservation in solutions containing different concentrations of Me2SO, bioantioxidants and disaccharides. Samples were thawed, and then analysed by: flow cytometry analysis, CFU assay and MTT viability assay. In this study, our analyses showed that antioxidants, principally catalase, performed greater preservation of: CD34+ cells, CD123+ cells, colony-forming units and cell viability, all post-thawed, compared with the standard solution of cryopreservation. Our present studies show that the addition of catalase improved the cryopreservation outcome. Catalase may act on reducing levels of ROS, further indicating that accumulation of free radicals indeed leads to death in cryopreserved hematopoietic cells.  相似文献   

20.
Cryopreservation preserves cells at low temperature and creates a reserve for future use while executing the clinical translation. Unlike articular chondrocyte, cryopreservation protocol and its outcome are not described in iliac apophyseal chondrocytes, a potential source of chondrocytes in cartilage engineering. This study for the first time describes the cryopreservation of human iliac apophyseal chondrocytes. Four cartilage samples were procured from iliac crests of children undergoing hip surgery after consent. The total chondrocyte yield was divided into two groups. First group was grown as monolayer while second group was cryopreserved following the slow cooling method in the medium containing 10 % Dimethyl sulfoxide for 3 months. Group two cells were also grown as a monolayer following thawing. Viability, time to confluence, population doubling time and phenotype maintenance were compared for both the groups. Viability was 65.75 % after 3 months of cryopreservation at ?196 °C, as compared to 94.19 % for fresh chondrocytes (p = 0.001). Fresh and cryopreserved cells reached confluence on 10th and 15th day of culture respectively. Population doubling time was significantly more in fresh than cryopreserved chondrocytes on 10th (p = 0.0006) and 15th day (p = 0.0002) in culture. Both fresh and cryopreserved cells maintain their chondrocyte phenotype as assessed by immunocytochemistry. Relative gene expression by real time polymerase chain reaction showed similar upregulation of mRNA of Collagen 2, SOX 9, Aggrecan and Collagen 1 in cryopreserved chondrocyte as compared to fresh chondrocyte. Iliac apophyseal chondrocytes cryopreserved for 3 months maintained the phenotype successfully 2 weeks after thawing in culture. The viability and proliferation rates after thawing were adequate for a clinical translation of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号