首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA samples obtained from 8 goats, 1 moufflon, and 84 sheep with HbA, HbAB, and HbB belonging to different breeds were digested withBamHI,EcoRI,HindIII andPstI and probed with the 5 end of the goat IV- and Z-globin genes. Sheep homozygous for HbA show a different restriction pattern than sheep homozygous for HbB with each of these endonucleases. The main differences is that HbB sheep lack the H and X genes. These results, in addition to those previously obtained using a probe specific for -globin genes, suggest that HbB sheep probably lack the preadult four-gene set. The DNAs from moufflon and sheep homozygous for HbA show indistinguishable restriction patterns. Furthermore, a number of restriction fragment length polymorphisms (RFLPs) are detected in the IV and Z DNA regions, and oneHindIII RFLP in the VI DNA region.This work was supported by the Ministero della Pubblica Istruzione and, in part, by the Consiglio Nazionale delle Ricerche.  相似文献   

2.
Awuah PK  Rhieu BH  Singh S  Misse A  Monga SP 《PloS one》2012,7(6):e39771
Hepatocellular Carcinoma (HCC) is the fifth most common cancer worldwide. β-Catenin, the central orchestrator of the canonical Wnt pathway and a known oncogene is paramount in HCC pathogenesis. Administration of phenobarbital (PB) containing water (0.05% w/v) as tumor promoter following initial injected intraperitoneal (IP) diethylnitrosamine (DEN) injection (5 μg/gm body weight) as a tumor inducer is commonly used model to study HCC in mice. Herein, nine fifteen-day male β-catenin knockout mice (KO) and fifteen wild-type littermate controls (WT) underwent DEN/PB treatment and were examined for hepatic tumorigenesis at eight months. Paradoxically, a significantly higher tumor burden was observed in KO (p<0.05). Tumors in KO were β-catenin and glutamine synthetase negative and HGF/Met, EGFR & IGFR signaling was unremarkable. A significant increase in PDGFRα and its ligand PDGF-CC leading to increased phosphotyrosine-720-PDGFRα was observed in tumor-bearing KO mice (p<0.05). Simultaneously, these livers displayed increased cell death, stellate cell activation, hepatic fibrosis and cell proliferation. Further, PDGF-CC significantly induced hepatoma cell proliferation especially following β-catenin suppression. Our studies also demonstrate that the utilized DEN/PB protocol in the WT C57BL/6 mice did not select for β-catenin gene mutations during hepatocarcinogenesis. Thus, DEN/PB enhanced HCC in mice lacking β-catenin in the liver may be due to their ineptness at regulating cell survival, leading to enhanced fibrosis and regeneration through PDGFRα activation. β-Catenin downregulation also made hepatoma cells more sensitive to receptor tyrosine kinases and thus may be exploited for therapeutics.  相似文献   

3.
The developmental profiles of the binding of and opiate receptors agonists was investigated using the chick embryo brain. Binding of opioids was performed at embryonic days 5, 6, 15, 18, and 20 in the developing chick embryo brain. [3H]dihyromorphine was used as a ligand and with 5×10–7 M levorphanol for non-specific binding, and [3H](d-Ala2-d-Leu5)-enkephalin was used as a with 5×10–7 M (d-Ser-Gly-Phe-Leu-Thr)-enkephalin for non-specific binding. Crude membranes were prepared from whole brain at days, 5, 6 and cerebral hemispheres at days 15, 18, and 20 of embryonic age. Both and opiate receptors were present during early embryogenesis and as early as day 5. Analysis of binding sites revealed high and low affinity sites during early embryogenesis but only one site. By 18 days of embryonic age, only one site remained. This developmental change is interpreted as a transitory state of the receptor to the adult pattern. The presence of only one site is constant throughout embryonic age; it is high during early embryogenesis reaching a lower level by 18 days. The presence of a dual binding site pattern for the receptor in early embryogenesis is implicated to have a functional significance in the pluripotential role of the endogenous opioids in early development.  相似文献   

4.
5.
Cleft palate is one of the most common birth defects. Both environmental and genetic factors are involved in this disorder. Here, we investigated the function of Wnt10a in proliferation and apoptosis of mouse embryonic palatal mesenchymal (MEPM) cells. Expression of Wnt10a was down-regulated at both the mRNA and protein levels in transfected MEPM cells containing Wnt10a-specific small hairpin RNA (shRNA) plasmid. Down-regulation of Wnt10a inhibited cell proliferation and induced cell cycle arrest in the S phase in MEPM cells. Moreover, apoptosis was significantly increased in MEPM cells of Wnt10a gene silencing. Finally, the expression of β-catenin was markedly reduced in MEPM cells transfected with shRNA plasmid, indicating that the canonical Wnt/β-catenin signaling pathway was involved in the alterations of cell proliferation and apoptosis induced by Wnt10a knockdown. Thus, our findings reveal that Wnt10a regulates proliferation and apoptosis of MEPM cells at least partially through the canonical Wnt/β-catenin signaling pathway.  相似文献   

6.
The neuronal cell line HT22 is an excellent model for studying Parkinson's disease. Growth differentiation factor 15 (GDF15) plays a critical role in Parkinson's disease, but the molecular mechanism involved are not well understood. We constructed the GDF15 overexpression HT22 cells and detected the effects of overexpression of GDF15 on the viability, oxygen consumption, mitochondrial membrane potential of oligomycin-treated HT22 cells. In addition, we used a high-throughput RNA-sequencing to study the lncRNA and mRNA expression profiling and obtained key lncRNAs, mRNA, gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway. The expression of selected DElncRNAs was validated by quantitative real-time PCR (qRT-PCR). Our results showed that overexpression of GDF15 significantly reversed the cells viability, oxygen consumption, and mitochondrial membrane potential effect caused by oligomycin in HT22 cells. The 1093 DEmRNAs and 395 DElncRNAs in HT22 cells between GDF15-oligomycin non-intervention group and a normal control-oligomycin un-intervention group were obtained, and 394 DEmRNAs and 271 DElncRNAs in HT22 cells between GDF15-oligomycin intervention group and normal control-oligomycin intervention group were identified. Base on the GO and KEGG enrichment analysis of between GDF15-oligomycin intervention group and normal control-oligomycin intervention group, positive regulation of cell proliferation was most significantly enriched GO terms, and Cav1 was enriched in positive regulation of cell proliferation pathway. PI3K-Akt signaling pathway was one significantly enriched pathway in GDF15-oligomycin intervention group. The qRT-PCR results were consistent with RNA-sequencing, generally. GDF15 might promote mitochondrial function and proliferation of HT22 cells by regulating PI3K/Akt signaling pathway. Our study may be helpful in understanding the potential molecular mechanism of GDF15 in Parkinson's disease.  相似文献   

7.
8.
9.
The uptake of radioactive -aminobutyric acid (GABA) andd-aspartate and the effect of SKF 89976-A, a non-substrate inhibitor of the GABA transporter, on this uptake have been investigated. Neuronal cultures from eight-day-old chick embryos grown for three or six days in vitro, were used as a model. For comparison, we also used the P2-fraction from rat. Neuronal cultures grown for three and six days expressed high-affinity uptake systems for [3H]GABA and ford-[3H]aspartate with an increasing Vmax during this period. The lipophilic non-substrate GABA uptake inhibitor, SKF 89976-A, inhibited transporter mediated uptake of GABA both in cell cultures from chicken, and in P2-fractions from rat. The results also showed that SKF 89976-A was a poor inhibitor of the uptake ofd-aspartate. We found no non-saturable uptake ofd-aspartate.  相似文献   

10.
MicroRNAs (miRNAs) have been identified as key players in cardiogenesis and heart pathophysiological processes. However, many miRNAs are still not recognized for their roles in cardiomyocytes differentiation. In this study, we evaluated the effects of microRNA-218 (miR-218) in cardiomyocyte differentiation of the mouse embryonic stem cells (ESCs) in vitro. The percentage of the beating embryoid bodies (EBs) in miR-218 mimic-treated cells was reduced to 32% compared with miR-218 mimic negative control (56%) on day 5 + 3. The amplitude of the intracellular Ca2+ transients in the cardiomyocytes derived from ESCs was reduced upon miR-218 overexpression, followed by the decreased calcium-related proteins and cell junction proteins expressions. Besides, miR-218 expression in ESCs was related to the directional spreading ability of EBs during differentiation. The increased expression of miR-218 could promote the migration of ESCs in vitro, while the decreased expression of miR-218 could inhibit the migration by the transwell experiment. Meanwhile, miR-218 could regulate cell migration–related proteins Cdc42 and Rac1. Platelet-derived growth factor receptor α (PDGFRα) was further confirmed to be a direct target of miR-218 both physically and functionally by dual-luciferase reporter assay. Our data further described that overexpression of PDGFRα rescued the miR-218-mediated inhibition of cardiomyocyte differentiation and restored the miR-218-mediated promotion of cell migration. In conclusion, miR-218 was demonstrated to exert an inhibitory function and promoted cell migration via targeting PDGFRα during cardiomyocyte differentiation from ESCs. The current study revealed the role of miR-218 and may provide an important hint for cardiomyocyte differentiation of ESCs and induced pluripotent stem cells.  相似文献   

11.
Embryonic stem (ES) cells have the capacity to differentiate into endodermal, mesodermal, and ectodermal lineages. Motor neuron (MN) differentiation of mouse ES cells involves embryoid bodies formation with addition of Sonic hedgehog and retinoic acid. In this work, using immunocytochemistry, flow cytometry, and quantitative RT-PCR, we investigated whether progesterone or 17β-estradiol have inductive effects on ES cell-derived MN, as it has been demonstrated that these hormones modify proliferation and neural differentiation of pluripotent cells. When 100 nM progesterone was added during differentiation, we found higher proportions of MN, compared to the control condition; coincubation of progesterone with the progesterone receptor (PR) antagonist RU-486 caused a decrease in the number of MN to a percentage even lower than controls. The addition of nanomolar concentrations of 17β-estradiol also significantly induced MN differentiation. This effect of estradiol was completely antagonized by addition of the general estrogen receptor (ER) antagonist ICI 182,780. To identify the ER subtype mediating the increase on MN differentiation, we incubated estradiol with the ER-α antagonist MPP or with the ER-β blocker PHTPP. When we coincubated 17β-estradiol with MPP, we found a significant decrease in the percentage of MN. In contrast, the coincubation of 17β-estradiol with PHTPP had no effect on the induction of MN differentiation. All these effects on cell number were confirmed by significant changes in the expression of the MN markers Islet-1 and Choline acetyl transferase, assessed by real-time RT-PCR. Cell proliferation in embryoid bodies was significantly enhanced by progesterone treatment. No changes in apoptotic cell death were found in differentiating cells after progesterone or 17β-estradiol addition. Our findings indicate that progesterone and 17β-estradiol induce a higher proportion of MN derived from mouse ES cells through intracellular PR and ER, respectively. Furthermore, the effect of estradiol was mediated by specific activation of ER-α.  相似文献   

12.
TGF-β1 is thought to decrease the proportion of embryonic pancreatic β-cells with respect to α-cells, whereas glucose is thought to enhance β-cell proportions in rats. However, chick pancreatic cells may respond in a dissimilar way to glucose. Thus, the effect of TGF-β1 on the proportion of β-cells in embryonic chick dorsal pancreatic buds (DPBs) in vitro was tested with short-term exposure to high levels of glucose. Five-day-old chick DPBs were cultured on growth factor-reduced Matrigel, which contains reduced levels of growth factors including TGF-β1, and a variety of culture media with and without high levels of glucose. TGF-β1 reduced the proportion of β-cells, as expected. A similar decrease in the proportion of β-cells occurred in the presence of high levels of glucose.  相似文献   

13.
Wnt/β-catenin signaling regulates various cellular events involved in the proliferation and differentiation and these events are affected sensitively by applying to mechanical stimuli. However, the mechanisms by which mechanical force stimulates cardiomyogenesis are not extensively explored. In this study we investigated the cellular mechanisms by which β-catenin signaling regulates cardiac differentiation of strain-subjected embryonic stem (ES) cells. The application of cells to cyclic strain increased beating cardiomyocyte foci with the attendant increases of Cx 43 and Nkx 2.5 proteins. Anti-oxidants such as vitamin C or N-acetyl cysteine (NAC) blocked the strain-mediated increases of Cx 43, Nkx 2.5, and α5/β1 integrins. These anti-oxidants also suppressed the activation of phosphoinositide 3-kinase (PI3K) and Akt in cyclic strain-subjected cells. Western blot analysis revealed that PI3K is a critical downstream effector of β1 integrin signaling and mediates Cx 43 and Nkx 2.5 expression in cyclic strain-applied ES cells. Cyclic strain increased the expression of β-catenin and stimulated its nuclear translocation from the cytosol, which was prevented by anti-oxidant treatment. In addition, the application to cyclic strain increased mRNA expression of β-catenin target genes, Axin2 and c-myc, as well as the phosphorylation of glycogen synthase kinase-3β. Furthermore, the blockage of β-catenin by its specific siRNA transfection diminished the cellular levels of Cx 43 and Nkx 2.5 proteins and the number of beating cardiomyocyte foci. Collectively, these results suggest that β-catenin-mediated signaling is required for cyclic strain-stimulated cardiomyogenesis through ROS-dependent and integrin-mediated PI3K-Akt signaling cascades.  相似文献   

14.
15.
In order to elucidate the roles of metal-independent animal lectins, we systematically investigated changes in expression of 2 kinds of -galactoside-binding isolectins (MW 14 and 16 kDa) in the dermis of chick embryonic tarsometatarsal skin during the course of development. These lectins were immunohistochemically located at different stages of development both in ovo and in vitro by light and electron microscopy. Light-microscopic observation showed that while positive staining for the 14-kDa lectin was weak at days 8 and 10 it became intense after day 13. In contrast, staining for the 16-kDa lectin was intense at days 8, 10, and 13, but it became weak after day 17 when keratinization of the epidermis was completed. Immuno-electron-microscopic observation revealed that both the 14 and 16-kDa lectins were located on the basement membrane, in the extracellular matrix, and in both the cytoplasm and the nucleus of dermal fibroblasts. Distribution of the 2 isolectins was also examined in cultured skin explants in vitro. The results were almost the same as those obtained in ovo when the skin explant was keratinized in the presence of hydrocortisone. However, in the skin explant where keratinization was prevented and mucous metaplasia was induced by the addition of vitamin A, the distribution of the 14-kDa lectin in the epidermis was significantly affected. These results indicate that (1) the expression of the 2 isolectins is differently regulated in both the dermis and epidermis, (2) the 16-kDa lectin is involved in the early stage of the formation of the dermis and the basement membrane and is replaced by the 14-kDa lectin as keratinization of the epidermis occurs, and (3) the expression of the 2 isolectins in the dermis is not significantly affected by the induction of mucous metaplasia, in contrast to their drastic changes in the epidermis.  相似文献   

16.
Hepatic progenitor cells (HPCs) persist in adulthood and have the potential to play a major role in regenerating diseased liver. However, the signaling pathways that both directly and indirectly regulate HPCs’ self-renewal and differentiation remain elusive. Previously, we identified a bipotent, stem cell antigen-1 (Sca-1) positive HPC population from naïve adult liver tissue. In the present study, we aimed to investigate the involvement of various signaling pathways in Sca-1+ HPC proliferation. Epidermal growth factor (EGF) supplementation shows a significant increase in Sca-1+ HPC proliferation and colony formation while stimulating phosphorylation of ERK1/2 and activating the induction of Cyclin D1. There were no demonstrable effects of EGF on Akt. The MEK inhibitor, PD0325901, inhibits proliferation and ERK1/2 phosphorylation while also suppressing the expression of Cyclin D1. In addition, activation of either IL-6/STAT3 or Wnt/β-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. The Wnt/β-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation ratio and maintain long-term HPC in vitro. The data indicates that the MAPK/ERK pathway is both essential and critical for HPC proliferation, and the Wnt signaling pathway is not sufficient, while it works synergistically with the MAPK/ERK signaling pathway to promote HPC proliferation.  相似文献   

17.
We investigated the molecular mechanism of the glucose effect on the regulation of chondrogenesis. Exposure of chick wing bud mesenchymal cells to high concentrations of glucose stimulated chondrogenesis 2–fold to 2.5-fold without affecting cell proliferation. Glucose increased protein levels and the membrane translocation of protein kinase C alpha (PKC), leading to a reduction of extracellular signal-regulated kinase (ERK) phosphorylation. Phosphorylation of p38 was also increased in a PKC-independent manner by glucose treatment. Glucose also increased cell adhesion molecules such as fibronectin, integrin 1, and N-cadherin at early stages and then decreased these adhesion molecules at later stages of chondrogenesis. These alterations in protein level of adhesion molecules and in the phosphorylation of mitogen-activated protein kinases by glucose were blocked by inhibition of PKC or p38 but were synergistically increased by the inhibition of ERK. Therefore, high doses of glucose induce the down-regulation of ERK activity via PKC and the up-regulation of p38 and result in the stimulation of chondrogenesis of chick mesenchymal cells through modulating the expression of adhesion molecules.This work was supported by the Korea Research Foundation (KRF-2000-DP0352)  相似文献   

18.
19.
Mouse and human embryonic stem cells are in different states of pluripotency (naive/ground and primed states). Mechanisms of signaling regulation in cells with ground and primed states of pluripotency are considerably different. In order to understand the contribution of endogenous and exogenous factors in the maintenance of a metastable state of the cells in different phases of pluripotency, we examined the expression of TGFβ family factors (ActivinA, Nodal, Lefty1, TGFβ1, GDF3, BMP4) and FGF2 initiating the appropriate signaling pathways in mouse and human embryonic stem cells (mESCs, hESCs) and supporting feeder cells. Quantitative real-time PCR analysis of gene expression showed that the expression patterns of endogenous factors studied were considerably different in mESCs and hESCs. The most significant differences were found in the levels of endogenous expression of TGFβ1, BMP4 and ActivinA. The sources of exogenous factors ActivnA, TGFβ1, and FGF2 for hESCs are feeder cells (mouse and human embryonic fibroblasts) expressing high levels of these factors, as well as low levels of BMP4. Thus, our data demonstrated that the in vitro maintenance of metastable state of undifferentiated pluripotent cells is achieved in mESCs and hESCs using different schemes of the regulations of ActivinA/Nodal/Lefty/Smad2/3 and BMP/Smad1/5/8 endogenous branches of TGFβ signaling. The requirement for exogenous stimulation or inhibition of these signaling pathways is due to different patterns of endogenous expression of TGFβ family factors and FGF2 in the mESCs and hESCs. For the hESCs, enhanced activity of ActivinA/Nodal/Lefty/Smad2/3 signaling by exogenous factor stimulation is necessary to mitigate the effects of BMP/Smad1/5/8 signaling pathways that promote cell differentiation into the extraembryonic structures. Significant differences in endogenous FGF2 expression in the cells in the ground and primed states of pluripotency demonstrate diverse involvement of this factor in the regulation of the pluripotent cell self-renewal.  相似文献   

20.
Colorectal cancer (CRC) is still a fatal health problem around the world. The underlying mechanisms of CRC have not been fully elucidated. N-myc interactor (NMI) acts as an oncogene or a tumor-suppressor gene in several kinds of cancers but CRC. Here, the expression of NMI was found higher in CRC tissues and cells. Higher expression of NMI indicated the poorer prognosis of CRC patients. Moreover, the proliferation of CRC cells was suppressed significantly after we silenced the expression of NMI, while overexpression of NMI promoted CRC cell proliferation. Flow cytometry demonstrated that NMI promoted cell proliferation through facilitating cell transition from the G1 phase to the S phase. Furthermore, it was found that NMI suppressed the phosphorylation of Smad3 by upregulating the expression of STAT1. The effect of NMI depletion on cell proliferation could be reversed by using Smad3 inhibitor SIS3. In summary, our findings demonstrated that NMI promoted cell proliferation via TGFβ/Smad pathway and could indicate the prognosis of patients with CRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号