首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Animal serum is a common additive for cell culture medium and is often required at 5 to 10% (v/v) for the attachment and growth of primary and continuous anchorage-dependent (monolayer) cultures. The use of animal serum in cell culture medium confers several advantages and also some risks. This article discusses the use of animal serum as a component of cell culture medium. The best practices associated with the sourcing, storage, thawing, testing, and mitigation of risk associated with the use of animal sera are among the topics described in this article.  相似文献   

2.
Ovarian cancer is the fifth leading cause of cancer deaths in women and has a 63% mortality rate in the United States1. The cell type of origin for ovarian cancers is still in question and might be either the ovarian surface epithelium (OSE) or the distal epithelium of the fallopian tube fimbriae2,3. Culturing the normal cells as a primary culture in vitro will enable scientists to model specific changes that might lead to ovarian cancer in the distinct epithelium, thereby definitively determining the cell type of origin. This will allow development of more accurate biomarkers, animal models with tissue-specific gene changes, and better prevention strategies targeted to this disease.Maintaining normal cells in alginate hydrogels promotes short term in vitro culture of cells in their three-dimensional context and permits introduction of plasmid DNA, siRNA, and small molecules. By culturing organs in pieces that are derived from strategic cuts using a scalpel, several cultures from a single organ can be generated, increasing the number of experiments from a single animal. These cuts model aspects of ovulation leading to proliferation of the OSE, which is associated with ovarian cancer formation. Cell types such as the OSE that do not grow well on plastic surfaces can be cultured using this method and facilitate investigation into normal cellular processes or the earliest events in cancer formation4.Alginate hydrogels can be used to support the growth of many types of tissues5. Alginate is a linear polysaccharide composed of repeating units of β-D-mannuronic acid and α-L-guluronic acid that can be crosslinked with calcium ions, resulting in a gentle gelling action that does not damage tissues6,7. Like other three-dimensional cell culture matrices such as Matrigel, alginate provides mechanical support for tissues; however, proteins are not reactive with the alginate matrix, and therefore alginate functions as a synthetic extracellular matrix that does not initiate cell signaling5. The alginate hydrogel floats in standard cell culture medium and supports the architecture of the tissue growth in vitro.A method is presented for the preparation, separation, and embedding of ovarian and oviductal organ pieces into alginate hydrogels, which can be maintained in culture for up to two weeks. The enzymatic release of cells for analysis of proteins and RNA samples from the organ culture is also described. Finally, the growth of primary cell types is possible without genetic immortalization from mice and permits investigators to use knockout and transgenic mice.Download video file.(42M, mov)  相似文献   

3.
人胚胎干细胞优化培养的进展   总被引:1,自引:0,他引:1  
杨阿聪  金颖 《生命科学》2006,18(4):402-406
人胚胎干细胞(humanembryonicstemcell,hEScell)是来源于着床前人囊胚内细胞团(innercellmass,ICM)的、具有自我更新能力和分化全能性的细胞。由于hES细胞能在一定条件下分化成三个胚层来源的各种细胞,所以它具有重要的基础研究价值和巨大的临床应用前景,可应用于人早期胚胎发育过程的研究、药物毒物筛选、细胞移植治疗、基因治疗等领域。目前,世界上已经建立了多株hES细胞系,最早建立的hES细胞系是生长在小鼠胚胎成纤维(mouseembryonicfibroblast,MEF)细胞上的,培养体系中含血清等动物源性成分,这些成分可能引起动物源性病原体或支原体的污染,从而限制了hES细胞的临床应用。近年来,科学家们在优化hES细胞的体外培养体系方面做出了很大的努力并取得了长足进展,已经开始采用无血清、无饲养层细胞、无外源性蛋白、成分明确的培养体系进行hES细胞建系及培养,从而在一定程度上解决了上述问题。本文主要从饲养层细胞、无饲养层培养体系、培养基质、细胞因子等方面综述了hES细胞建系和维持其未分化状态的优化培养所取得的最新进展和存在的问题。  相似文献   

4.
One of the first considerations in using an existing cell line or establishing a new a cell line is the detailed proactive planning of all phases of the cell line management. It is necessary to have a well-trained practitioner in best practices in cell culture who has experience in receiving a new cell line into the laboratory, the correct and appropriate use of a cell line name, the preparation of cell banks, microscopic observation of cells in culture, growth optimization, cell count, cell subcultivation, as well as detailed protocols on how to expand and store cells. Indeed, the practitioner should best manage all activities of cell culture by ensuring that the appropriate certified facilities, equipment, and validated supplies and reagents are in place.  相似文献   

5.
The recent vote in the British Parliament allows scientists in principle to create hybrid embryos by transferring human somatic cell nuclei into animal oocytes. This vote opens a fascinating new area of research with the central aim of generating interspecific lines of embryonic stem cells (ESCs) that could potentially be used to understand development, differentiation, gene expression and genomic compatibility. It will also promote human cell therapies, as well as the pharmaceutical industry's search for new drug targets. If this approach is to be successful, many biological questions need to be answered and, in addition, some moral and ethical aspects must be taken into account.  相似文献   

6.
The role of cell authentication in biomedical science has received considerable attention, especially within the past decade. This quality control attribute is now beginning to be given the emphasis it deserves by granting agencies and by scientific journals. Short tandem repeat (STR) profiling, one of a few DNA profiling technologies now available, is being proposed for routine identification (authentication) of human cell lines, stem cells, and tissues. The advantage of this technique over methods such as isoenzyme analysis, karyotyping, human leukocyte antigen typing, etc., is that STR profiling can establish identity to the individual level, provided that the appropriate number and types of loci are evaluated. To best employ this technology, a standardized protocol and a data-driven, quality-controlled, and publically searchable database will be necessary. This public STR database (currently under development) will enable investigators to rapidly authenticate human-based cultures to the individual from whom the cells were sourced. Use of similar approaches for non-human animal cells will require developing other suitable loci sets. While implementing STR analysis on a more routine basis should significantly reduce the frequency of cell misidentification, additional technologies may be needed as part of an overall authentication paradigm. For instance, isoenzyme analysis, PCR-based DNA amplification, and sequence-based barcoding methods enable rapid confirmation of a cell line’s species of origin while screening against cross-contaminations, especially when the cells present are not recognized by the species-specific STR method. Karyotyping may also be needed as a supporting tool during establishment of an STR database. Finally, good cell culture practices must always remain a major component of any effort to reduce the frequency of cell misidentification.  相似文献   

7.
Stem cells have the remarkable potential to develop into many different cell types. When a stem cell divides, each new cell has the potential to either remain a stem cell or become another type of cell with a more specialized function, This promising of science is leading scientists to investigate the possibility of cell-based therapies to treat disease. When culture in suspension without antidifferentiation factors, embryonic stem cells spontaneously differentiate and form three-dimensional multicellular aggregates. These cell aggregates are called embryoid bodies(EB). Hanging drop culture is a widely used EB formation induction method. The rounded bottom of hanging drop allows the aggregation of ES cells which can provide mES cells a good environment for forming EBs. The number of ES cells aggregatied in a hanging drop can be controlled by varying the number of cells in the initial cell suspension to be hung as a drop from the lid of Petri dish. Using this method we can reproducibly form homogeneous EBs from a predetermined number of ES cells. Download video file.(78M, mp4)  相似文献   

8.
Human embryonic stem cells are elusive, recalcitrant entities that resist characterization and standardization. Without agreements about what the cells are and how best to systematize cell culture and testing, data cannot be extracted meaningfully, the nascent field will be slow to stabilize, and significantly, there may be safety risks for patients. I discuss efforts to characterize cells definitively and standardize practices across uniquely derived lines, labs, and researchers. I argue that such efforts are made more complicated by layered identities imposed on them by classification conventions, interactions with researchers and laboratory environments, and inheritances from genetic ancestry. The need to understand and possibly capitalize on such distinct, cumulative identities is in tension with the desire to stabilize the field under conditions of political and scientific uncertainty. The article links STS work on standardization with anthropological perspectives on identity and material culture in science.  相似文献   

9.
细胞培养过程中的细胞凋亡是细胞受环境因素的影响而发生的现象。随着对细胞凋亡的分子生物学和细胞生物学了解的深入,显示了有效地控制动物细胞培养中细胞凋亡的巨大潜力。包括采用DNA重组技术把抗细胞凋亡的基因导入细胞和在培基中加入具有抗细胞凋亡的生存因子或化合物等手段已用于控制细胞培养过程中的细胞凋亡。这些技术将大大延长细胞达到饱和密度后的培养时间,提高细胞培养系统的生产效率。  相似文献   

10.
The use of cell numbers rather than mass to quantify the size of the biotic phase in animal cell cultures causes several problems. First, the cell size varies with growth conditions, thus yields expressed in terms of cell numbers cannot be used in the normal mass balance sense. Second, experience from microbial systems shows that cell number dynamics lag behind biomass dynamics. This work demonstrates that this lag phenomenon also occurs in animal cell culture. Both the lag phenomenon and the variation in cell size are explained using a simple model of the cell cycle. The basis for the model is that onset of DNA synthesis requires accumulation of G1 cyclins to a prescribed level. This requirement is translated into a requirement for a cell to reach a critical size before commencement of DNA synthesis. A slower growing cell will spend more time in G1 before reaching the critical mass. In contrast, the period between onset of DNA synthesis and mitosis, tau(B), is fixed. The two parameters in the model, the critical size and tau(B), were determined from eight steady-state measurements of mean cell size in a continuous hybridoma culture. Using these parameters, it was possible to predict with reasonable accuracy the transient behavior in a separate shift-up culture, i.e., a culture where cells were transferred from a lean environment to a rich environment. The implications for analyzing experimental data for animal cell culture are discussed. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 372-379, 1997.  相似文献   

11.
One of the articles contained within European Council Directive 86/609/EEC states that "Persons who carry out experiments or take part in them, and persons who take care of animals used for experiments, including duties of a supervisory nature, shall have appropriate training". In effect, this article stipulates that only competent individuals are allowed to work with laboratory animals. At least three groups of individuals can be identified with different responsibilities toward experimental animals: animal technicians, scientists, and veterinarians/animal welfare officers. The responsibilities and duties of the individuals within each of these categories differ. This paper focuses on the training of scientists. The scientist designs, and often also performs, animal experiments. Therefore, scientists must be educated to develop an attitude of respect toward laboratory animals, and must be trained so that, if an experiment must be performed with animals, it is designed according to the highest possible scientific and ethical standards. In The Netherlands, the law stipulates that scientists intending to work with animals must have completed a course in laboratory animal science. This compulsory course started in 1986. The Department of Laboratory Animal Science at Utrecht University is responsible for the national coordination of this course. Participants must have an academic degree (at the level of MSc) in one of the biomedical sciences, such as biology, medicine or veterinary medicine. Although the course is an intensive 3-week, 120-hour long course, which covers both technical and ethical aspects of laboratory animal experimentation, it cannot provide full competence. It is designed to provide sufficient basic training and knowledge to enable students to design animal experiments, and to develop an attitude that will be conducive to the implementation of the Three Rs. However, full competence will always require further training that can only be acquired as a result of practical experience gained while working in the field of laboratory animal research. Evaluations subsequent to the course have revealed that more than 98% of the students regard the course as indispensable for all scientists working in a research area where animal experiments are performed. They agree that the course not only contributes to the quality of experiments and to the welfare of animals, but also to a decrease in the number of animals used in experiments.  相似文献   

12.
Fetal Bovine Serum (FBS) is used as a major supplement in culturing animal cells under in vitro conditions. Due to ethical concern, high cost, biosafety, and geographical as well as batchwise result variations, it is important to reduce or replace the use of FBS in animal cell culture. The major objective of this work is to evaluate the feasibility of heat-inactivated coelomic fluid (HI-CF) of the earthworm, Perionyx excavatus as a possible alternative for FBS in animal cell culture experiments. The coelomic fluid (CF) was extruded from the earthworm using electric shock method and used for the experiments. Electric shock method is a simple non-invasive technique, which has no harmful effect on earthworms. Mouse primary fibroblast and HeLa cell lines were used in this study. Among HI-CF, autoclaved CF and crude CF, the supplement of medium with HI-CF shows positive results. The processed HI-CF (90°C for 5 min) at 10% supplement in cell culture medium promote maximum cell growth but cells need the initial support of FBS for the attachment to the culture flask. Microscopic observation and immunofluorescence assay with actin and lamin A confirm that the cellular and molecular morphology of the cells is maintained intact. The HI-CF of earthworm, P. excavatus has shown better cellular viability when compared with FBS and making it possible as an alternative supplement to minimize the use of FBS.  相似文献   

13.
The publication of scientific articles that receive few or no citations raises questions of the appropriate use of resources as well as ethics. In the case of animal research, the ethics issue extends beyond human patients to nonhuman animals, as the research subjects them to pain and, typically, to death. This study is a citation analysis of animal research conducted at Toronto's Hospital for Sick Children (HSC). Of the 594 publications (1990 to 1995) on animal research by affiliates of HSC, 29% received fewer than 10 citations in a 10-year period. We compare the research history of 13 “best ”and 13 “worst ”HSC scientists. Worst researchers continue to do infrequently cited research. Recommendations indicate how institutions and researchers can become more effective and accountable.  相似文献   

14.
15.
Abstract

Mammalian cell culture has been an important technique in laboratory-scale experimentation for many decades. Developments in large-scale culture have been due to the need to grow large numbers of cells to support the growth of viruses for vaccine production, and more recently, for growing hybridoma cells as a source of monoclonal antibody. Increasingly, however, pharmaceutical products such as hormones, enzymes, growth factors, and clotting factors are being produced from cell lines which have been manipulated by recombinant DNA techniques. It is clear, therefore, that the high cost of growing mammalian cells on a large scale does not necessarily prohibit their use for biotechnology, and indeed there is considerable evidence to suggest that animal cell biotechnology will continue to be a major growth area in the future.  相似文献   

16.
Seo JM  Sohn MY  Suh JS  Atala A  Yoo JJ  Shon YH 《Cryobiology》2011,62(3):167-173
Amniotic fluid-derived stem cells (AFSCs) are a potential cell source for therapeutic applications. They can be easily mass produced, cryopreserved and shipped to clinics for immediate use. However, one major obstacle to the manufacturing of clinical grade stem cells is the need for current good manufacturing practices for cryopreservation, storage, and distribution of these cells. Most current cryopreservation methods used for stem cells include the potentially toxic cryoprotectant (CPA) dimethylsulfoxide (Me2SO) in the presence of animal serum proteins that prevent direct use of these cells in human therapeutic applications. To avoid any potential cryoprotectant related complications, it will be essential to develop non-toxic CPAs or reduce CPA concentration in the freezing media used. In this study, we assessed the use of disaccharides, antioxidants and caspase inhibitors for cryopreservation of AFSCs in combination with a reduced concentration of Me2SO. The thawed cells were tested for viability with MTT assays and a growth curve was created to measure population doubling time. In addition, we performed flow cytometry analysis for cell surface antigens, RT-PCR for mRNA expression of stem cell markers, and assays to determine the myogenic differentiation potential of the cells. A statistically significant (p < 0.05) increase in post-thawed cell viability in solutions containing trehalose, catalase and ZVAD-fmk with 5% Me2SO was observed. The solutions containing trehalose and catalase with 5% or 2.5% (v/v) Me2SO produced results similar to those for the control (10% (v/v) Me2SO and 30% FBS) in terms of culture growth, expression of cell surface antigens and mRNA expression of stem cell markers in AFSCs cryopreserved for a minimum of 3 weeks. Thus, AFSCs can be cryopreserved with 1/4 the standard Me2SO concentration with the addition of disaccharides, antioxidants and caspase inhibitors. The use of Me2SO at low concentrations in cell freezing solutions may support the development of clinical trials of AFSCs.  相似文献   

17.
Embryonic stem (ES) cell lines provide an invaluable research tool for genetic engineering, developmental biology and disease models. These cells can be maintained indefinitely in culture and yet maintain competence to produce all the cells within a fetus. While mouse ES cell lines were first established over two decades ago and primate ES cells in the 1990 s, validated ES cell lines have yet to be established in ungulates. Why competent, pluripotent ES cells can be established from certain strains of mice and from primates, and not from cows, sheep, goats or pigs is an on-going topic of interest to animal reproduction scientists. The identification of appropriate stem cell markers, functional cytokine pathways, and key pluripotency-maintaining factors along with the release of more comprehensive bovine and porcine genomes, provide encouragement for establishment of ungulate ES cell lines in the near future.  相似文献   

18.

Background

Leukemia inhibitory factor (LIF) is an indispensable factor for maintaining mouse embryonic stem (ES) cell pluripotency. A feeder layer and serum are also needed to maintain an undifferentiated state, however, such animal derived materials need to be eliminated for clinical applications. Therefore, a more reliable ES cell culture technique is required.

Methodology/Principal Findings

We cultured mouse ES cells in simulated microgravity using a 3D-clinostat. We used feeder-free and serum-free media without LIF.

Conclusions/Significance

Here we show that simulated microgravity allows novel LIF-free and animal derived material-free culture methods for mouse ES cells.  相似文献   

19.
In mammalians, stem cells acts as a source of undifferentiated cells to maintain cell genesis and renewal in different tissues and organs during the life span of the animal. They can potentially replace cells that are lost in the aging process or in the process of injury and disease. The existence of neural stem cells (NSCs) was first described by Reynolds and Weiss (1992) in the adult mammalian central nervous system (CNS) using a novel serum‐free culture system, the neurosphere assay (NSA). Using this assay, it is also feasible to isolate and expand NSCs from different regions of the embryonic CNS. These in vitro expanded NSCs are multipotent and can give rise to the three major cell types of the CNS. While the NSA seems relatively simple to perform, attention to the procedures demonstrated here is required in order to achieve reliable and consistent results. This video practically demonstrates NSA to generate and expand NSCs from embryonic day 14-mouse brain tissue and provides technical details so one can achieve reproducible neurosphere cultures. The procedure includes harvesting E14 mouse embryos, brain microdissection to harvest the ganglionic eminences, dissociation of the harvested tissue in NSC medium to gain a single cell suspension, and finally plating cells in NSA culture. After 5-7 days in culture, the resulting primary neurospheres are passaged to further expand the number of the NSCs for future experiments.Download video file.(69M, mov)  相似文献   

20.
As Open Science practices become more commonplace, there is a need for the next generation of scientists to be well versed in these aspects of scientific research. Yet, many training opportunities for early career researchers (ECRs) could better emphasize or integrate Open Science elements. Field courses provide opportunities for ECRs to apply theoretical knowledge, practice new methodological approaches, and gain an appreciation for the challenges of real‐life research, and could provide an excellent platform for integrating training in Open Science practices. Our recent experience, as primarily ECRs engaged in a field course interrupted by COVID‐19, led us to reflect on the potential to enhance learning outcomes in field courses by integrating Open Science practices and online learning components. Specifically, we highlight the opportunity for field courses to align teaching activities with the recent developments and trends in how we conduct research, including training in: publishing registered reports, collecting data using standardized methods, adopting high‐quality data documentation, managing data through reproducible workflows, and sharing and publishing data through appropriate channels. We also discuss how field courses can use online tools to optimize time in the field, develop open access resources, and cultivate collaborations. By integrating these elements, we suggest that the next generation of field courses will offer excellent arenas for participants to adopt Open Science practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号